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Abstract: This work explores the use of ZIF-8, a metal–organic framework (MOF) material, for its use
in the optical detection of volatile organic compounds (VOCs) in Fabry–Pérot and surface plasmon
resonance (SPR)-based sensors. The experiments have been carried out with ethanol (EtOH) and
show response times as low as 30 s under VOC-saturated atmospheres, and the estimated limit of
detection is below 4000 ppm for both sensor types. The selectivity towards other VOCs is relatively
poor, although the dynamics of adsorption/desorption differ for each VOC and could be used for
selectivity purposes. Furthermore, the hydrophobicity of ZIF-8 has been confirmed and the fabricated
sensors are insensitive to this compound, which is a very attractive result for its practical use in gas
sensing devices.

Keywords: gas sensor; MOFs; ZIF-8; optical detection; Fabry–Pérot interferometer; surface plasmon
resonance; VOCs; ethanol

1. Introduction

Volatile organic compounds (VOCs) are chemical compounds that contain at least one
carbon atom and a hydrogen atom in their molecular structure, and their relatively low
boiling point allows evaporation or sublimation into air. Even though the most significant
sources of VOCs can be found in indoor environments, e.g., building materials, paints,
household products, tobacco smoke, cooking, clothing, or cosmetics, they can also be found
in a wide range of outdoor sources, such as industrial processes or vehicle emissions [1,2].

Since exposure to VOCs is largely through inhalation, the quality of the air is directly
related to our health, and even though most of them do not pose a serious health risk,
long-term exposure can lead to severe health problems. In fact, VOCs have been linked to
acute and long-term health issues which include irritation, carcinogenic and mutagenic
effects such as acute myeloid leukemia, and respiratory effects like reduced pulmonary
function or asthma [2,3].

Environmentally, VOCs contribute to global warming by the absorption of infrared
radiation. In addition, they can react with nitrogen oxides, leading to the formation of
ground-level ozone, which is a strong greenhouse gas, and can also oxidize to NO2, re-
sulting in increased levels of NO in air. The oxidizing and corrosive properties of VOCs,
combined with the formation of ozone, can attack materials and cause their accelerated
degradation, i.e., protective layers in buildings. Additionally, larger-size particulate mat-
ter formation can occur due to the VOCs’ role as an organic precursor gas for particle
growth [4].
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Therefore, the analysis of VOCs is key to monitor air quality and identify sources of
pollution. Currently, gas chromatography coupled with mass spectroscopy (GC-MS) is the
established analytical method, which provides qualitative and quantitative information
while being an expensive, bulky, complex-to-operate and not portable technique. While
other commercially available methods are smaller in size and sensitive to a range of VOCs
with a short response time, e.g., photoionization detectors (PIDs) and metal-oxide sensors,
their main limitation is cross-sensitivity towards multiple gases, which severely affects
their response, and no qualitative information on the nature of the VOC can be obtained. To
overcome these challenges, a wide range of gas sensors are currently being developed, such
as surface acoustic wave sensors [5–8], infrared spectroscopy [9–11], quartz microbalance
sensors [12–15], electrochemical sensors [16–21], colorimetric sensors [22,23], or fluorescent
sensors [24–26]. Meanwhile, other sensing platforms are emerging to overcome the lack
of sensitivity by combining multiple sensors that can identify and quantify individual
components in gas mixtures, and via pattern recognition systems, the data are then analyzed
and correlated to results obtained from other techniques [27].

The difficulty of detecting VOCs lies in their low partial pressure and low surface
tension [28]; hence, one pathway to enhance the response of gas sensing devices consists
of the functionalization of the sensor’s surface with a sensitive coating, e.g., metal oxides,
polymers, zeolites or metal–organic frameworks (MOFs) [20], which not only can increase
the concentration of gas molecules on the surface to improve sensitivity (preconcentration)
but can also tailor the selectivity via chemical affinity [29].

MOFs are porous materials with a crystalline structure formed by metal nodes (metal
ions) connected through organic ligands. The appeal of MOFs for gas sensing applications
relies on their intrinsic porosity, i.e., their high surface-to-volume ratio, which favors
diffusion, adsorption, and interaction with analytes, and the tunable pore size, which can
naturally block larger molecules outside their pores (filtering) and therefore contributes to
increased selectivity [30,31]. Plus, in contrast to the high operating temperatures required
for other materials used as sensitive coatings for gas detection, e.g., metal oxides [18–20],
MOFs can be used for gas sensing applications at room temperature. In fact, several MOF-
based sensors employing different sensing mechanisms have been developed in the last
20 years. Even though the insulating character of MOFs hinders their use in electrochemical
sensors [32], other approaches that are based on luminescent or colorimetric sensing based
on intermolecular interactions, redox-active ligands, or charge transfer between MOFs and
adsorbed VOC molecules have been reported [33–35]. Other techniques rely on monitoring
the bulk refractive index (RI) change of the MOFs with the absorption of guest molecules.
In this manner, micro resonators [36], photonic structures using engineered colloidal
MOF films [37–41], or sensors with surface-enhanced Raman scattering [42,43] have been
developed for gas sensing applications. Specifically, Fabry–Pérot (FP) interferometry was
used in the first proof of concept of MOFs for VOC sensing by Hupp et al. in 2010 [44], in
which the MOF film served as the FP cavity and sensitive medium, which absorbed the
gas molecules and, thus, modified the FP interference fringes by red-shifting them due
to an increase in the MOF RI [45–48]. Another commonly used RI modulation sensing
mechanism in gas detection is surface plasmon resonance (SPR)-based sensors, in which
light triggers and confines plasmon oscillation at the interface of a metal and the MOF, and
changes in RI in the MOF film due to absorbed analytes red shift the resonance wavelength
of plasmons, allowing ppm detection of VOCs and other gases, e.g., CO2 [28,31]. Even
though there are several configurations of SPR devices, optical-fiber-based SPR sensors
are the most used design for gas sensing due to their low attenuation, high sensitivity,
and easy integrability into an optical transmission system [28,49–51], whereas limited
research has been carried out employing grating coupler-based or prism coupler-based
SPR configurations for gas sensing applications [52–54].

In this work, Zeolitic Imidazolate Framework-8 (ZIF-8), which is an interesting MOF
for gas sensing applications due to its hydrophobic properties, is used to detect mainly
ethanol (EtOH) vapors at room temperature. ZIF-8 films have been grown on two different
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substrates and a comparison has been drawn between two RI modulation sensing tech-
niques: FP interferometry, by using silicon substrates as FP mirrors and monitoring the
interference peaks, and SPR, by working with substrates containing diffraction gratings
(DGs) and tracking the plasmon resonance wavelength under different gas mixtures.

2. Materials and Methods
2.1. Sensing Substrates

The substrates for RI modulation via SPR wavelength shift contained 4 DGs. The
fabrication process consisted of a low-pressure chemical vapor deposition (LPCVD) of
100 nm of Si3N4 on top of an oxidized silicon wafer (900 nm SiO2). Next, a 180 nm thick
CSAR AR P6200-09 photoresist was spun on top, followed by thermal evaporation of a
20 nm thick aluminum (Al) layer. Then, patterning via electron beam lithography (Jeol
JBX-9500FS, Jeol Ltd., Tokyo, Japan) was performed, the Al layer was removed in a TMAH
solution, and the photoresist was developed using Developer AR 600-546 (Allresist GmbH,
Strausberg, Germany). The upper 30 nm of the Si3N4 was then etched inside an RIE system,
using CHF3 chemistry. Finally, the photoresist was stripped off and a metal stack of Ti
(3 nm)/Au (40 nm) was deposited via e-beam evaporation. The pattern consisted of two
different grating periods, Λ = 400 nm and Λ = 500 nm, in a square area of 0.5 mm × 0.5 mm,
which was repeated twice per chip. The Si3N4–metal stack interface works as an SPR device
(SPR-G samples).

The substrates for RI modulation via shift of FP interferences were silicon (Si) sub-
strates, on top of which ZIF-8 films were deposited (FP samples).

2.2. ZIF-8 Growth on Substrates

Prior to any synthesis, the substrates were cleaned with acetone and isopropanol
in 10 min ultrasonic baths and dried under nitrogen (N2) flow. Cleaned substrates were
used immediately.

Even though several approaches to growing ZIF-8 have been reported, some of which
include further treatment and functionalization of the surface [55–57], the method reported
by Hupp et al. [44] was used to synthesize ZIF-8. In this way, each ZIF-8 growth cycle was
performed by immersing the cleaned substrates in a solution of 2-methylimidazole (50 mM)
and Zn(NO3)2·6H2O (25 mM) in a 1:1 volume mixture for 30 min at room temperature.
The samples were then rinsed with pure methanol and dried with N2 flow. Thicker films
were obtained by repeating this same process using freshly prepared solutions in each new
growth run.

As optical measurements usually require reference spectra, a ZIF-8-free area in the
sample needs to be available. For this, part of the substrates was further immersed in
a diluted nitric acid mixture (68% nitric acid/H2O at 1:1000 (v/v)) for 5 s to remove the
already deposited ZIF-8 [45]. The resulting samples can be seen in Figure 1a,b.
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coated Λ = 400 nm DG. (d) X-ray diffractogram of 1550 nm ZIF-8 film deposited on silicon substrate 
matched with the simulated diffractogram (JCPDS: 00-062-1030). (e) Step profile for a sample sub-
jected to 2 ZIF-8 growth runs, giving rise to a 200 nm film. 
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is in agreement with the reported deposition rate of 100 nm per 30-minute cycle in the 
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Figure 1. (a) The 1 × 1.5 cm2 Si substrate covered with around 1550 nm ZIF-8 film; the lower part
is the reference for profilometry, etched in nitric acid; (b) 1.5 × 1.5 cm2 chip containing 4 DGs: two
bottom gratings with period Λ = 400 nm and two top ones, with Λ = 500 nm. The two central DGs
are covered with around 200 nm ZIF-8 film (lighter region in the image); (c) SEM image of uncoated
Λ = 400 nm DG. (d) X-ray diffractogram of 1550 nm ZIF-8 film deposited on silicon substrate matched
with the simulated diffractogram (JCPDS: 00-062-1030). (e) Step profile for a sample subjected to
2 ZIF-8 growth runs, giving rise to a 200 nm film.

The crystallinity of the film was examined by X-ray diffraction (XRD) using a PANalyt-
ical X’Pert PRO MPD alpha 1 (Malvern, Almelo, The Netherlands) powder diffractometer
in Bragg–Brentano θ/2θ geometry, Ni-filtered Cu Kα radiation (λ = 1.5418 Å, 45 kV and
40 mA), a diffracted-beam 0.04-radians Soller-slit collimator, and a PIXcel Detector (active
length = 3.347◦). The samples were scanned over a 2θ range of 5◦ to 40◦, with a 2θ step size
of 0.026◦ and a step time of 250 s. The XRD patterns (Figure 1d) establish that the position
and intensity of the peaks are in good agreement with the modeled XRD pattern for ZIF-8.

To characterize the thickness of the deposited ZIF-8 film, a stylus profilometer (Dektak
XT, Bruker, Billerica, MA, USA) was used to measure a 2 mm long line perpendicular
to the ZIF-8-free/ZIF-8 border. The obtained results indicate that the layer’s growth is
in agreement with the reported deposition rate of 100 nm per 30-minute cycle in the
literature [44,47,49,58].

2.3. Experimental Set-Up and Signal Processing

All gas sensing measurements were conducted via spectral interrogation on the fab-
ricated samples at room temperature. These were placed in a holder inside a home-built
aluminum chamber with a quartz window, which was attached to an aluminum platform
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controlled by two motors that allowed moving the sample along the x-y axes, so that fine
light beam positioning on certain spots, especially on the DG in the SPR-G samples, could
be achieved. The gas chamber was also connected to two 200 sccm Bronkhorst mass flow
controllers (MFCs), connected to pure N2 and 10,000 ppm EtOH in N2 bottles. White light
(Ocean Optics LS-1, Ocean Insight, Orlando, FL, USA), which was allowed to thermally
stabilize for 1 h prior to any experiment, was focused on an optical fiber, collimated, and
further divided with a beam-splitter and TM polarized, which is required for SPR-G sam-
ples. One of the beams was focused on the sample’s surface through the quartz window of
the gas measuring chamber using a 4× objective. An Ocean Optics SD2000 spectrometer
(Ocean Insight, Orlando, FL, USA) acquired the reflectivity spectra (Figure 2).
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Figure 2. (a) Chamber for gas testing containing an SPR-G sensor with the central DG covered with ZIF-8
(shown in Figure 1b). (b) Detail of the microscope objective on the top of gas chamber for performing
reflectance measurements. (c) Sketch of optical set-up employed for the reflectance measurements.

The alcohol vapor testing experiments were carried out by first purging the chamber,
using pure N2 (200 sccm), followed by acquiring the reference spectrum in a ZIF-8-free area
(bare substrate). The measurement was continued by capturing the response and recovery
of the ZIF-8-covered region when VOC pulses were introduced in two different approaches:

1. Approach I: A total of 1 µL of different EtOH/water solutions was manually added
into the chamber with a micropipette without contacting the sample and was naturally
allowed to evaporate. For this, the chamber was rapidly closed after the introduction
of the VOC.
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2. Approach II: N2 and EtOH gas flows were controlled with the MFCs to introduce
different EtOH concentration pulses into the chamber by adjusting the flow of the
individual MFCs. The flow rate was always maintained at 200 sccm.

The cleaning of the chamber in both approaches is achieved by flowing 200 sccm
of N2. The measuring system was controlled via a home-developed MATLAB software,
which processed the acquired reflected spectra in real time and normalized them to the
reference spectrum previously acquired in a ZIF-8-free area in a N2 atmosphere. Another
home-developed LabVIEW software controlled the MFCs and regulated the gas pulses
entering the chamber.

The spectra were then further processed by averaging the raw signal obtained by
the spectrometer and a polynomic approximation was employed to precisely find the
FP interference minimums (in FP samples) and SPR wavelength (in SPR-G samples) in a
desired spectrum range.

3. Results and Discussion
3.1. FP Samples

The ZIF-8 films can be considered as a Fabry–Perot cavity structure, in which light
reflections will be caused by changes in RI at the substrate/film and film/air interfaces.
Therefore, variations in the ZIF-8 film thickness will lead to different optical paths of the
light, which will strongly affect the interferences shown in the reflectivity spectra [40].
From the point of view of gas sensing, gas absorption depends heavily on the number of
pores. Therefore, considering a constant pore density, thicker films would be preferred,
contributing to larger RI changes and, consequently, larger optical shifts would be obtained.
This effect is illustrated in Figure 3a,b, where the reflectivity spectra of 670 and 1550 nm
thick ZIF-8 films red shift by 41 and 63 nm, respectively, between the measurements in N2
and in the saturated EtOH atmosphere. In addition, the interference pattern for the thicker
sample facilitates the localization of a minimum, whose shift can be easily monitored. For
this reason, all gas sensing experiments were carried out with the 1550 nm ZIF-8 film,
which was the thickest that was fabricated. Even thicker films can negatively impact the
dynamics of the analyte transport within the ZIF-8 structure, giving rise to longer response
times of the sensors. Therefore, a compromise must be made between thickness and time
response to obtain optimal sensor performance.
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Figure 3. Reflectivity spectra under N2 and saturated EtOH atmospheres for samples with (a) 670 nm
and (b) 1550 nm thick ZIF-8 film. Spectra under saturated EtOH atmosphere red-shift by 45 nm
and 63 nm in relation to the measurements under pure N2, respectively. Response of the 1550 nm
thick ZIF-8 covered FP sample towards experiments of (c) approach I and (d) approach II. The full
experiments can be seen in Figure S1.1 and Figure S1.2, respectively.

Taking into consideration the fact that the minimum indicated in Figure 3b is the one
that red-shifts the most under VOC exposure (Figure S1.1), it has therefore been taken as
the response of the sample. The results obtained for EtOH concentrations ranging from
0 to 100% and from 4000 to 10,000 ppm for approaches I and II, respectively, are shown
in Figure 3c,d. As shown, responses up to 66 nm have been obtained for 100% EtOH in
approach I, which has been estimated to correspond to 30,000 ppm. These results are
comparable to those reported in the literature [44,49], while the responses are larger for
those obtained by other optical techniques [40,51,59]. In contrast, approach II led to smaller
responses of the sensor signal, producing a red-shift of 1.52 nm at 4000 ppm of EtOH, which
is the lowest concentration tested so far (an estimation of the LoD has also been carried out;
see Figure S2.1).

Preliminary simulations have also been made to adjust the experimental curves of the
1550 nm ZIF-8 film to theoretical Fabry–Pérot interferometry curves [48] (Figure S3.1), and
the RI values of 1.24 and 1.35 have been obtained for ZIF-8 under N2 and saturated EtOH,
which is in accordance with other reported ZIF-8 RIs [36,47,60–63].

In addition, while the response time of the sensor in approach I can be as fast as
30 s under 100% EtOH, the longer response time of the sensor in approach II is due to
the time needed to reach stationary conditions in the gas chamber with the lower EtOH
concentrations of the bottle (maximum 10,000 ppm).

3.2. SPR-G Samples

In SPR-based sensors, plasmon oscillations confined at the metal/medium interface
(MOF in our case) create an evanescent wave whose amplitude decreases exponentially
with increasing distance from the interface into the medium. This establishes a maximum
depth at which plasmons are sensitive to optical variations in the medium, i.e., resonance
dip wavelength (RDW) red-shifts with increasing RI. For calibration, different liquids were
used as external medium to obtain the bulk sensitivity of the bare SPR-G substrates (without
ZIF-8), which was determined to be around 387 nm/RIU and 527 nm/RIU (Refractive
Index Units) for DG of Λ = 400 nm and Λ = 500 nm, respectively (Figure 4).
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Figure 4. RDW red-shift of Λ = 400 nm and Λ = 500 nm DG for different liquids—water (n = 1.33),
25% glycerol (n = 1.362, [64]), and isopropanol (n = 1.377)—and their bulk sensitivity (S). Water has
been taken as reference. RIs of water and isopropanol have been extracted from [65].

After covering the central DG with a ZIF-8 film and leaving the outer two uncovered
for reference, the red-shift caused by the higher RI of the MOF in relation to air can be
seen in Figure 5a, which is a scan of a 4 × 6 mm2 area of the SPR-G surface in which the
four DGs appear in a color representative of their respective RDW: Λ = 400 nm shifts from
500.5 nm to 610.1 nm and Λ = 500 nm from 563.2 nm to 718.8 nm between in-air and 300 nm
ZIF-8-covered DGs, respectively. The blue background (λ = 400 nm) represents the flat
surface of the substrate, in which no DGs are present and, thus, no resonance is observed.
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Gas sensing experiments, which are conducted on the ZIF-8-covered DG, will further
redshift the RDW due to the RI change of ZIF-8 during the adsorption/desorption of
analyte molecules (Figure 5b). This red-shift will be independent of the ZIF-8 thickness if
the films are thicker than the penetration depth of the evanescent wave in the MOF, since
no optical changes farther than that will be measured by the SPR-G sensor (no sensitivity).

Figure 6 shows the results obtained for EtOH concentrations ranging from 0 to 100% and
from 4000 to 10,000 ppm for experiment approaches I and II and Λ = 400 nm and Λ = 500 nm
DG, respectively. The results prove dynamics and response times similar to those obtained
in FP samples. It is noteworthy that, contrarily to the expected behavior expected given the
higher sensitivity of the gratings with Λ = 500 nm DG in front of those with Λ = 400 nm,
similar responses have been obtained for both DGs in gas sensing experiments, with the
red-shift for gratings with Λ = 500 nm being only slightly larger (Figure S4.2). This fact
would allow us to fine tune the working RDW by changing the period of the DG with the
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miniaturization of the set-up with LEDs and a photodetector (instead of white light and a
spectrometer) in mind, without largely affecting the sensitivity towards VOCs.
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Figure 6. Response of 300 nm ZIF-8-covered SPR-G sample towards (a) experiment approach I in
Λ = 400 nm DG and (b) experiment approach II in Λ = 500 nm DG. For comparison, the complete
results of approach I in Λ = 400 nm DG can be seen in Figure S4.1 and in Λ = 500 nm DG in Figure
S4.2. Full experiment approach II can be seen in Figure S4.3.

An additional benefit of this result is that due to the fact that the SPR-G samples
only sense the changes in the first few nm from the surface of the ZIF-8 film, in which the
evanescent wave penetrates, the film thickness can be reduced to promote good kinetics of
adsorption/desorption of the analyte in the ZIF-8 material without impacting the sensitivity
of the sensors.

3.3. Selectivity, Reversibility, and Reusability of the Samples

Experiments performed to test the sensor’s response towards other saturated VOC
atmospheres were conducted with approach I and FP samples by using other VOCs, like
methanol (kinetic diameter, d = 3.54 Å) and acetone (kinetic diameter, d = 6.16 Å), and both
induced red-shifts similar to those of EtOH (kinetic diameter, d = 4.18 Å), indicating the
poor selectivity of ZIF-8 (Figure 7). However, differences in the dynamic adsorption of the
molecules were observed: the response to acetone took around 12 min to reach saturation
and 2 h was required to fully recover the initial spectrum of the sample, contrasting with
the fast response (around 2 min) and recovery (less than 30 s) of the smaller molecules. This
behavior can be attributed to the size of the VOC molecules, as larger molecules will be
partly blocked at the ZIF-8 pores due to their larger dimensions [40].
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Consistent with the reported hydrophobicity of ZIF-8 [40,44,59], the samples were
insensitive to water vapor and, consequently, the red-shift of the reflectivity spectra can
only be attributed to the VOC vapors inside the chamber.

The reversibility and reusability of the samples was also observed during the ex-
periments, since alternating pulses of N2 and VOC-containing N2 did not significantly
affect the initial baseline. Therefore, ZIF-8 is advantageous in opposition to other MOF
structures which often need heating or molecule evacuating under vacuum to regenerate
the samples [39,41]. Long-term measurements for studying the stability of the sensors
are ongoing.

4. Conclusions and Future Work

In this study, a comparison has been drawn between FP-based sensors and SPR-
based sensors for VOC detection. Even though the lowest tested EtOH concentration is
4000 ppm with the current monitoring system and displays time responses that range from
a few seconds (with high concentrations) to several minutes (with low concentrations), a
difference can be observed between the response of FP and SPR-G samples. In FP samples,
the thicker the ZIF-8 film, the larger the number of pores that contribute to RI change, and
therefore, a larger optical shift is obtained. Even though this can have a negative effect on
the dynamics of the analyte transport through the ZIF-8 layer, thicker films are preferred
since they are not only more sensitive but also more precise. In contrast, even though SPR-G
samples are more complex and expensive to fabricate, they do not require thick MOF films
to enhance their sensitivity: a 300 nm ZIF-8 film on SPR-G samples red-shifts around 32 nm,
for which a 670 nm thick film in FP samples is required. Hence, SPR-G samples produce
larger optical shifts even with thin ZIF-8 thickness, so that film growth time can be reduced
and kinetics is not compromised. Even though the sensitivity of the sensors is comparable
to that of other similar sensors [44] and higher than other reported approaches [40,49,51],
it is still far from that of ppm and/or ppb detection using fiber-optic-based SPR sensors.
However, the planar geometry of SPR-G sensors allows for multiplexed sensing on an array
of DGs with different surface functionalization and film thicknesses, which is not possible
in fiber-optic-based sensors.

The first results of the selectivity of ZIF-8 towards different VOCs show poor results,
and only the dynamics of adsorption of the gas molecules appear to differ depending on the
VOC, which could be a method to further distinguish between different adsorbed VOCs.
Furthermore, the hydrophobicity of the MOF remains a main attraction for its use in gas
sensing devices, since humidity dramatically impacts the performance of many gas sensors.

Future work will focus, on the one hand, on the optimization of the fabrication process
and the improvement of the LOD and, on the other, on the miniaturization of the sensing
system with SPR-G samples via LEDs and photodiodes to obtain portable and smaller gas
sensing systems.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/s24134381/s1: Figures S1.1–S1.2: Gas sensing experiments in FP samples;
Figure S2.1: Sigmoidal fitting of experimental spectral shifts under EtOH pulses for LoD estimation;
Figure S3.1: Fabry–Pérot interferometry to obtain RI of ZIF-8 film; Figures S4.1–S4.3: Gas sensing
experiments in SPR-G samples.
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