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Abstract: The issues of state estimations based on distributed observers for linear time-invariant
(LTI) systems with multiple sensors are discussed in this paper. We deal with the scenario when
the information exchange has known time delays, and aim at designing a distributed observer for
each subsystem such that each distributed observer can estimate the system state asymptotically
by rejecting the time delay. To begin with, by rewriting the target system in a connecting form,
a subsystem which is affected by the time-delay states of other nodes is established. And then, for
this subsystem, a distributed observer with time delay is constructed. Moreover, an equivalent state
transformation is made for the observer error dynamic system based on the observable canonic
decomposition theorem. Further, in order to ensure that the distributed observer error dynamic
system is asymptotically stable even if there exists a time delay, a linear matrix inequality (LMI) which
is relative to the Laplace matrix is elaborately set up, and a special Lyapunov function candidate
based on the LMI is considered. Next, based on the Lyapunov function and Lyapunov stability theory,
we prove that the error dynamic system of the distributed observer is asymptotically stable, and the
observer gain is determined by a feasible solution of the LMI. Finally, a simulation example is given
to illustrate the effectiveness of the proposed method.

Keywords: distributed observer; multiple sensors; time delay; linear matrix inequality; Lyapunov
stability theory

1. Introduction

A state observer is a dynamic system which is constructed by using the measurement
output together with the control input of the original system, such that the dynamic system
can generate the state estimates of the original system. The motivation of developing the
state estimation concept is that for most practical systems, the state information is difficult,
expensive or even impossible to measure directly. The model-based state estimation theory
has attracted extensive attention and has been gradually improved to meet the needs of
practical engineering applications since the Luenberger observer was proposed in the
1960s [1,2]. After that, all kinds of observer design methods corresponding to various
complex scenarios have been developed, such as the unknown input observer (UIO) [3,4],
the time-delay observer [5,6], the sliding model observer [7–9], and the reduced-order
observer [10,11]. For example, Zhu et al. propose a joint UIO which is able to offer
the asymptotic convergent estimations of state and unknown input simultaneously [3].
Edwards et al. design a sliding model observer to reconstruct the actuator fault [7]. In [11],
a reduced-order observer is constructed for a descriptor system with disturbance appearing
in both the state equation and output equation.

Recently, the distributed observer which can reconstruct the entire system states based
on partial output information through information exchange has gained much attention.
For a target system monitored by a group of sensor nodes, the objective of a distributed
observer is to asymptotically estimate the state of the target system using its local measure-
ments together with information exchange with neighbors. The motivations for designing
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distributed observers are mainly of two kinds. To begin with, it is particularly benefi-
cial for large-scale systems, such as the electrical power system [12,13], water irrigation
system [14], intelligent vehicles [15] and so on, to obtain state estimates using multiple
sensors deployed in different geographic or spatial locations. Sensors with computation
and communication functions are available and this allows integration between observers
and local sensors. To date, many significant results on distributed observers have been
published in the literature [12–28]. For example, a theoretically robust and computationally
efficient distributed state estimator is proposed in [15], which is a typical application of a
distributed observer in a power system. By using the observability decomposition of target
systems and introducing an auxiliary undirected graph, paper [16] discusses a Luenberger-
type distributed observer for linear systems based on LMIs and then a Luenberger-type
distributed observer design method is given. An approach for solving the problem of the
distributed state estimation of LTI systems is proposed in [18], where the distributed state
observation task is reformulated as a parameter estimation problem, and the estimation
convergence is achieved in finite time.

In the domain of networked control systems, many challenging problems require
solution. For example, Cai et al. [19] develop a novel control scheme that ensures mean
square leader–follower consensus in the presence of unknown transfer probabilities and
system perturbations. The proposed method incorporates an observer to reconstruct
system states and an adaptive event-triggered mechanism to dynamically adjust communi-
cation, thereby enhancing the overall efficiency and robustness of the MASs. Cao et al. [20]
present an adaptive NN-based observer for MASs with time-varying delays, offering
a low-gain approach to enhance the state estimating and tracking accuracy through a dy-
namic event-triggered control strategy. In [21], an adaptive NN and low-gain observer
in a dynamic event-triggered control framework is introduced to ensure fixed-time co-
operative formation for MASs. Wang et al. [22] propose an observer-based sliding mode
control approach for networked fuzzy singularly perturbed systems, enhancing system
stability and performance under the weighted try-once-discard protocol. Different from
traditional observers, distributed observers have to be dealt with in terms of the network
construction. As a result, one of the exclusive features of distributed observers is that
information exchange is necessary such that each local observer is able to generate the
state estimates. It is this exclusive feature that implies there are extra concerns when we
design a distributed observer, especially with respect to requirements from information
exchange links. These problems include data transfer delays, data transfer blocks, data
losses, or even communication channels suffering from malicious attacks. For distributed
observer designs, coping with the above-mentioned problems has been taken into account
by some researchers [23–32]. For example, ref. [23] provides a survey of recent advances
in distributed event-triggered estimation for dynamical systems operating over resource-
constrained sensor networks. In paper [24], a hybrid observer is discussed which can
provide estimations asymptotically even if one or several agents join or leave the internet.
Aiming at the multi-observer network system with time delay and packet loss in infor-
mation communication, paper [25] proposes a distributed estimation problem of system
state realized by a continuous time-distributed observer. In paper [26], the distributed
estimation problem is solved based on LMI, where the digital communication between
the observer nodes is modeled by the time-delay approach in which variable sampling
intervals, transmission delays, and packet dropouts are taken into account. Papers [27,28]
focus on the construction of distributed observers in the presence of arbitrarily large
communication time delays. Paper [29] designs a distributed observer for scenarios of
both state-dependent and non-state-dependent noise occurring in information exchange.
The issues of the communication delay and communication frequency in distributed state
estimation using a unified structure are addressed in [30].

Based on the above observations, in this paper, we focus on coping with the problems
of information communication delays in constructing a distributed observer for an LTI
system. The major contributions of the paper are summarized as follows:
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(1) By making good use of the special structure of the Laplacian matrix of the communi-
cation topology, the state equation of the target system is rewritten in a connecting
form, while the information transfer delay is considered. In this way, a distributed
observer design model with information communication delays is set up.

(2) Referring to the design model, a distributed observer is designed, in which the time
delay caused by the information communication is robustly rejected by constructing
a special Lyapunov function which contains two parts, which are dependent on each
other through an LMI which is predefined elaborately. And the observer gains can be
obtained by solving a single LMI.

The rest of the paper is organized as follows: In Section 2, notations, concepts used,
and a system description are given. In Section 3, the main results about the distributed
observer which can reject the time delay are presented. In Section 4, a simulation example is
given to illustrate the effectiveness of the proposed method. Section 5 gives the conclusions.

2. Preliminaries and System Description
2.1. Notation

Notation 1. For a square symmetric matrix M ∈ Rn×n, M < 0 (M > 0) means that M is
a symmetric negative (positive) definite matrix. Suppose Gi (i ∈ N = {1, · · · , N}) are N matrices
or scalars, notation diag

i∈N
(Gi) stands for a diagonal (block) matrix with Gi (i = 1, · · · , N) being the

diagonal entries (block matrices).

2.2. Basic Graph Theory

For a complex network with N nodes labeled by 1, · · · , N, the information flow among
the N nodes is described by a directed weighted graph G(V , E), where V ={v1, · · · , vN}
stands for the node set A =

[
aij
]
∈ RN×N , and E = V × V denotes the edge set. Further,

define an adjacency matrix to describe the connection condition between any two nodes.
Specifically, set aij = 1 if

(
vi, vj

)
∈ E , which means that node i can receive information from

node j; and aij = 0 if
(
vi, vj

)
/∈ E . We always assume that (vi, vi) /∈ E , which implies that

aij = 0 for all i ∈ N. Let L =
[
lij
]
∈ RN×N be the Laplacian matrix with lij = −aij(i ̸= j)

and lii =
N
∑

k=1
aik. If we further define B = diag

i∈N

(
N
∑

j=1
aij

)
, then we have L = B −A.

Definition 1. The graph G is said to be strong connected if there exists a directed path for any two
notes in G.

Lemma 1 ([31]). Let G be a strongly connected directed graph with N nodes and L be its Laplacian
matrix. Then, the following statements hold.

(i) There exists a vector θ =
[

θ1 · · · θN
]T satisfying 0 < θi < 1,

N
∑

i=1
θi = 1 and

θTL = 0.
(ii) Define matrix L̂ = ΘL+ LTΘ with Θ = diag

i∈N
(θi), then L̂ is a symmetric Laplacian

matrix associated with a connected undirected graph obtained from G by ignoring the directions of
all the edges.

2.3. System Formulation

Consider a linear system with N sensors, where the ith node or subsystem is described by{
ẋ(t) = Ax(t) + Bu(t)
yi(t) = Cix(t)

, i ∈ N (1)

where x(t) ∈ Rn, y(t) ∈ Rp and u(t) ∈ Rm are the system state, measurement output
and control input vectors, respectively. A ∈ Rn×n, B ∈ Rn×m and Ci ∈ Rpi×n(i ∈ N)
are all known constant matrices. Here, we assume that (A, Ci) is neither observable
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nor detectable for all i ∈ N. Therefore, for the ith subsystem, it is impossible for one
to design an observer to obtain the state estimation of the system only by using the
local sensor output yi. Moreover, we assume that the pair (A, C) is observable, where
C =

[
CT

1 · · · CT
N
]T ∈ Rp, and p = p1 + · · ·+ pN .

3. Distributed Observer with Communication Time Delay

From the construction of the Laplacian matrix L =
[
lij
]
∈ RN×N , we know that

N
∑

j=1
lij = 0(i ∈ N). Thus, the ith subsystem (1) can also be rewritten as

ẋ(t) = (A + KiCi)x(t)− cTT
iuTiu

N

∑
j=1

lijx(t − τ)− Kiyi(t) + Bu(t) (2)

where c > 0 is a scalar and Ki ∈ Rn×pi is a gain matrix to be designed later, while τ > 0
is an arbitrary scalar which stands for the time delay due to the information exchange
between any two subsystem and it is assumed to be known.

Since (A, Ci) is unobservable, which means that rank(Oi) = vi < n, where Oi =[
CT

i (Ci A)T · · ·
(
Ci An−1)T

]T
. Thus, based on the observable canonic decompo-

sition theorem, there must exist an orthogonal matrix Ti ∈ Rn×n satisfying TiTT
i =

TT
i Ti = In such that Ti ATT

i =

[
Aid 0
Air Aiu

]
and CiTT

i =
[

Cid 0
]

with Aid ∈ Rvi×vi ,

Air ∈ R(n−vi)×vi , Aiu ∈ R(n−vi)×(n−vi) and Cid ∈ Rpi×vi . Further, the pair (Aid, Cid) is
observable. For the discussion, we need to decompose matrix Ti into a black matrix as
Ti =

[
TT

id TT
iu
]T , where Tid ∈ Rvi×n and Tiu ∈ R(n−vi)×n.

Remark 1. To design a distributed observer, we rewrite system (1) into (2), by making good use of
the property of the information communication topology, such that the rewritten system (2) is in the
form of a distributed feature. Moreover, in this way, the time delay, which is caused because of the
information exchange, is characterized in the model. Therefore, based on the rewritten system (2),
we can conveniently handle the time delay problem brought by the information communication.

Now, design a distributed observer for system (2) as follows:

˙̂xi(t) = (A + KiCi)x̂(t)− cTT
iuTiu

N

∑
j=1

lij x̂j(t − τ)− Kiyi(t) + Bu(t) (3)

The observer error dynamic system can be obtained by subtracting (3) from (2):

˙̃xi(t) = (A + KiCi)x̃(t)− cTT
iuTiu

N

∑
j=1

lij x̃j(t − τ) (4)

where x̃i(t) = x(t)− x̂i(t). In what follows, make an equivalent state transformation of

ζ̃i = Ti x̃i (i ∈ N), and choose Ki = TT
i

[
Kid

0(n−vi)×pi

]
∈ Rn×pi with Kid ∈ Rvi×pi being

a gain matrix to be determined later, then we obtain an equivalent system of (4) as follows:

˙̃ζi(t) = Āi ζ̃i(t)− cFi

N

∑
j=1

lijTT
j ζ̃ j(t − τ) (5)

where Āi =

[
Aid + KidCid 0

Air Aiu

]
and Fi = TiTT

iuTiu =

[
0vi×(n−vi)

Tiu

]
.

Moreover, denote ζi =
[

ζT
id ζT

iu
]T , ζ̂i =

[
ζ̂T

id ζ̂T
iu
]T , ζ̃id = ζid−ζ̂id and ζ̃iu =

ζiu − ζ̂iu with ζid, ζ̂id, ζ̃id ∈ Rvi and ζiu, ζ̂iu, ζ̃iu∈ Rn−vi , then, (5) can also be rewritten as
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˙̃ζ id(t) = (Aid + KidCid)ζ̃id(t)
˙̃ζ iu(t) = Air ζ̃id(t) + Aiu ζ̃iu(t)− cTiu

N
∑

j=1
lijTT

jd ζ̃ jd(t − τ)− cTiu
N
∑

j=1
lijTT

ju ζ̃ ju(t − τ)
(6)

The overall system of the first equation of (6) is

˙̃ζd(t) = (Ad + KdCd)ζ̃d(t) (7)

where ζ̃d =
[

ζ̃T
1d · · · ζ̃T

Nd
]T , Ad = diag

i∈N
(Aid) ∈ Rv×v, Kd = diag

i∈N
(Kid) ∈ Rv×p and

Cd =diag
i∈N

(Cid) ∈ Rp×v. The overall system of the second equation of (6) is

˙̃ζu(t) = Ar ζ̃d(t) + Au ζ̃u(t)− cTu(L⊗ In)TT
d ζ̃d(t − τ)− cTu(L⊗ In)TT

u ζ̃u(t − τ) (8)

where ζ̃u =
[

ζ̃T
1u · · · ζ̃T

Nu
]T , Au = diag

i∈N
(Aiu) ∈ R(nN−v)×(nN−v) , Ar = diag

i∈N
(Air) ∈

R(nN−v)×v , Tu = diag
i∈N

(Tiu) ∈ R(nN−v)×nN and Td= diag
i∈N

(Tid) ∈ Rv×nN . Then, the

combination of (7) and (8) is

˙̃ζdu(t) = Adu ζ̃du(t)− cGζ̃du(t − τ) (9)

where Adu =

[
Ad + KdCd 0

Ar Au

]
, G =

[
0 0

Tu(L ⊗ In)TT
d Tu(L ⊗ In)TT

u

]
and ζ̃du =[

ζ̃ T
d ζ̃ T

u
]T .

Lemma 2 ([32]). Under the assumption that this is strongly connected and the pair (A, C) is
detectable, then, Tu

(
L̂ ⊗ In

)
TT

u is a symmetric positive definite matrix, where L̂ is defined in
Lemma 1.

Suppose that Pio ∈ Rvi×vi , Piu ∈ R(n−vi)×(n−vi), Qio ∈ Rvi×vi and Qiu ∈ R(n−vi)×(n−vi)

(i = 1, · · · , N) are a series of symmetric positive definite matrices, then define Po =
diag
i∈N

(Pio), Pu = diag
i∈N

(Piu), Qo = diag
i∈N

(Qio) and Qu = diag
i∈N

(Qiu). Moreover, for a proper

c > 0, construct

Ωu = γQu −
[
cPuTu(ΘL⊗ In)TT

u + cTu

(
LTΘ ⊗ In

)
TT

u Pu

]
(10)

where γ > 0 is a scalar. Under the assumption that the LMI

cPuTu(ΘL⊗ In)TT
u + cTu

(
LTΘ ⊗ In

)
TT

u Pu < γQu (11)

is feasible for Pu and Qu, then P =

[
Po

Pu

]
and Ω =

[
Qo

Ωu

]
are both symmetric

positive definite matrices. Now, for the overall error dynamic system (9), consider the
Lyapunov function candidate

V(t) = ζ̃T
du(t)Pζ̃du(t) +

∫ t

t−τ
ζ̃T

du(s)Ωζ̃du(s)ds (12)

The derivative of V(t) given by (12) along the trajectory of (9) is

V̇(t) =
[

ζ̃T
du(t) ζ̃T

du(t − τ)
][ PAdu + AT

duP + Ω −cPG
∗ −Ω

][
ζ̃du(t)

ζ̃du(t − τ)

]
(13)
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where [
PAdu + AT

duP + Ω −cPG
∗ −Ω

]

=


Πo AT

r Pu 0v×v 0v×(nN−v)
∗ Πu −cPuTu(L⊗ In)TT

d −cPuTu(L⊗ In)TT
u

∗ ∗ −Qo 0v×(nN−v)
∗ ∗ ∗ −Ωu

 (14)

where Ωu is determined by (10) and

Πo = Po Ad + AT
d Po + XdCd + CT

d XT
d + Qo

Πu = Pu
[
Au − cTu(ΘL⊗ In)TT

u
]
+
[
Au − cTu(ΘL⊗ In)TT

u
]T Pu + Qu

Ωu = γQu −
[
cPuTu(ΘL⊗ In)TT

u + cTu
(
LTΘ ⊗ In

)
TT

u Pu
] (15)

with Xd = PoKd.

Theorem 1. If the following LMI
Πo AT

r Pu 0v×v 0v×(nN−v)
∗ Πu −cPuTu(L⊗ In)TT

d −cPuTu(L⊗ In)TT
u

∗ ∗ −Qo 0v×(nN−v)
∗ ∗ ∗ −Ωu

 < 0 (16)

has solutions for symmetric positive definite matrices Po, Pu, Qo and Qu, then the overall observer
time-delay error dynamic system (9) is asymptotically stable.

Proof. By the Schur complement lemma, LMI (16) is feasible implies that LMI (11) is
feasible. Therefore, P and Ω are two symmetric positive definite matrices, and this indicates
that V(t) given by (12) is a positive scalar function which can serve as Lyapunov function.
It follows from (16) and (14)[

PAdu + AT
duP + Ω −cPG

∗ −Ω

]
< 0 (17)

Furthermore, (17) and (13) ensure that the overall error dynamic system (9) is asymptotically
stable. Define v̄i = v1 + · · · vi; p̄i = p1 + · · ·+ pi(i ∈ N), v̄0 = 0 and p̄0 = 0; then, we have
the following Algorithm for constructing the distributed time-delay observer (3).

Remark 2. The decentralized control theory is employed to address the distributed estimation prob-
lem in [25]. The author provides a general framework for state estimators and outlines constraints
on the observer parameters that can influence the convergence rate. Halanay’s inequality is utilized
to account for the impact of time-varying delays. In contrast, we have directly proven that the
derivative of the Lyapunov functional with respect to time is negative based on selecting a special
Lyapunov function candidate which consists of two parts, and the two parts are related with each
other. And eventually, the asymptotic stability of the observer error system can be guaranteed by
an LMI.

Lemma 3. Au − cTu(L⊗ In)TT
u is a Hurwitz matrix provided that c is large enough. And this

means that for some Qu > 0, there exists Pu > 0 such that Πu < 0, where Πu is expressed in (15).

Proof. Define Θ = diag
i∈N

(θi), which is obviously a symmetric positive matrix; then, we have

(
Au − cTu(L⊗ In)TT

u

)T
Θ + Θ

(
Au − cTu(L⊗ In)TT

u

)
= AT

u Θ + ΘAu − cTu
(
L̂ ⊗ In

)
TT

u
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where L̂ is defined in Lemma 1. By Lemma 2, Tu
(
L̂ ⊗ In

)
TT

u is a symmetric positive definite

matrix. Therefore, if we choose c > 2∥Au∥
λmin(Tu(L̂⊗In)TT

u )
, then

(
Au − cTu(L⊗ In)TT

u

)T
Θ + Θ

(
Au − cTu(L⊗ In)TT

u

)
< 0

As a result, by Lyapunov stability theory, we conclude that Au − cTu(L⊗ In)TT
u is Hurwitz.

Furthermore, again by Lyapunov theory, for some Qu > 0, there exists Pu > 0 such that
Πu < 0, where Πu is expressed in (15).

Lemma 4. Under the assumption that the following LMI[
Πu Pu Ar

AT
r Pu Π0

]
< 0 (18)

is feasible, then if there exists a c satisfying

2∥Au∥
λmin

(
Tu
(
L̂ ⊗ In

)
TT

u
) < c <

λmin(Υ1)

λmax(Υ2)

then, LMI (16) is feasible, where Υ1 = PuArΠ−1
0 AT

r Pu −Πu and Υ2 = PuTu(L⊗ In)·
(

TT
d Q−1

0 Td +

TT
u Ω−1

u Tu
)(
LT ⊗ In

)
TT

u Pu.

Proof. LMI (18) is equivalent to Υ1 > 0. On the other hand, by the Schur complement
lemma, we know that (16) is equivalent to c2Υ2 < Υ1, which can be guaranteed by (18).

Remark 3. The feasibility of LMI (16) confirms the feasibility of LMI (11), which can ensure
that matrices Pu and Ωu are symmetric positive definite matrices. These two matrices are utilized
to construct symmetric positive definite matrices P and Ω, and this allows for the selection of
Lyapunov function candidate (12) satisfying the condition V(t) > 0. Furthermore, the positive
definite matrix solution is used to calculate the observer gain matrix Ki ; thereby, the design
of our distributed observer can be accomplished. Hence, LMI (16) plays an important role in
the designs.

Corollary 1. Suppose that the LMI (16) is feasible, and calculate the observer gain matrix Ki based
on Algorithm 1, then system (3) is a distributed time-delay state observer of the ith subsystem (2)
or (1).

Algorithm 1 Algorithm for constructing a distributed observer

1: Solve LMI (16) to obtain Po > 0, Pu > 0, Qo > 0, Qu > 0 and Xd;
2: Calculate Kd = P−1

o Xd, and then obtain Kid = Kd((v̄i−1 + 1) : v̄i, ( p̄i−1 + 1) : p̄i),
(i = 1, · · · , N);

3: Calculate Ki = TT
i

 Kid

0(n−vi)×pi

, (i ∈ N);

4: Construct distributed observer (3) to obtain x̂i.
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4. Simulation
4.1. Example 1

Consider a linear system (1) with 4 subsystems, the parameters of the systems are

A =



−1 0 0 0 0 0
−1 1 1 0 0 0
1 −2 −1 −1 1 1
0 0 0 −1 0 0
−8 1 −1 −1 −2 0
4 −0.5 0.5 0 0 −4

, B =



1
1
1
1
1
1

,

C =



1 0 0 2 0 0
2 0 0 1 0 0
2 0 1 0 0 1
0 0 0 2 0 0
1 0 2 0 0 0
2 0 4 0 0 0


=


C1
C2
C3
C4

,

Here, it can be seen that (A, Ci) is neither observable nor detectable for all (i ∈ N) but
(A, C) is observable. The topology of the graph is illustrated by Figure 1; the Laplacian
matrix L can be obtained.

Figure 1. The communication graph topology.

L =


2 −1 0 −1
0 1 −1 0
−1 −1 2 0
−1 0 0 1


Furthermore, we assume that the time delay is τ = 0.4 and the initial values for the tar-

get system and all observers are initialized at [0 0 0 0 0 0 ]T . By setting
θ =

[
0.25 0.25 0.25 0.25

]T , c = 1, γ = 100, the LMI (16) is feasible for Po, Pu, Qo,
Qu and Xd, we can obtain:
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T1 =



1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

, T2 =



0.5145 0 0 0 0 −0.8575
−0.7197 0.5437 0 0 0 −0.4318
0.3597 0.6474 0.6363 0 0 0.2158
0.1896 0.3413 −0.4929 0.7692 0 0.1138
0.041 0.0738 −0.1066 −0.1148 0.9837 0.0246

0.2245 0.4041 −0.5837 −0.6286 −0.1796 0.1347

,

T3 =



0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

, T4 =



0.7474 0 0 0 0 −0.6644
−0.2963 0.8950 0 0 0 −0.3333
0.1695 0.1271 0.9585 0 0 0.1906
0.4946 0.3709 −0.2473 0.4971 0 0.5564
0.2047 0.1535 −0.1023 −0.6268 0.6915 0.2303
0.1959 0.1469 −0.0980 −0.6000 −0.7224 0.2204

,

Po =



15.3517 −3.3894 0 0 0 0 0 0 0 0 0 0 0

−3.3894 5.7454 0 0 0 0 0 0 0 0 0 0 0

0 0 14.0058 −11.4503 6.2228 16.8137 −4.9765 0 0 0 0 0 0

0 0 −11.4503 14.3667 −13.2043 −16.2162 2.1165 0 0 0 0 0 0

0 0 6.2228 −13.2043 37.6463 2.3724 5.1665 0 0 0 0 0 0

0 0 16.8137 −16.2162 2.3724 26.9624 −8.4827 0 0 0 0 0 0

0 0 −4.9765 2.1165 5.1665 −8.4827 5.6695 0 0 0 0 0 0

0 0 0 0 0 0 0 7.4470 0 0 0 0 0

0 0 0 0 0 0 0 0 17.8167 −2.0586 4.6038 15.8194 −4.2174

0 0 0 0 0 0 0 0 −2.0586 2.0797 2.4235 −3.0427 0.1155

0 0 0 0 0 0 0 0 4.6038 2.4235 20.7443 3.0464 6.2001

0 0 0 0 0 0 0 0 15.8194 −3.0427 3.0464 17.4158 −4.3726

0 0 0 0 0 0 0 0 −4.2174 0.1155 6.2001 −4.3726 6.6632



,

Pu =



3.5623 2.2813 0.5341 0.5545 0 0 0 0 0 0 0
2.2813 2.9214 1.5320 0.5091 0 0 0 0 0 0 0
0.5341 1.5320 1.6951 1.0928 0 0 0 0 0 0 0
0.5545 0.5091 1.0928 3.6807 0 0 0 0 0 0 0

0 0 0 0 0.3745 0 0 0 0 0 0
0 0 0 0 0 13.0474 −1.6092 −1.4060 −0.8643 −0.8049 0
0 0 0 0 0 −1.6092 2.2418 1.2909 0.1959 0.2437 0
0 0 0 0 0 −1.4060 1.2909 1.3807 0.5249 0.3094 0
0 0 0 0 0 −0.8643 0.1959 0.5249 0.7437 0.9670 0
0 0 0 0 0 −0.8049 0.2437 0.3094 0.9670 3.3237 0
0 0 0 0 0 0 0 0 0 0 0.4115



,

Qo =



34.8182 −0.4649 0 0 0 0 0 0 0 0 0 0 0

−0.4649 3.4110 0 0 0 0 0 0 0 0 0 0 0

0 0 10.5226 −12.1906 −3.5589 2.7984 −3.0916 0 0 0 0 0 0

0 0 −12.1906 25.5771 9.9243 −2.4880 4.2512 0 0 0 0 0 0

0 0 −3.5589 9.9243 16.4028 0.2881 2.5395 0 0 0 0 0 0

0 0 2.7984 −2.4880 0.2881 3.2461 −0.0809 0 0 0 0 0 0

0 0 −3.0916 4.2512 2.5395 −0.0809 3.4821 0 0 0 0 0 0

0 0 0 0 0 0 0 3.9413 0 0 0 0 0

0 0 0 0 0 0 0 0 3.8071 −0.8010 −1.0720 −0.9268 −0.6791

0 0 0 0 0 0 0 0 −0.8010 12.0017 6.8615 3.0779 2.2601

0 0 0 0 0 0 0 0 −1.0720 6.8615 11.2034 2.2925 3.5806

0 0 0 0 0 0 0 0 −0.9268 3.0779 2.2925 3.0897 1.9743

0 0 0 0 0 0 0 0 −0.6791 2.2601 3.5806 1.9743 3.2610



,
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Qu =



1.2020 0.8227 −0.2075 0.2855 0 0 0 0 0 0 0
0.8227 1.1699 0.2158 −0.0638 0 0 0 0 0 0 0
−0.2075 0.2158 0.6940 0.6527 0 0 0 0 0 0 0
0.2855 −0.0638 0.6527 3.8573 0 0 0 0 0 0 0

0 0 0 0 0.1902 0 0 0 0 0 0
0 0 0 0 0 5.2207 −1.1126 −0.5123 0.4465 −0.6597 0
0 0 0 0 0 −1.1126 1.1477 0.6517 −0.3007 0.1264 0
0 0 0 0 0 −0.5123 0.6517 0.7548 0.0717 0.1230 0
0 0 0 0 0 0.4465 −0.3007 0.0717 0.6905 0.9133 0
0 0 0 0 0 −0.6597 0.1264 0.1230 0.9133 3.6940 0
0 0 0 0 0 0 0 0 0 0 0.1530



,

Xd =



−10.6407 −27.4692 0 0 0 0
−6.1193 0.0343 0 0 0 0

0 0 −0.0775 0 0 0
0 0 8.0686 0 0 0
0 0 7.0968 0 0 0
0 0 4.5127 0 0 0
0 0 6.8583 0 0 0
0 0 0 −12.7959 0 0
0 0 0 0 0.0148 0.0295
0 0 0 0 1.7084 3.4168
0 0 0 0 −0.7082 −1.4164
0 0 0 0 1.2386 2.4773
0 0 0 0 −0.1463 −0.2927



,

By Algorithm 1, we can obtain Kd = P−1
o Xd, Kid = Kd((v̄i−1 + 1) : v̄i , ( p̄i−1 + 1) : p̄i),

(i = 1, · · · , N), and then calculate the observer gain matrix and Ki = TT
i

[
Kid

0(n−vi)×pi

]
,

(i ∈ N):

K1 =



−1.0673 −2.0558
0 0
0 0

−1.6947 −1.2068
0 0
0 0

, K2 =



−26.38042013
56.63379691
−17.29984844
29.67078404
34.17659073
−16.86259616

, K3 =



0
0
0

−1.7183
0
0

, K4 =



−0.62123138 −1.24249720
10.49287963 20.98590120
−4.58478301 −9.16960098
−1.35814064 −2.71629425
3.59918835 7.19844585
−0.38187038 −0.76362898

,

Finally, we can calculate out that:

Ā1 =



−6.1789 −4.1904 0 0 0 0
−4.1083 −5.5962 0 0 0 0
−1.0000 0 1.0000 1.0000 0 0
1.0000 −1.0000 −2.0000 −1.0000 1.0000 1.0000
−8.0000 −1.0000 1.0000 −1.0000 −2.0000 0
4.0000 0 −0.5000 0.5000 0 −4.0000

,

Ā2 =



−4.8181 −0.0731 0.7236 0 0 0
7.5065 −105.9808 90.1845 0 0 0
2.5967 −24.0989 19.4192 −0.7308 0.6469 0
8.0248 −80.3678 69.7473 −0.4339 −0.5011 0
2.0218 −58.4826 51.9907 −1.3057 −2.1083 0
1.3553 0.6556 1.6756 0.9311 −0.4108 −1.0000

,
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Ā3 =



−4.4366 0 0 0 0 0
0 −1.0000 0 0 0 0
0 −1.0000 1.0000 1.0000 0 0

−1.0000 1.0000 −2.0000 −1.0000 1.0000 1.0000
−1.0000 −8.0000 1.0000 −1.0000 −2.0000 0

0 4.0000 −0.5000 0.5000 0 −4.0000

,

Ā4 =



−5.0960 0.7318 −2.5400 0 0 0
33.9331 −13.2978 101.9961 0 0 0
−11.1711 2.6244 −34.4621 −0.1802 1.3863 0
16.7904 −4.6552 40.6170 −0.9535 −0.3576 0
16.3406 −5.0310 53.0587 −2.6328 −2.1480 0
5.2998 −1.9548 1.8379 2.7892 0.9031 −1.0000

,

F1 =



0 0 0 0 0 0
0 0 0 0 0 0
0 1.0000 0 0 0 0
0 0 1.0000 0 0 0
0 0 0 0 1.0000 0
0 0 0 0 0 1.0000

,

F2 =



0 0 0 0 0 0
−6.04803 × 10−6 −1.08865 × 10−5 1.57249 × 10−5 1.69345 × 10−5 4.83842 × 10−6 −3.62882 × 10−6

6.04803 × 10−6 1.08865 × 10−5 −1.57249 × 10−5 −1.69345 × 10−5 −4.83842 × 10−6 3.62882 × 10−6

−1.28517 × 10−17 −2.31331 × 10−17 3.34144 × 10−17 3.59848 × 10−17 1.02814 × 10−17 −7.71102 × 10−18

1.20961 × 10−5 2.17729 × 10−5 −3.14498 × 10−5 −3.38690 × 10−5 −9.67685 × 10−6 7.25764 × 10−6

0.22448675 0.40407614 −0.58366555 −0.62856289 −0.17958940 0.13469205

,

F3 =



0 0 0 0 0 0
1.0000 0 0 0 0 0

0 1.0000 0 0 0 0
0 0 1.0000 0 0 0
0 0 0 0 1.0000 0
0 0 0 0 0 1.0000

,

F4 =



−3.54579 × 10−6 −2.65889 × 10−6 1.77380 × 10−6 1.08600 × 10−5 1.30754 × 10−5 −3.98924 × 10−6

−5.67914 × 10−6 −4.25863 × 10−6 2.84102 × 10−6 1.73940 × 10−5 2.09424 × 10−5 −6.38940 × 10−6

−9.54425 × 10−6 −7.15697 × 10−6 4.77456 × 10−6 2.92320 × 10−5 3.51953 × 10−5 −1.07379 × 10−5

−3.26957 × 10−6 −2.45176 × 10−6 1.63562 × 10−6 1.00140 × 10−5 1.20569 × 10−5 −3.67848 × 10−6

−5.13258 × 10−6 −3.84878 × 10−6 2.56760 × 10−6 1.57200 × 10−5 1.89269 × 10−5 −5.77448 × 10−6

0.195899675 0.146899756 −0.097999837 −0.599999004 −0.722398801 0.220399634


Based on the above calculation results, the distributed observer (4) can be constructed.
The state and their estimates of each node are depicted in Figures 2–8. It can be seen that
all estimates converge to the actual state asymptotically.
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Figure 2. State estimations of x1 − x3 by node 1.

In Figures 2 and 3 for node 1, the state estimation x1 and x4 reach the convergence at
the beginning, while x2, x3, x5 and x6 achieve convergence later, at around 4.7 s.

In Figures 4 and 5 for node 2, the state estimations of x1 and x4 can be realized at
approximately 5.9 s, while x2, x6, x3 and x5 achieve convergence at around 3.4 s, 4.4 s, 4.7 s,
4.2 s and 3.4 s, respectively.

Figures 6 and 7 provide the state estimations by node 3, which show that the state esti-
mation x1 has the convergence at approximately 2.6 s, while x2 and x3 achieve convergence
at around 3.6 s. Lastly, x5 and x6 convergence can be achieved at 6.4 and 4.5 s, respectively.

In Figures 8 and 9 for node 4, the convergences of the state estimations of x1, x2, x3,
x4, x5 and x6 can be realized at 1 s, 0.2 s, 0.4 s, 2.7 s, 0.9 s and 1.1 s, respectively. In the
depicted scenario, each node observer exhibits rapid convergence. That is, we conclude
that the convergence characteristics depend greatly on the output information received by
each node, showing the distributed characteristics of the observer. Currently, our method
is capable of handling estimations for information communication with a time delay which
is less than 0.5 s. Beyond this threshold, convergence cannot be achieved. As illustrated,
when the time delay is set as 0.6 s, taking node 1 as an example, it can be observed from
Figures 10 and 11 that the state estimations cannot be accomplished asymptotically. This is
an aspect that requires further investigation.
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Figure 3. State estimations of x4 − x6 by node 1.

Figure 4. State estimations of x1 − x3 by node2.
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Figure 5. State estimations of x4 − x6 by node 2.

Figure 6. State estimations of x1 − x3 by node 3.
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Figure 7. State estimations of x4 − x6 by node 3.

Figure 8. State estimations of x1 − x3 by node 4.
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Figure 9. State estimations of x4 − x6 by node 4.

Figure 10. State estimations of x1 − x3 by node 1 (Latency set to 0.6 s).
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Figure 11. State estimations of x4 − x6 by node 1 (Latency set to 0.6 s).

4.2. Example 2

In this part, the proposed distributed observer design strategy is tested by a mobile
robot system with four sensor groups, where the information communication topology is
depicted in Figure 1. The robot dynamic system is formulated as [33]

˙̄x = v̄ cos χ
˙̄y = v̄ sin χ
χ̇ = ζ

where ( x̄, ȳ) denotes the center position of the robot, χ indicates the heading angle in the
inertial frame, and v̄ and ζ are, respectively, the linear velocity and angular velocity. Define
x = col{x̄, v̄x, ȳ, v̄y} and u = col{ūx, ūy}, where v̄x and v̄y are the components of the linear
velocities along the X- and Y-axes, respectively, and ūx and ūy are the components of the
input signals along the X- and Y-axes, respectively. The system model can be linearized
and the system matrices are:

A = I2 ⊗
[

0 1
0 0

]
, B = I2 ⊗

[
0
1

]
, C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 =


C1
C2
C3
C4


For this configuration of sensors, we obtain that rank(O1) = 2, rank(O2) = 1,

rank(O2) = 2, and rank(O4) = 1. Furthermore, we confirm that (C, A) is observable.
Assuming a delay of 0.4, with the target system initialized at a value of [0.7 0.7 0.7 0.7 ]T ,
and the observers labeled 1 through 4 are initialized at values of [0.3 0.3 0.3 0.3 ]T , [ 0.2 0.2 0.2
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0.2 ]T , [ 0 0 0 0]T and [0.9 0.9 0.9 0.9 ]T , respectively, and with θ =
[
0.25 0.25 0.25 0.25

]T ,
c = 1, γ = 100, the LMI (16) is feasible for Po, Pu, Qo, Qu and Xd, we can obtain:

Po =



8.96 −9.9626 0 0 0 0
−9.9626 12.6876 0 0 0 0

0 0 4.4167 0 0 0
0 0 0 24.7045 −29.4648 0
0 0 0 −29.4648 35.7729 0
0 0 0 0 0 4.4167

,

Qo =



7.214 1.8942 0 0 0 0
1.8942 18.4471 0 0 0 0

0 0 13.6074 0 0 0
0 0 0 7.6471 5.1647 0
0 0 0 5.1647 57.9018 0
0 0 0 0 0 27.9153

,

Pu =



0.0736 −0.2489 0 0 0 0 0 0 0 0
−0.2489 7.3412 0 0 0 0 0 0 0 0

0 0 0.1103 0 0 0 0 0 0 0
0 0 0 0.2436 −0.6993 0 0 0 0 0
0 0 0 −0.6993 13.362 0 0 0 0 0
0 0 0 0 0 0.0971 −0.1606 0 0 0
0 0 0 0 0 −0.1606 2.834 0 0 0
0 0 0 0 0 0 0 0.0869 −0.318 0
0 0 0 0 0 0 0 −0.318 3.4807 0
0 0 0 0 0 0 0 0 0 0.0813


,

Qu =



0.0103 −0.0879 0 0 0 0 0 0 0 0
−0.0879 2.1239 0 0 0 0 0 0 0 0

0 0 0.0057 0 0 0 0 0 0 0
0 0 0 0.027 −0.1552 0 0 0 0 0
0 0 0 −0.1552 1.7186 0 0 0 0 0
0 0 0 0 0 0.0164 −0.0722 0 0 0
0 0 0 0 0 −0.0722 0.8782 0 0 0
0 0 0 0 0 0 0 0.0171 −0.081 0
0 0 0 0 0 0 0 −0.081 0.6731 0
0 0 0 0 0 0 0 0 0 0.0041


,

Kd =



−12.7454 0 0 0
−10.7257 0 0 0

0 −2.8523 0 0
0 0 −73.4318 0
0 0 −61.2423 0
0 0 0 −5.8443

,

As a supplementary example, further elaboration on the remaining parameters is
omitted; the Figures 12–15 demonstrate that the distributed observer proposed in this study
effectively estimates the states of the target system. It can be seen that all states estimates
converge to the actual states asymptotically.
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Figure 12. State estimations by node 1.

Figure 13. State estimations by node 2.
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Figure 14. State estimations by node 3.

Figure 15. State estimations by node 4.
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5. Conclusions

This paper addresses time-delay issues due to the information exchange in distributed
observer design. Distributed observers are constructed for systems based on the informa-
tion exchange among the nodes and the information transmission may lead to time delay.
To deal with the time delay, for each node, an equivalent system is set up which is a model
containing time-delay statistics received from its neighbours. To eliminate the negative
influence of the time delay, a special Lyapunov function is constructed which contains two
parts and the two parts are associated with each other. The stability analysis is carried out
based on the Lyapunov function and the observer gain matrix for each distributed observer
is calculated by an LMI. How to deal with communication time delays which are not only
time varying but also unknown will be one of our further focuses of research. Furthermore,
considering a more complicated model with parameter variations or unknown inputs is
also an interesting issue that deserves to be investigated in the future.
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