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Abstract: The development of contactless methods to assess the degree of personal hygiene in elderly
people is crucial for detecting frailty and providing early intervention to prevent complete loss of
autonomy, cognitive impairment, and hospitalisation. The unobtrusive nature of the technology is
essential in the context of maintaining good quality of life. The use of cameras and edge computing
with sensors provides a way of monitoring subjects without interrupting their normal routines,
and has the advantages of local data processing and improved privacy. This work describes the
development an intelligent system that takes the RGB frames of a video as input to classify the
occurrence of brushing teeth, washing hands, and fixing hair. No action activity is considered. The
RGB frames are first processed by two Mediapipe algorithms to extract body keypoints related to
the pose and hands, which represent the features to be classified. The optimal feature extractor
results from the most complex Mediapipe pose estimator combined with the most complex hand
keypoint regressor, which achieves the best performance even when operating at one frame per
second. The final classifier is a Light Gradient Boosting Machine classifier that achieves more than
94% weighted F1-score under conditions of one frame per second and observation times of seven
seconds or more. When the observation window is enlarged to ten seconds, the F1-scores for each
class oscillate between 94.66% and 96.35%.

Keywords: deep learning; edge computing; frailty; machine learning; Raspberry Pi4; RGB; video

1. Introduction

Autonomy, defined as the ability to be independent in the performance of activities
of daily living, is one of the parameters identified to assess of the state of frailty in the
elderly population [1–5]. Activities of daily living, such as those related to hygiene, play
an important role in the maintenance of physical and mental wellbeing. Oral health has
been associated with systemic diseases [6] and contributes to the general health conditions of
people [7]. Washing hands is one of the suggested practices to prevent the diffusion of disease,
as demonstrated during the COVID-19 pandemic [8]. Thus, elderly people must be supported
and encouraged to perform personal hygiene, and a loss of initiative or ability to perform these
actions should be noted. Most people have been autonomous since childhood in providing
personal hygiene, and as such may find it difficult to accept the presence of caregivers during
this task. Nevertheless, early signs of lack of self-care can be an indication of the so-called
“state of frailty”, which precedes loss of autonomy. Identifying frailty and demonstrating
proper intervention is crucial to prevent worse repercussions on the individual’s quality of
life. In addition, this can decrease the burden on families and healthcare systems.

The development of methods for automatically recognising the absence of hygiene-
related activities without disrupting normal living could aid in the prevention of frailty-
related risks. Tools for determining adequate oral hygiene have been proposed, such as
toothbrushes incorporating localised accelerometers and machine learning (ML) or deep
learning (DL) algorithms to check for proper brushing technique [9,10]. Proper hand washing
protocol can be automatically verified by environmental sensors such as video cameras or
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radars. The provided data can be analysed and classified in terms of the desired actions by
ML or DL [11–15]. Papers dealing with hygiene-related activity often focus on determining
whether the task is performed correctly. The evaluation of hand washing usually consists
of an automatic check of the protocol proposed by the World Health Organisation [12–15].
The system uses Mediapipe algorithms as feature extractors [11,13] or works directly on
RGB images [12,14,15], achieving high performance with ML and/or DL; however, neither
approach was tested for use on platforms with limited computational resources. Similarly,
tooth brushing activity is often divided into other small subtasks that need to be classified
for a complete cleaning protocol. The steps in the tooth brushing protocol are often classified
using small processors that work with embedded sensors recording the acceleration of the
toothbrush [9,10].

A crucial aspect when implementing this monitoring technology is its integration with
the environment. In recent years, the Internet of Things (IoT) has become one of the most
relevant technologies for achieving this purpose. Remarkable progression in sensor-based
methods has led to the rapid evolution of IoT applications for the development of real-time
monitoring systems. In modern healthcare applications, the use of IoT brings physicians and
patients together for automated and intelligent monitoring of the daily activities of elderly
patients. The advent of the IoT has led to the development of home security systems, often
using Raspberry Pi as the development board [16–18]. These systems consist of algorithms
for detecting and authenticating a person entering at the home using RGB images. Usually,
the algorithms involve the use of simple feature extractors, such as locally binary patterns,
and the face is authenticated by comparing histograms. When the task becomes the classifi-
cation of different activities, the complexity of the algorithms employed increases with the
use of ML and DL models; however, the complexity of the algorithms is limited by the com-
putational capabilities of the platform on which it operates. The Raspberry Pi has commonly
been used as the main computational resource in papers regarding gesture recognition [19],
sign language recognition [20], and fall detection [21]. In conditions of low computing power,
such as in the case of mobile platforms, MediaPipe [22] is often used as a framework for
extracting pose, face and/or hand keypoints from RGB images. These features can then be
classified according to the user’s objective. The advantage of using the MediaPipe framework
lies in its low inference time. MediaPipe Hands, a DL algorithm developed by Google for
fast inference on mobile platforms, has been used to simplify the gesture and sign language
recognition process by providing the correct hand joint coordinates [19,20]. These coordinates
are then sent to a classifier for the final classification task. On the other hand, MediaPipe Pose,
another DL algorithm from the same library, was used in [21] to extract the torso and arm
joint coordinates, then a random forest algorithm was used to predict falls. Table 1 provides a
comparison between existing state-of-the-art works and our proposal, highlighting differences
and the novelty of our approach. To the best of our knowledge, there are no existing works
providing for continuous-time monitoring of self-hygiene and related activities with an edge
implementation on a Raspberry Pi4B.

Table 1. Differences with the state of the art.

Ref. Hygiene-Related Activities MediaPipe Raspberry Pi4 Edge Computing

[11] ✓ ✓ ✗ ✗

[23] ✓ ✗ ✗ ✗

[13] ✓ ✓ ✗ ✗

[14] ✓ ✗ ✗ ✗

[15] ✓ ✗ ✗ ✗

[9] ✓ ✗ ✗ ✗

[10] ✓ ✗ ✗ ✗
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Table 1. Cont.

Ref. Hygiene-Related Activities MediaPipe Raspberry Pi4 Edge Computing

[19] ✗ ✓ ✓ ✓

[20] ✗ ✓ ✓ ✓

[21] ✗ ✓ ✗ ✗

[24] ✓ ✓ ✗ ✗

This paper ✓ ✓ ✓ ✓

Contributions and Paper Structure

This paper proposes a system for classifying and monitoring whether an activity is
performed. As mentioned earlier, the lack of self-care is an indication of frailty; therefore, this
paper aims to classify three main classes of hand washing, face washing, and tooth brushing,
to which we add a fourth ‘no action’ class. Our aim is not to assess the quality of the cleaning
procedure, but rather to understand whether the procedure is performed at all. This system
could help to detect early signs of loss of self-care, helping to make prompt interventions
to improve the subject’s quality of life. Senigagliesi et al. [24] previously proposed an Long
Short-Term Memory (LSTM)-based system to classify the same four actions. Here, however,
the implementation of an edge node is proposed using a Raspberry Pi 4B with Pi camera.
To this end, a simpler ML alternative is chosen. A public dataset, Kinetics-700 [25], containing
the selected three hygiene-related daily activities is employed for the training, validation, and
testing stages. An external experimental test set is constructed, with ten subjects performing
the four actions at three different distances and three orientations. The MediaPipe Holistic,
Pose, and Hands models [22] are used on RGB images to extract the relevant joint coordinates,
which are used as input feature vectors for the ML model.

With the aim of providing a continuous monitoring system, an inference time study
was conducted on the implemented Raspberry Pi 4B edge node for each of the MediaPipe
models with different degrees of architectural complexity. All the development phases of
the model were performed on a personal computer, but the final framework of MediaPipe
features and ML model was tested to run directly on the Raspberry Pi 4B. The final goal
was to achieve a system that records and processes the data locally, meaning that all the
required computing power is on the edge. This paper proposes an approach based on
established state-of-the-art machine learning models. The innovative aspect is in the way in
which the feature extractor is used, in its evaluation, and in the implementation on the edge,
where we show the performance. From a methodological perspective, we investigated
multiple options as a classifier, making for a total of 29 typical models, along with a set
of different feature vectors and preprocessing steps. Moreover, training the models on
the most complex MediaPipe feature extractor and then testing their performance both in
terms of latency and F1-score while varying the complexity of the feature extractor is an
evaluation that, to the best of our knowledge, has yet to be provided in the literature. This
kind of tuning in regard to model complexity is necessary when using platforms with small
computational power such as the Raspberry Pi.

An analysis of the best feature vector and the best ML model was performed on a
public dataset with a 5-fold cross-validation. The results showed that the most complex
MediaPipe architectures for extracting pose and hand keypoints perform the best when
operating at one frame per second. A Light Gradient Boosting Machine classifier taking
the pose and hand keypoints as input can achieve a weighted F1-score of more than 94%
with at least 7 s of observation time and about 5 ms of inference time. The classifier works
best when the subject is facing frontally towards the camera, with the performance in this
case jumping to almost 97% by weighted F1-score. The model performs even better when
the subject is at a distance of around 70 cm from the camera, with the weighted F1-score
exceeding 97%.

The rest of the paper is organized as follows. Section 2 presents the employed datasets
and hardware platforms. Section 3 describes the process of feature extraction using Medi-
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aPipe models, including a description of the preprocessing steps and the list of analysed
feature sets. Section 4 describes the method for selecting the best feature set and best
ML model, followed by a subsection on performance metrics. The results are shown in
Section 5, where the latency of each of the MediaPipe models is evaluated on the Raspberry
platform, the best ML models are highlighted, and the cross-validation metrics are reported.
All performance metrics are reported on both the internal Kinetics-700 test set and on the
experimental test set. Performance is stratified according to subject distance and orientation,
and an ablation study is performed. Finally, Section 8 concludes the paper.

2. Materials

We employed two datasets for the development of the classification algorithm. The Kinetics-
700 public dataset was used for training, internal validation, and testing. A second dataset was
constructed within the laboratory and subsequently employed as an external testing set.

2.1. Public Dataset and Data Cleaning

For the development of the model, we employed a subset of the Kinetics-700 dataset [25]
relating to actions performed by a person in the context of self-hygiene. The dataset con-
tained videos people of brushing their teeth, fixing their hair, or washing their face. We
excluded some of the videos in each class based on the following criteria:

• Videos involving multiple people, animals, toys, or other objects.
• Videos containing mirror reflections.
• Videos with the subject recorded from the back.
• Videos with the hands and face completely invisible or outside the video frames;

occlusion of hands and face due to normal movement is acceptable.
• Videos with excessive camera movement.
• Videos with excessive corruption or editing.
• Videos of children performing the action incorrectly.

The remaining videos were edited to remove frames where the action was not being
performed; the frames removed in this way were saved as a fourth class, denoted ‘no
action’. The use of the Kinetics-700 dataset [25] to develop the model enabled us to identify
the typical motion patterns of people performing the actions in conditions with different
backgrounds, light conditions, and light sources and with videos taken at different resolutions.

After skimming, the classification model was developed based on 91 videos for the
teeth brushing class, 162 for the fixing hair class, 242 for the washing or scrubbing face
class, and 221 for the no action class.

We divided the dataset into a development set and a testing set with the ratio of 90%
and 10%. The development set was then further divided into training and validation sets
to choose the best feature extractor, the best feature set, and the best performing ML model.
The test set was employed to evaluate the performance of the best model on new and
unseen data.

2.2. Experimental Dataset

Data were collected from ten volunteers performing the four actions while recording
300 frames at 30 frames per second (fps) on an Intel D455 depth camera at three different
distances with the maximum possible resolution. Figure 1 shows a schematic representation
of the evaluated trials.

Five subjects were recorded at distances of 50 cm, 70 cm, and 100 cm and the remaining
subjects at 70 cm, 100 cm, and 130 cm. For all tested distances, the subjects performed
the action with three different body orientations: frontally to the camera, rotated 45◦to
the left with respect to the camera, and rotated 45◦to the right with respect to the camera,
as shown in Figure 1. All four considered actions were performed by the subject in all
tested conditions. The subjects were allowed to move according to their typical behavioral
patterns. We set the distance with a tape measure and checked it with the depth values
from the Intel RealSense.
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The experimental dataset was not used at any stage in the development of the models,
as it was intended as an external test set for evaluating the performance of the final best
model across different subject orientations and distances.

Figure 1. Scheme of the experimental setup with different orientations, distances, and
performed actions.

2.3. The Hardware Platforms

A Raspberry Pi 4 model B [26] (Figure 2) was used to carry out the project.

Figure 2. Raspberry Pi4 model B.

The Raspberry Pi 4B has two micro-HDMI outputs and requires micro-HDMI to HDMI
cables or adapters. Algorithms for processing on the board were implemented with Python.
The development, validation, and testing of the model were first performed on a personal
computer and then adapted to the Raspberry Pi 4B platform, where we evaluated the
performance in terms of latency. The limited computational resources of the hardware are
shown in Table 2. For recording the experimental dataset, we employed an Intel RealSense
D455 camera and a personal computer. Even though we recorded both RGB values and
depth values, all processing was performed on the RGB channels, as the intended final
hardware was a Raspberry Pi recording with a Pi Camera.

Table 2. Raspberry Pi 4 model B technical specifications.

Specifications

Processor quad-core Cortex-A72 (ARM v8) 64-bit

Clock speed 1.5 GHz

Memory 8 GB
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3. Feature Extraction

The first step of the proposed approach involves the use of the MediaPipe framework.
MediaPipe allows the coordinates of keypoints to be extracted from the pose, hands, and/or
the face of the subject performing the action. Figure 3 shows an example scheme of the
possible keypoints extracted from a subject. The pose model permits the extraction of
33 three-dimensional points, with a fourth dimension provided by the visibility. The third
dimension is discarded in the pose model, as the model specifications suggest that it is
prone to error [27]. We only use the first 23 keypoints, which relate to the upper body.
The hand model provides 21 three-dimensional coordinates, while the face model can
provide up to 478 three-dimensional points describing a face mesh. For the face keypoints,
we consider only the face silhouette, the eye contour, and the lip contour in order to simplify
the training stage and reduce the dimension of the input features. By default, the vertical
coordinates are normalised to the image height in pixels and the horizontal coordinates are
normalised to the image width in pixels. The origin point is set to the upper left corner of
the frame. The coordinates of the third dimension for the hands are provided in relation
to the wrist position, while the coordinates of the third dimension for the face keypoints
describe their depth with respect to the center of the head.

Figure 3. Example of keypoint extraction.

The features extracted for each frame are then flattened into a feature vector, which
is sent as input to the final model. We collect and combine these features to find the best
possible feature extractor in terms of performance and latency metrics on the Raspberry Pi
board. We consider two sets of features: one related to the use of a holistic model, where
the face, pose, and hands are all possible features for tuning, and a second relating to the
simultaneous use of pose and hand models with the keypoints of the pose and hands. As a
preprocessing step, we set the origin of the X-axis and Y-axis of the keypoints with respect
to the coordinates of the nose provided by the pose model; we further normalise all X–Y
coordinates of the keypoints using the shoulder-to-shoulder distance.

The models for the pose (P) and hands (HA) have three and two levels of architectural
complexity, respectively. Higher complexity corresponds to a higher number of network
parameters, higher accuracy of keypoint estimation, and higher computation time; therefore,
it is used for tuning in conditions of low computational resources. The pose model, also
called BlazePose [28], comes in three different sizes and capacities. BlazePose “Lite”, which
we call the pose model with complexity 0 or “P0”, is the lightest available model in terms of
its number of parameters and latency. Next, BlazePose “Full” corresponds to the pose model
with complexity 1 or “P1”. Finally, the model with the largest complexity is BlazePose
“Heavy” or “P2”. For the model of the hands, “Lite” and “Full” models are available,
respectively corresponding to 1 and 1.98 million parameters [29]. The “Lite” model is the
model with complexity 0 or “HA0”, while the full model “HA1” has a complexity of 1.
Another model is the Holistic MediaPipe model (H), which allows the extraction of pose,
face, and hand data, with slightly higher efficiency in face and hand extraction. The Holistic
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model exploits the pose predictions from the same BlazePose models and then crops the
region of the image where the hands and face should be to apply a spatial transformer for
keypoint regression, achieving a reduction in inference time of about 90% compared to the
corresponding hand and face models. For this reason, the holistic models have three levels
of complexity corresponding to the aforementioned three levels of pose complexity used as
the backbone for the hands and face keypoints predictions.

A list of the feature vector, the corresponding MediaPipe feature extractor, and the
added preprocessing steps is reported in Table 3; from now on, we call these the feature
sets and code them with the reported letters. During training and validation of the machine
learning models, we decided to employ only the most complex feature extractors. The ones
employed were the most complex Holistic model “H2” and the combination of the most
complex pose and hands models, “P2HA1”. In this way, we trained the models on the best
keypoint coordinates. For this reason, Table 3 reports only these two feature extractors.
However, the features that we extracted in terms of the keypoint coordinates (columns 3, 4,
and 5 in Table 3) and the preprocessing steps (columns 6 and 7 in Table 3) were the same in
training, validation, and testing. Instead, in the testing phase we wanted to understand
whether the use of models with lower complexity could provide similar performance to the
highest complexity models. While the models with lower complexity have the same input
and output as the higher complexity models, they can provide smaller latency due to the
smaller number of performed operations, though at the cost of higher estimation errors in
the keypoint coordinates. Therefore, evaluating how the performance changes with varying
MediaPipe model complexity is valuable for contexts with limited computational power.

Table 3. List of feature extractors and feature sets employed in the development phase. All feature
sets were evaluated with 29 common ML models on a 50% sample of the development set. For each
feature set, the table shows the respective feature extractor (MediaPipe model), extracted keypoints,
and the preprocessing steps.

Feature Set Feature Extractor
Keypoints Pre-Processing

Pose Hands Face Origin Nose Norm by Shoulder
Distance

(a) P2HA1 ✓ ✓ ✗ ✗ ✗

(b) H2 ✓ ✓ ✗ ✗ ✗

(c) H2 ✓ ✓ ✓ ✗ ✗

(d) P2HA1 ✓ ✓ ✗ ✓ ✗

(e) H2 ✓ ✓ ✗ ✓ ✗

(f) H2 ✓ ✓ ✓ ✓ ✗

(g) P2HA1 ✓ ✓ ✗ ✓ ✓

(h) H2 ✓ ✓ ✗ ✓ ✓

(i) H2 ✓ ✓ ✓ ✓ ✓

4. Selection of the Best Feature Set and ML Model

The modified Kinetics-700 dataset was divided into a development set and testing
set at a ratio of 90% to 10%, respectively. We initially trained 29 common ML models
with the LazyPredict Python library on 50% of the development set, reporting the results
on the remaining 50% of the examples to choose the five best performing models based
on the weighted F1-score for further evaluation. Additionally, we repeated the training
procedure for the 29 available ML models for all the feature set described in Table 3.
This first step is needed to reduce the group of possible ML models to a smaller number
that achieve the best performance on unseen data. The feature vector was processed by
default by substituting Not a Number (NaN) values with the mean of the vector and
then performing a standard scaling procedure by removing the mean and dividing by the
standard deviation of the training samples. The treatment of NaN values was investigated
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in detail after selecting the five best performing models by changing the preprocessing
between simple mean substitution (mean), zero substitution (zero), and mean substitution
plus standard scaling (scal).

The examples in the development set were first cleaned depending on the visibility
of the keypoints. For the training stage validation stages, we excluded all frames where
keypoints did not appear or where more than 50% of the keypoints for both the hands
and arms did not appear. All subsequent evaluations and tests were carried out in normal
working conditions with all the frames included, even those in which the keypoints did
not appear due to occlusion.

The selected best five models and the best feature sets were trained with 5-fold cross-
validation on the entire development. The best model was selected for the successive
testing phase. The best model was then used to classify the single frames. It was also
evaluated on multiple consecutive frames while providing the most frequent label in the
considered frames as output.

Performance and Latency Metrics

We measured the classification performance on the validation set and test set using
typical metrics, i.e., weighted precision, weighted recall, weighted F1-score, per-class
precision, per-class recall, and per-class F1-score. Precision, recall and F1-score for a
classification task are defined as follows

Recall =
TP

TP + FN
, (1)

Precision =
TP

TP + FP
, (2)

F1score = 2
Precision × Recall
Precision + Recall

, (3)

where TP stands for “True Positives”, FN for “False Negatives”, and FP for “False Posi-
tives”. Each of these metrics was computed for each class. In the per-class metrics, one
class is considered the positive prediction class and the other classes are clustered in the
negative prediction class. In this way, it is possible to view any N-class classification as N
binary classification tasks for which the precision, recall, and F1-score can be evaluated.
The weighted metrics are obtained by a weighted average of the per-class metrics, with the
weights provided by the number of examples in each class. The macro averages are instead
unweighted averages of the per-class metrics. If the number of examples is the same for
each class, then the macro and weighted metrics will be the same.

The performance evaluation was conducted both on single frames, referred to as per-
frame metrics, and consecutive frames, where the most frequent class between frames is
reported as the classification output. The best model was evaluated on different observation
windows ranging from 1 s to 10 s.

For the evaluation of consecutive frames, we sampled the videos in the test sets with
sampling rates of 30 fps, 3 fps, 2 fps, and 1 fps in order to better understand the robustness
in conditions of reduced fps, which is typical for the Raspberry Pi 4.

To understand the possibility of processing data directly on the board without the need
for cloud computing, we further evaluated the latency of the classification task, as described
in the next section.

5. Results and Discussion

In this section, we explore in detail the results achieved by the different ML models
considered based on evaluation with a hold-out validation set and cross-validation.

5.1. Latency and FPS for Each Feature Extractor on the Raspberry Pi 4

The latency of the Holistic MediaPipe model (H) with the three available model
complexities (H0, H1, H2) was evaluated on the public dataset, making for a total of
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720 frames taken from a random 10% of the videos in the development set. Moreover, we
evaluated the latency when using only the pose model (P) with the three available model
complexities (P0, P1, P2) in combination with the hands model (HA0, HA1). All of the
latency values are reported in fps in Figure 4a and in milliseconds in Figure 4b.

We observe that the median fps results for P0HA0, P0HA1, P1HA0, H0, and H1 are
all between 3 and 4, corresponding to a latency per frame of around 300 ms; P1HA1 has
median fps between 2 and 3, with latencies per frame between 300 and 400 ms. The most
complex models using the highest complexity for the pose models, namely, P2HA0, P2HA1,
and H2, work best between 1 and 2 fps, which corresponds to a latency per frame between
700 and 800 ms. In general, increasing the complexity of the architectures used for the pose
and hands models increases the inference time for prediction of the keypoints. The highest
jump in latency is seen for the feature extractor using the most complex pose models.
As previously mentioned, the Holistic 2 (H2) model is slightly more efficient compared to
its P2HA1 counterpart.

(a) FPS for each feature extractor. (b) Latency in ms for each feature extractor.

Figure 4. Latency per frame and relative fps for each MediaPipe feature extractor.

5.2. Selection of the Best ML Model and Best Feature Set

In Figure 5, we order the weighted F1-scores computed on a random 50% sample of
the development set for the top five best performing models for each feature set listed in
Table 3. The top ten F1-scores are composed of the top five performing models for feature
sets (d) and (g). These two feature sets were extracted with the P2HA1 feature extractor,
and both consist of two-dimensional pose and three-dimensional hand models with respect
to the nose keypoints as the origin of the XY plane. The only difference is that normalisation
based on shoulder distance is applied to the X and Y coordinates in feature set (g). It can
also be noticed that the five best resulting ML models are the same, i.e., Random Forest,
Support Vector Machine (SVC), Extra Trees Classifier, Light Gradient Boosting Machine
(LGBM) Classifier, and Extreme Gradient Boosting (XGB) Classifier.

In order to clearly obtain the best model and the best feature set based on repeated
evaluations, we exploited a 5-fold cross-validation on the development set. Table 4 reports
the median and interquartile ranges of the weighted per-frame F1-scores for the five
aforementioned models, with the two feature sets d and g used as input. We also evaluated
three different strategies for substituting the NaN values in the input feature vector: mean
value substitution (mean), zero substitution (zero), and mean values substitution with
standard scaling (scal). The latter is the default used by LazyPredict, which was the library
used to select the best performing ML models. It is possible to observe that LGBM, with a
median of 78.38% (interquartile range 77.39–80.77%), performs slightly better than the other
models in all the experiments; feature set (g) with the mean substitution strategy provides
the best performance. Furthermore, it can be seen that feature set (g) leads to slightly better
performance than feature set (d) for the same model and input strategy.
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The LGBM classifier was trained on all the development sets; from now on, this
configuration is used as the best model in the tests performed on the internal Kinetics-700
test set and the external experimental test set. The configuration parameters of the model
were the default ones; thus, the model takes as input the feature set (g) with a dimension
of 1 × 170 comprising for the pose coordinates (22 x–y values) and hand coordinates (21
x–y–z values for two hands).

Figure 5. Weighted F1-scores of the five best performing models for each feature set.

Table 4. Median weighted per-frame F1-scores for the top five performing models on the development
set obtained with 5-fold cross-validation. We evaluated two different feature sets (d and g) and three
different substitutions of NaN values (mean, scal, zero).

Mean + (d) Mean + (g) Scal + (d) Scal + (g) Zero + (d) Zero + (g)

SVC 76.07 (74.67–78.3) 76,65 (74.27–78.45) 77.28 (75.83–79.15) 77.83 (75.07–79.1) 76.08 (74.47–78.27) 76.44 (74.85–78.6)

LGBM 77.01 (74.15–78.81) 78.38 (77.39–80.77) 76.72 (74.34–78.5) 78.22 (77.22–80.79) 76.96 (74.73–78.69) 78.05 (77.45–81.02)

XGB 76.13 (73.87–77.82) 77.56 (75.91–79.82) 76.15 (73.44–77.66) 77.9 (75.81–79.38) 75.97 (74.02–78.31) 77.98 (76–80.05)

RandomForest 76.59 (73.55–77.87) 77.54 (75.03–78.38) 76.34 (73.9–77.98) 77.82 (75.17–78.56) 76.66 (73.46–77.37) 77.65 (75.39–78.49)

ExtraTrees 76.11 (72.58–77.82) 76.53 (72.61–78.46) 76.61 (72.44–77.57) 76.84 (72.74–78.77) 76.11 (72.7–77.87) 76.78 (73.09–78.53)

5.3. General Metrics Evaluation on the Test Sets

We tested the best model on a 10% hold-out test set from the Kinetics-700 dataset.
The test set was composed of examples not seen by the model in any of the develop-
ment stages. The model was trained to provide a classification for each frame; therefore,
Table 5 shows the evaluation metrics for predictions performed on each individual frame.
The weighted precision, recall, and F1-score are all greater than 81%, at 81.91%, 81.64%, and
81.68%, respectively. Moreover, we computed the metrics with the observation window in-
creased to all the frames of each video. The model always works by providing a prediction
for each frame; we selected the most frequent prediction for all the frames included in the
test video. The metrics for all the frames can be seen in Table 6. A clear increase of more
than 10% in all the employed metrics can be observed when enlarging the observation
window. The main issue is that the length of each video is different; thus, in some certain
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the effect can be more pronounced than in others. For this reason, we also used an external
test set where all the examples contained the same number of frames.

Table 5. Per-frame metrics on the Kinetics test set.

Classes Precision F1 Score Recall

brushing teeth 0.8219 0.7472 0.6850

fixing hair 0.8661 0.8497 0.8340

no action 0.7569 0.8016 0.8520

washing face 0.8236 0.8257 0.8277

Metrics averages

weighted 0.8191 0.8168 0.8164

macro 0.8171 0.8061 0.7997

Table 6. Metrics for all frames on the Kinetics test set.

Classes Precision F1 Score Recall

brushing teeth 100% 100% 100%

fixing hair 90.00% 94.74% 100%

no action 95.45% 95.45% 95.45%

washing face 95.00% 90.48% 86.36%

Metrics averages

weighted average 94.58% 94.39% 94.44%

macro average 94.44% 94.44% 95.45%

Tables 7 and 8 show the results obtained on the experimental dataset. It can be seen
that the results are more optimistic than the previous ones due to the more controlled
conditions in terms of distance and subject orientation in the experimental setup as well as
to the larger number of frames.

Table 7. Per-frame metrics on the experimental test set.

Classes Precision F1-Score Recall

brushing teeth 87.24% 88.02% 88.82%

fixing hair 88.66% 84.75% 81.17%

no action 89.71% 91.86% 94.11%

washing face 87.05% 87.79% 88.55%

Metrics averages

weighted 88.16% 88.16% 88.16%

macro 88.16% 88.16% 88.16%

Table 8. Metrics for all frames on the experimental test set.

Classes Precision F1-Score Recall

brushing teeth 95.56% 95.56% 95.56%

fixing hair 95.60% 96.13% 96.67%

no action 96.63% 96.09% 95.56%

washing face 97.78% 97.78% 97.78%

Metrics averages

weighted 96.39% 96.39% 96.39%

macro 96.39% 96.39% 96.39%
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Given the same number of frames and examples, the macro and weighted metrics are
the same. The per-frame weighted metrics are 88.16%, whereas with all frames the metrics
increase to 96.39%, representing a reduction of false positives and false negatives in the
model’s prediction. This result is expected, as increasing the observation time mitigates
some of the error. Certain classes are more positively affected than others, such as “washing
face” class with a 10% increase in weighted F1-score and the “fixing hair” class with almost
a 12% jump in weighted F1-score. The “no action” class sees less than a 5% increase in
F1-score, and “brushing teeth” increases by little more than 7.5% in the same metric.

5.4. Metrics for Each Feature Extractor

Even though we trained the model on the features extracted by P2HA1, we are also
interested in understanding whether the features extracted by lighter models might be
sufficient for achieving comparable accuracy. In Table 9, we report the weighted F1-scores
for each combination of pose and hand models between the feature extractors for all the
frames. It can be observed that the best performance is achieved by the most complex
feature extractor, P2HA1, with an F1-score of 96.39% for all frames, followed by P1HA1
and P0HA1, both with 95.83%. The same three feature extractors have the best performance
for the “brushing teeth”, “fixing Hair” and “washing face” classes, reaching higher values
in Table 9. These three feature extractors share all the same hands features extracted
by the HA1 hands model. It can be observed that the HA1 hands model exhibits better
performance, followed by HA0 and the holistic features. This can be attributed to the
fact that the hand features are more reliable and accurate when using HA1 than the
other alternatives.

Table 9. Weighted F1-scores and per-class F1-scores stratified for all feature extractors and computed
on all frames of the experimental test set at 30 fps; the top three scores for each metric are highlighted.

Brushing Teeth Fixing Hair No Action Washing Face Weighted

H0 87.27% 92.97% 94.18% 90.61% 91.26%

H1 86.59% 91.89% 94.12% 94.57% 91.79%

H2 89.16% 93.05% 96.17% 95.65% 93.51%

P0HA0 90.06% 92.74% 95.08% 91.98% 92.46%

P0HA1 96.13% 96.63% 94.44% 96.13% 95.83%

P1HA0 91.95% 92.82% 95.56% 94.05% 93.60%

P1HA1 94.92% 95.60% 96.05% 96.74% 95.83%

P2HA0 93.02% 93.99% 96.67% 95.14% 94.70%

P2HA1 95.56% 96.13% 96.09% 97.78% 96.39%

For the “washing face” class, the performance seems to be affected by the complexity
of the pose model, with increasing performance for increasing complexity in the top
performing feature extractors, whereas the pose model does not seem to be determinant for
the performance of the other two classes.

For the “no action” class, the top three performing feature extractors are, in ascending
order, P2HA1, H2, and P2HA0, with respective F1-scores of 96.09%, 96.17%, and 96.67% on
all frames. It can be observed that they share the same pose model complexity and that the
hand features seem less relevant in terms of the order of the performance.

5.5. Analysis of the Influence of Time Window and FPS on Performance

The LGBM model has a median latency per frame of 5.10 ms (interquartile range
4.58–5.48 ms), as can be seen in Figure 6. The effect of adding the LGBM model and
preprocessing steps on the overall latency and fps of each feature extractor can be seen in
Figure 7. The latency and fps were computed as previously described.
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Figure 6. Latency in ms for the chosen machine learning model.

(a) (b)
Figure 7. (a) Latency per frame and (b) relative fps for each MediaPipe feature extractor with the
added preprocessing steps and ML model.

Figure 8 reports the F1-scores computed for each feature extractor along with their
relative fps, rounding the median fps obtained on the Raspberry Pi 4 down to the near-
est integer.

We used these fps values to downsample the videos in the experimental dataset. We
report the weighted F1-scores when increasing the observation window from 1 s to 9 s
with a step of 1 s. It can be observed that the P2HA1 feature extractor, although it is the
most complex and has the lowest median fps, obtains the best weighted F1-score with
an observation window of at least 6 s. From 7 s, the model achieves weighted F1-scores
of at least 94%. For observation windows of less than 6 s, the P0HA1 feature extractor
working at 2 fps achieves the best overall score, followed by P1HA1 working at 2 fps. It
can be observed that the top three performing feature extractors all use HA1 for the hand
keypoints, which is the most complex architecture for this extraction. Figure 9 shows the
trends in weighted F1-score for all possible MediaPipe feature extractors for increasing
observation windows of 1 s to 9 s with a step of 1 s, labelled to indicate 30 fps, 3 fps, 2 fps,
or 1 fps. As expected, lower fps values correspond to lower scores; however, the difference
becomes less evident as the observation time increases.
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Figure 8. Weighted F1-scores computed on the experimental dataset for different feature extractors.
Each feature extractor was tested under the same fps conditions computed for the Raspberry Pi.

(a) H0 (b) H1 (c) H2

(d) P0HA0 (e) P1HA0 (f) P2HA0

(g) P0HA1 (h) P1HA1 (i) P2HA1

Figure 9. Weighted F1-scores computed on the experimental dataset for all possible features extractors
with different fps and increasing the observation window in steps of 1 s.

5.6. Comparison with the State of the Art

In a previous work [24], we proposed an LSTM classifier to address the same four
actions, reaching up to 92.8% average accuracy in a 10 s window. To train a classifier that
could operate effectively within the limited capabilities of a Raspberry Pi, we chose to
develop a simpler machine learning-based system. From the scientific literature, LSTM net-
works have proven to be effective in recognising dynamic actions related to hygiene [9,20].
However, their main limitation is in the reported latency. For a Raspberry Pi 4, LSTM is
reported to have inference time of 500 ms [20], whereas on a CPU it can have a latency of
120 ms [9]. The system proposed in this work reaches similar performance, with a weighted
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F1-score of at least 94% in a window of seven seconds or more, while working with a
latency of around 5 ms. In this way, we achieve the goal of a lightweight alternative to the
previously validated deep learning approach.

6. Robustness of the Proposed Approach

In this section, we analyze the robustness of the proposed approach under different
environmental conditions along with its dependency on the different features employed.

6.1. Robustness to Subject Orientation

The experimental dataset is organised in three possible subject orientations, i.e., frontal,
rotated 45° to the right (45R), and rotated 45° to the left (45L). The metrics relating to each
these three orientations are shown in Figure 10.

Figure 10. Weighted metrics for each tested orientation.

The weighted precision, recall, and F1-score were computed for the best feature extractor,
P2HA1.As might be expected, the 0° orientation, corresponding to a subject directly facing the
camera, achieves the best performance, reaching more than 97% for all metrics, followed by 45°
right, where the metrics slightly exceeds 95%, and finally by 45° left, where all the metrics are
under 94%. These differences could be due to the fact that the model makes inferences mainly
thanks to the X–Y coordinates of the pose and hands of each subject. This could account for
the better performance on subjects with a 0° orientation compared with a slanted orientation,
as the motion of the actions evolves mainly in the X–Y plane.

6.2. Robustness to Subject Distance

The experimental dataset contains subjects at four possible distances, i.e., 50 cm, 70 cm,
100 cm, and 130 cm. Therefore, we stratified the metrics for all the models between these
distances to understand whether they have a significant impact on model performance.
Figure 11 shows the weighted metrics computed for each distance, using the best P2HA1
feature extractor and downsampling the videos at 1 fps, the normal working conditions for
the chosen extractor.

Interestingly, the closest distance is not the one that provides the best results. In fact,
70 cm is the distance that achieves the best overall performance in terms of weighted
precision, recall, and F1-score, reaching almost 97%. This means that 70 cm is the distance
at which the best model has the least number of false positive and false negative predictions.
This is followed by 50 cm, where the model slightly exceeds 94.5% in all metrics, then
100 cm, where it reaches 94.5% in all metrics, and lastly by 130 cm, where the performance
drops by about 0.5 percentage points.
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Figure 11. Weighted metrics for each tested distance.

6.3. Feature Ablation Study

The complexity of the pose model and hand model affects the performance. Con-
sequently, the trained model was provided with the same input vector, with a group of
the features set to NaN in order to ascertain their impact on the overall performance.
The experiments included the ablation of:

• All pose keypoints (nopose).
• All hand keypoints obtained from the hands model (nohands).
• The X–Y coordinates of the hands obtained from the hands model (nohandsXY).
• The Z coordinates of hands obtained from hands model (nohandsZ).
• The keypoints of the pose face corresponding to the first ten X–Y coordinates (noposeface).
• The keypoints of the pose arms corresponding to the X–Y pose coordinates of the

shoulders, elbows, and wrists (noposearms).
• The keypoints of the pose hands corresponding to the X–Y pose coordinates of the

thumbs and fingers (noposehands).

Table 10 reports the metrics obtained with the ablation experiments for the normal
working conditions with the P2HA1 feature extractor predicting a 10 s video at 1 fps.
Figure 12 shows the weighted F1-scores in descending order and how each ablation experi-
ment causes corresponding performance degradation in the action classification.

Figure 12. Weighted F1-scores for the ablation experiments.

Figure 12 illustrates the relevance of certain features for classification when comparing
the ablation study with the case of no ablation. Table 10 demonstrates how each feature
is relevant for a specific class. The Z-coordinate of the hands appears to have a relatively
minor impact on the performance (between 0.3% and 0.4%), followed by the absence of the
pose arms and pose face (around 2%). The first large negative jump is seen with the absence
of the pose hands, which negatively affects the recall for all actions with the exception of
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“washing face“. A clear decline in performance is also evident in the absence of the X–Y
hand coordinates, with a reduction of approximately 8% observed across all metrics.

Finally, it can be observed that the pose coordinates are the most relevant features for
making accurate predictions. It can be observed that in the absence of pose information,
the precision of the “no action” class is almost halved to 46.50% in favour of the other
classes. Conversely, the recall of “brushing teeth” and “fixing hair” is increased; in the
condition where no information about the pose is available, the model tends to predict the
“no action” class, as it does not see a body, only the keypoints of the hands. This indicates
that the model requires information about the pose to predict the “brushing teeth” and
“fixing hair” classes, whereas the “washing face” class is less affected by the absence of
pose coordinates. In the case of the “washing face” class, the model primarily utilises the
positions of the hands in relation to the nose coordinates for prediction.

Table 10. Precision, recall and F1-score for each class in each ablation experiment; cells are colored
depending on the percentage values, with a three-value gradient from 60% or lower (red) to 80%
(yellow) and 100% (green).

F1-Score Brushing Teeth Fixing Hair No Action Washing Face
noablation 95.05% 94.66% 95.06% 96.35%
nohands 73.92% 88.14% 88.37% 75.22%
nohandsXY 80.42% 87.97% 95.35% 84.63%
nohandsZ 94.43% 93.68% 96.06% 95.36%
nopose 68.36% 60.57% 63.26% 89.82%
noposearms 94.24% 92.07% 92.19% 94.46%
noposeface 90.36% 92.67% 93.02% 94.49%
noposehands 86.99% 91.88% 84.35% 93.24%
Precision Brushing teeth Fixing Hair No action Washing Face
noablation 94.15% 94.80% 95.41% 96.79%
nohands 87.90% 85.98% 79.16% 76.80%
nohandsXY 84.93% 87.36% 93.58% 82.69%
nohandsZ 98.79% 93.15% 92.61% 95.57%
nopose 100.00% 98.99% 46.50% 94.08%
noposearms 93.10% 90.11% 93.26% 96.78%
noposeface 98.68% 93.38% 87.80% 92.48%
noposehands 82.82% 92.17% 94.70% 89.10%
Recall Brushing teeth Fixing Hair No action Washing Face
noablation 95.96% 94.52% 94.70% 95.93%
nohands 63.78% 90.41% 100.00% 73.70%
nohandsXY 76.37% 88.59% 97.19% 86.67%
nohandsZ 90.44% 94.22% 99.78% 95.15%
nopose 51.93% 43.63% 98.89% 85.93%
noposearms 95.41% 94.11% 91.15% 92.26%
noposeface 83.33% 91.96% 98.89% 96.59%
noposehands 91.59% 91.59% 76.04% 97.78%

7. Issues and Future Directions

There are several issues that could be addressed in future work, which we outline
below. In this paper, we have proposed an extensive analysis with a set of machine learning
algorithms for the classification of four hygiene related actions. The rationale behind
the choice of this set of simple actions was to predict whether or not basic self-care is
being carried out by the monitored subject. However, this closed set of activities could be
enlarged to cover other activities of daily living with fewer intra-class differences, although
this would make the classification task harder. Moreover, we have focused only on the
analysis of the RGB channels, which could produce privacy concerns. A possible next step
would be to exploit depth data to perform similar classification of activities in a domain
that is less informative, thereby helping to protect the private life of the monitored subject.
Another concern is the potential overfitting of the supervised model. While overfitting is a
challenging issue to fully avoid, we have addressed it by training a simple model on an
external dataset containing numerous examples from the daily lives of different people,
all of which include various lighting conditions and resolutions. Additionally, using the
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MediaPipe feature extractor serves as a form of dimensionality reduction and pattern
extraction, simplifying the training and reducing the overall complexity of the required
model. Finally, we performed an evaluation of the initial feature vector provided as input
to the model, based on which we removed the facial feature, further simplifying the model
to prevent overfitting. However, the final experimental test set is constrained by the size of
the population. The tested activities all occurred in a controlled laboratory environment,
and as such may differ slightly from typical subject behaviors. Additionally, the same
actions may vary when performed by people of different ages. Future developments could
explore the system’s performance with a sample size that includes only elderly people.

8. Conclusions

This paper has proposed an ML-based approach that aims to provide constant moni-
toring of self-hygiene activities, the decline of which is often related to loss of autonomy
and the onset of frailty status in elderly people. Moreover, we implemented an edge node
on a Raspberry Pi4, taking into account all the related constraints in computing and storage
capacity. RGB frames extracted from videos were initially processed using MediaPipe
algorithms to identify the keypoints of the pose, hands, and if necessary the face. Different
ML models and feature extractors were tested on the Kinetics dataset, then applied to an
experimental dataset which included four actions with different subject orientations and
distances. The final configuration of the feature extractor and model achieved a weighted
F1-score of over 94% under 1 fps conditions, along with an observation time of 7 s or more.
The proposed model performs optimally in conditions where the subject is facing directly
towards the camera, achieving more than 97% weighted precision, recall, and F1-score with
a 10 s observation window at 1 fps. Furthermore, it performs optimally when the subject is
positioned at 70 cm from the camera, reaching almost 97% weighted precision, recall, and
F1-score with a 10 s observation window at 1 fps. Finally, an ablation study on the different
features demonstrated that the pose keypoints are the most relevant features, while the
Z-coordinate has a negligible impact on the results.
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