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Abstract
Purpose: Volumetric-modulated arc therapy (VMAT) is a widely accepted treat-
ment method for head and neck (HN) and cervical cancers; however, creating
contours and plan optimization for VMAT plans is a time-consuming process.
Our group has created an automated treatment planning tool, the Radiation
Planning Assistant (RPA), that uses deep learning models to generate organs
at risk (OARs), planning structures and automates plan optimization. This
study quantitatively evaluates the quality of contours generated by the RPA
tool.
Methods: For patients with HN (54) and cervical (39) cancers, we retro-
spectively generated autoplans using the RPA. Autoplans were generated
using deep-learning and RapidPlan models developed in-house. The auto-
plans were, then, applied to the original, physician-drawn contours, which were
used as a ground truth (GT) to compare with the autocontours (RPA). Using
a “two one-sided tests” (TOST) procedure, we evaluated whether the auto-
contour normal tissue dose was equivalent to that of the ground truth by a
margin, δ, that we determined based on clinical judgement. We also calcu-
lated the number of plans that met established clinically accepted dosimetric
criteria.
Results: For HN plans, 91.8% and 91.7% of structures met dosimetric cri-
teria for automatic and manual contours, respectively; for cervical plans,
95.6% and 95.7% of structures met dosimetric criteria for automatic and
manual contours, respectively. Autocontours were equivalent to the ground
truth for 71% and 75% of common DVH metrics for the HN and cervix,
respectively.
Conclusions: This study shows that dosimetrically equivalent normal tissue
contours can be created for HN and cervical cancers using deep learning tech-
niques. In general, differences between the contours did not affect the passing
or failing of clinical dose tolerances.
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1 INTRODUCTION

Radiotherapy is a crucial modality for treatment of
head and neck (HN) and cervical cancers. Intensity-
modulated radiotherapy and volumetric-modulated arc
therapy (VMAT) are accepted treatment methods for
these cancers but are subject to inter- and intra-planner
variability.1–4 These variations can lead to poor clinical
outcomes for patients treated with suboptimal plans.3,5

Knowledge-based planning has been shown to reduce
variability,1,2,4 while also creating high-quality treatment
plans.6–8

The Radiation Planning Assistant (RPA) is a web-
based automated treatment planning tool being devel-
oped to generate consistent, high-quality contours and
treatment plans. The development of the RPA has
been previously described.7,9–21 The RPA uses deep
learning and knowledge-based planning to provide high-
quality and safe contours and treatment plans, with a
goal of improving access to radiotherapy around the
world.

In this study, we quantitatively evaluate the use of
automatically generated organs at risk (OAR) contours
for automatic plan generation. To do this, we used
the RPA to generate VMAT plans for a cohort of HN
and cervical cancer patients. The RPA plans were cre-
ated using OAR contours generated by deep-learning
models developed in-house. We, then, dosimetrically
compared them to the original contours drawn by the
clinic to assess contour quality.

2 METHODS

2.1 Patient data

For this analysis, the medical records of a cohort of
54 patients with HN cancer and 39 patients with cer-
vical cancer were retrospectively collected from our
institution and de-identified. All patients were previously
treated using VMAT. The original physician-drawn tar-
get contours, computed tomography (CT) scans, and
dose prescriptions were used in autoplan generation.
Of the 54 patients with HN cancer, 8 were originally
planned using two PTV dose levels. Of 39 cervical
cancer plans,26 included a boost to the gross tumor vol-
ume. Tables 1 and 2 show the patient cohort’s various
subsites, prescription ranges, and fraction ranges.

2.2 RPA workflow

Plan generation in the RPA is fully automated. The only
user input required is the upload of the CT images and
the service request, which contains the dose prescrip-
tion, determination of margins, etc. Once the CT and
service request is submitted by the user, normal tissue

TABLE 1 Distribution of the head and neck cancer cohort by site
and total dose range.

Primary site
Number of
patients

Range of PTV1
dose, Gy

Range of
fractionation

Oropharynx 20 60–70 30–33

Oral cavity 11 60–70 30–33

Larynx 13 60–70 30–35

Hypopharynx 3 60–70 30–33

Nasopharynx 7 60–66 30–33

TABLE 2 Distribution of the cervical cancer cohort by site and
total dose range.

Primary site
Number of
patients

Range of total
dose, Gy

Range of
fractionation

Pelvis 29 43.2–50 25

Para-aortic lymph
node/pelvis

10 45–50 24–28

and target contours are generated using deep-learning
models. After the contours are created, VMAT plans are
generated and optimized using RapidPlan models in the
Eclipse treatment planning system (TPS) (Varian Med-
ical Systems, Palo Alto, CA). Both the contouring and
RapidPlan models were developed by our group.7,18–19

After the autoplan is generated, the user can download
the autocontours and plan files from the website inter-
face to import into their own treatment planning system.
The full RPA workflow9 and model performances7,17–20

used in this study have been outlined in previous publi-
cations. The plans used in this study were generated for
use on a Varian 2100 machine. The HN plans consisted
of three 360◦ coplanar treatment arcs with collimator
angles of 15◦, 345◦, and 90◦. For cervical plans, three
360◦ coplanar treatment arcs were used at collimator
angles of 10◦, 350◦, and 90◦. The RapidPlan models
use 6 MV photon beams.The anisotropic analytical algo-
rithm (AAA) was used to calculate dose. The autoplans
have been shown to be clinically acceptable in previous
studies.7,21

2.3 Plan generation and data collection

For this study, we wanted to dosimetrically compare
the autocontours created by the RPA to the original,
physician-drawn (manual) contours. To do this, we
needed to apply the same plan across both sets of
contours. First, we generated an autoplan using the
RPA. We, then, imported the manual contours into our
Eclipse TPS, alongside the autocontours and autoplan.
This was done for each patient in our patient cohort.The
reported dose to the manual contour was considered
our ground truth (GT) and we used it to evaluate the
reported dose to the autocontours (RPA). Dosimetric
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TABLE 3 90% confidence intervals (CIs) and p-values of the TOST for the HN cancer cases.

Structure, metric 90% CI p0-value p1-value
Number of
data points

Brain, max dose (−3.1, 4.2) 0.088 0.134 54

BrainStem, max dose (−2.6, 2.5) 0.047 0.040 54

Chiasm, max dose (−15.9, 16.5) 0.583 0.201 5

Left cochlea, max dose (−0.6, 1.0) <0.001 <0.001 54

Right cochlea, max dose (−0.6, 0.7) <0.001 <0.001 54

Left eye, max dose (−0.5, 0.2) <0.001 <0.001 38

Right eye, max dose (−0.5, 0.2) <0.001 <0.001 38

Left Lens, max dose (−0.2, 0.2) <0.001 <0.001 53

Right lens, max dose (−0.2, 0.2) <0.001 <0.001 53

Mandible, max dose (−1.1, 0.9) 0.012 0.009 54

Left OpticNrv, max dose (−10.1, 7.1) 0.273 0.236 10

Right OpticNrv, max dose (−8.4, 6.2) 0.285 0.192 10

Left parotid, mean dose (−3.6, 3.0) 0.109 0.073 54

Right parotid, mean dose (−2.2, 2.8) 0.038 0.065 54

SpinalCord, max dose (−0.8, 0.4) <0.001 <0.001 54

zBrainStem_05, max dosea (−3.1, 3.4) 0.083 0.093 52

zSpinalCord_05, max dosea (−0.8, 0.9) <0.001 <0.001 54

Abbreviations: HN, head and neck; TOST, two one-sided tests.
aStructure with a 5-mm margin.

TABLE 4 90% confidence intervals (CIs) and p-values of the TOST for the cervical cancer cases.

Structure, metric 90% CI p0-value p1-value
Number of
data points

Bag_Bowel, V40 Gy (0.04, 0.08) <0.001 0.753 36

Bladder, V45 Gy (−0.07, 0.08) 0.169 0.209 39

Femoral heads, max dose (−1.8, 0.2) 0.024 0.001 34

Femoral heads, V40 Gy (0, 0) <0.001 <0.001 34

Femoral heads, V45 Gy (0, 0) <0.001 <0.001 34

Femur_Head_L, max dose (−2.7, 0.3) 0.129 0.002 27

Femur_Head_L, V40 Gy (0, 0) <0.001 <0.001 27

Femur_Head_L, V45 Gy (0, 0) <0.001 <0.001 27

Femur_Head_R, max dose (−2.0, 0.4) 0.061 0.004 27

Femur_Head_R, V40 Gy (0, 0) <0.001 <0.001 27

Femur_Head_R, V45 Gy (0, 0) <0.001 <0.001 27

Kidney_L, mean dose (−1.8, 1.6) 0.053 0.065 15

Kidney_L, V15 Gy (−0.03, 0.02) 0.058 0.051 15

Kidney_L, V20 Gy (0, 0) 0.002 0.001 15

Kidney_R, mean dose (−1.3, 1.3) 0.032 0.045 15

Kidney_R, V15 Gy (−0.04, 0.04) 0.073 0.076 15

Kidney_R, V20 Gy (0, 0.01) 0.008 0.006 15

Liver, V35 Gy (0, 0.01) 0.004 0.004 5

Rectum, V45 Gy (−0.04, 0.12) 0.076 0.409 39

SpinalCord, max dose (−2.5, 0.6) 0.107 0.002 17

Abbreviation: TOST, two one-sided tests.
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TABLE 5 Number of HN autocontours (RPA) and manual
contours (GT) that met clinical dose criteria.

Structure Metric, criteria RPA GT

Number of
data
points

Brain Max dose < 70 Gy 54 54 54

BrainStem Max dose < 54 Gy 54 54 54

Chiasm Max dose < 54 Gy 5 4 5

Left cochlea Max dose < 35 Gy 50 51 54

Right cochlea Max dose < 35 Gy 50 50 54

Left eye Max dose < 54 Gy 37 38 38

Right eye Max dose < 54 Gy 37 37 38

Left kens Max dose < 7 Gy 50 50 53

Right kens Max dose < 7 Gy 50 50 53

Mandible Max dose < 70 Gy 45 45 54

Left OpticNrv Max dose < 54 Gy 10 9 10

Right OpticNrv Max dose < 54 Gy 10 9 10

Left parotid Mean dose < 26 Gy 36 36 54

Right parotid Mean dose < 26 Gy 38 38 54

SpinalCord Max dose < 45 Gy 54 54 54

zBrainStem_05a Max dose < 54 Gy 50 50 52

zSpinalCord_05a Max dose < 50 Gy 54 54 54

Abbreviations: GT, Ground Truth; HN, head and neck; RPA, Radiation Planning
Assistant.
aStructure with a 5-mm margin.

data were collected using a Python script to interface
with the Eclipse Scripting API.

2.4 Evaluation process

In this evaluation, we used a “two one-sided tests”
(TOST) procedure22–24 to determine if the dose to the
autocontour was equivalent to that of the ground truth
by a margin, δ, that we determined based on clinical
judgment. Below are our hypotheses:

H0: MRPA ≤ MGT − 𝛿 or MRPA ≥ MGT + 𝛿

H1: MGT − 𝛿 < MRPA < MGT + 𝛿

MRPA is the median dose to the autocontour and MGT
is the median dose for the ground truth, for a given
normal structure DVH metric. For volumetric compar-
isons, δ = 5%; for dosimetric comparisons, δ = 3.5 Gy
(or 5% of 70 Gy) for HN patients and δ = 2.5 Gy
(or 5% of 50 Gy) for cervical patients. We did not
consider the target contours in this evaluation. Using
a one-sided Mann-Whitney U test, we considered the
autocontour and the manual contour equivalent if both
null hypotheses are rejected (i.e., p < 0.10) and a
90% confidence interval for MRPA–MGT lies between
(−δ, δ).

TABLE 6 Number of cervical autocontours (RPA) and manual
contours (GT) that met clinical dose criteria.

Structure Metric, criteria RPA GT

Number of
data
points

Bag_Bowel V40 Gy < 30% 33 34 36

Bladder V45 Gy < 50% 25 25 39

Femoral heads Max dose < 50 Gy 34 34 34

Femoral heads V40 Gy < 15% 34 34 34

Femoral heads V45 Gy < 60% 34 34 34

Left Femur_Head Max dose < 50 Gy 27 27 27

Left Femur_Head V40 Gy < 15% 27 27 27

Left Femur_Head V45 Gy < 60% 27 27 27

Right Femur_Head Max dose < 50 Gy 27 27 27

Right Femur_Head V40 Gy < 15% 27 27 27

Right Femur_Head V45 Gy < 60% 27 27 27

Left kidney Mean dose < 18 Gy 15 15 15

Left kidney V15 Gy < 50% 15 15 15

Left kidney V20 Gy < 33% 15 15 15

Right kidney Mean dose < 18 Gy 15 15 15

Right kidney V15 Gy < 50% 15 15 15

Right kidney V20 Gy < 33% 15 15 15

Liver V35 Gy < 50% 5 5 5

Rectum V45 Gy < 80% 34 34 39

SpinalCord Max dose < 45 Gy 17 17 17

Abbreviations: GT, Ground Truth; RPA, Radiation Planning Assistant.

We also calculated the number of plans that met
established clinically accepted dosimetric criteria. For
HN plans, the criteria used is outlined in Radiation
Therapy Oncology Group protocol 1016.25 For cervical
plans, the criteria used is based on the GEC-ESTRO
EMBRACE II protocol26 and our own internal protocol.

3 RESULTS

3.1 Equivalence

The autocontours were equivalent (p < 0.10) to the
ground truth for 12 of 17 HN DVH metrics and 15 of
20 cervical DVH metrics. Tables 3 and 4 show the con-
fidence interval and p-values. Some OARs were not
contoured for every patient. So, the number of data
points used in the test for a given structure was included
to help provide context. P0 represents the p-value result
of testing null hypothesis MRPA ≤ MGT-δ; while. P1 rep-
resents the p-value result of testing null hypothesis
MRPA ≤ MGT-δ.Both P0 and P1 need to be less than 0.10
to show equivalence. Figure 1 shows the distribution of
planned dose to the brainstem, bilateral parotid glands,
and spinal cord for the HN cancer cases, and Figure 2
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F IGURE 1 Scatterplots compare the distribution of planned dose to the normal structures for the brainstem (a), left parotid (b), right parotid
(c), and spinal cord (d). The green line represents the estimated regression function. The red and blue lines represent the dosimetric constraints
for a given normal structure.

shows the distribution for the bladder, bowel bag, and
rectum for the cervical cancer cases.

3.2 Dosimetric criteria

The plans met dosimetric criteria for 91.8% and 91.7%
of all HN structures for generated and manual contours,
respectively. For cervical plans, 95.6% and 95.7% of
structures met dosimetric criteria for automatically gen-

erated and manual contours,respectively.Tables 5 and 6
list the DVH metrics evaluated for each site and the
number of plans that met criteria.

4 DISCUSSION

Overall, this analysis demonstrates that autocontours
were equivalent to the ground truth for 71% and
75% of common DVH metrics for the HN and cervix,
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F IGURE 2 Scatterplots compare the distribution of planned dose to the normal structures for the bowel bag (a), bladder (b), and rectum (c).
The green line represents the estimated regression function. The red and blue lines represent the dosimetric constraints for a given normal
structure.

respectively. For DVH metrics that did not meet our
equivalence criteria, the autocontours tended to result
in a higher reported dose than the ground truth. This
may be a result of the autocontours being somewhat
more generous than the manual contours,meaning they
are more likely to report a higher dose. This finding can
be seen in the bowel bag and rectum for cervical can-
cer and the brain for HN cancer, where the upper limit
of the confidence interval was greater than the δ and

the lower limit was within our margin. For the left parotid
(HN), left femoral head (cervical) and spinal cord (cer-
vical), the opposite was true; the autocontours tended
to report less dose to these structures than the ground
truth contours. Some of the DVH metrics were not able
to confirm equivalence due to a lack of data (as not
all structures are manually contoured for all patients),
in particular, the optic chiasm (5 plans), and both optic
nerves (10 plans each). This is also true for the bladder,
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despite having significantly more data points (39) than
the optic chiasm and nerves. We were, however, able to
confirm equivalence for the liver contour (5 plans).

In general, even for structures that did not demon-
strate equivalence, the autocontours were just as safe
as the manual contours for planning for a major-
ity of the DVH metrics. For almost all DVH metrics,
the same number of autocontours and ground truth
contours met dosimetric criteria. The exceptions are
the optic chiasm, both optic nerves, left cochlea, and
left eye, which there is a difference of one plan
between the two planning sets. Although preliminary,
this indicates that effort should be spent reviewing
all HN and cervical structures, especially when they
are near tolerance, as they will tend to be in a
dose gradient, so contouring errors will be particularly
impactful.

This study has some limitations. Many of the patient
data in our dataset were missing some clinical con-
tours that we used in our evaluation. Depending on the
treatment area, these contours were not critical for the
treatment of these patients and were not delineated;
however, we would need to increase the number of
patients in our dataset or curate the patient structure
files prior to reproducing this study. This study focused
on patients from our own institution and did not evaluate
the effect of anatomical variations, patient character-
istics, clinical scenarios, and other factors on contour
quality. In future work,we would need to widen the scope
of our study by diversifying our cohort, using patients
from other institutions and take the aforementioned fac-
tors into account. This would allow us to evaluate the
generalizability of our models. In general, changes to
CT resolution and acquisition on different scanners can
affect the accuracy of autocontouring models. However,
in a publication by Huang, et al.27 showed that deep-
learning contouring models a particular robust to pixel
size and slice thicknesses >3 mm. Since the RPA does
not allow for CT images with slice thickness above 3 mm,
CT image quality was not considered.

In this study, we showed that many, but not all, struc-
tures are dosimetrically equivalent when comparing
automatically generated and manual structures. Differ-
ences in contouring did not, however, generally affect
whether the structures passed or failed clinical toler-
ances. Although rare, there were situations where the
reported dose indicated that the autoplan passed clini-
cal criteria, but the auto-generated contour did not meet
equivalence, thus showing that careful contour review is
still important.
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