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Abstract

microRNAs (miRs) have been reported over the decades as important regulators in bone 

development and bone regeneration. They play important roles in maintaining the stem cell 

signature as well as regulating stem cell fate decisions. Thus, delivering miRs and miR inhibitors 

to the defect site is a potential treatment towards craniofacial bone defects. However, there are 

challenges in translation of basic research to clinics, including the efficiency, specificity, and 

efficacy of miR manipulation methods and the safety of miR delivery systems. In this review, we 

will compare miR oligonucleotides, mimics and antagomirs as therapeutic reagents to treat disease 

and regenerate tissues. Newer technology will be discussed as well as the efficiency and efficacy 

of using these technologies to express or inhibit miRs in treating and repairing oral tissues. 

Delivery of these molecules using extracellular vesicles and nanoparticles can achieve different 

results and depending on their composition will elicit specific effects. We will highlight the 

specificity, toxicity, stability, and effectiveness of several miR systems in regenerative medicine.

Introduction

Currently, there is a growing demand for effective remedies to deal with craniofacial 

bone defects that occur due to aging, traumatic injuries, disease, and birth abnormalities. 

To this day, autografts remain the gold standard for treating bone defects, but are met 

with shortcomings that include severe supply limitations and donor site morbidity [1]. 

Alternatively, allografts and xenografts can be used as substitutes, but are ultimately 

rejected by the host immune system [2]. Tissue engineering, however, can circumvent 

these complications by its potential to harness the repair mechanisms of the host organism 

for bone regeneration. Previous studies have documented successful reprogramming of 

multipotent progenitor cells into tissue specific lineages by the administration of bioactive 
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molecules [3,4]. In tissue engineering, specific biomaterials and cell types are deliberately 

selected in order to recapitulate tissue and extracellular matrices that were lost or damaged 

due to trauma [5]. The interaction between cells and biomaterials is a critical factor for 

facilitating appropriate cell–cell communication in recapitulating tissue specific niches.

Traditionally, tissue engineering has relied on the presence of proteins such as bone 

morphogenic proteins, fibroblast growth factors, human recombinant bone morphogenic 

proteins, or parathyroid hormone to facilitate osteogenesis in synthetic bone grafts [6–

14]. However, these drugs are noted to have several complications. They are generally 

unstable, expensive, require large amounts of administration, and have numerous side 

effects, including tumorigenesis, inappropriate formation of adipose tissue, ectopic bone 

formation, and inflammatory responses [15–21]. Thus, these proteins generally have specific 

targets and as such, are limited in efficiency. On the other hand, microRNAs (miRs) have 

demonstrated an ability to efficiently regulate multiple cell signaling pathways through 

downstream cascading effects [22,23]. Previous studies have revealed that miR’s can 

stimulate cellular proliferation, differentiation, and growth without the addition of specific 

proteins [24,25].

miRs are small, non-coding regulatory RNAs that bind to their specific binding sites in the 

3′UTR of mRNAs and thus inhibit the expression of their target genes [26]. They have been 

reported to control several developmental processes, as well as diseases and regeneration 

processes [27].

At present, miRs have also been largely related to maintaining the stem cell signature, as 

well as the stem cell fate decision towards different lineages, which makes them a potential 

tool to correct craniofacial bone defects. As the research knowledge about the roles of miRs 

in craniofacial development are defined, it is possible to treat congenital craniofacial defects 

and injuries in facial and skull structures with new therapeutic approaches. The translation of 

basic knowledge to clinics requires precise miR over expression and/or inhibition methods, 

as well as a safe and efficient delivery system. The current challenge for over expressing or 

inhibiting miRs in vivo is the design of miR over expression constructs or mimics and miR 

inhibitors or antagomirs. Furthermore, dosage control which largely affect the efficacy and 

specificity of the miRs to regulate downstream targets. The delivery method as well as the 

scaffold are also important.

In this review, we will discuss the current knowledge of the role of miRs in maintaining stem 

cell signatures and regulating stem cell fate decisions. We will compare the efficiency and 

efficacy of current and newer miR technologies as therapeutic methods to treat disease and 

regenerate tissues. We will also highlight the specificity, toxicity, stability, the effectiveness 

of several new systems to deliver these molecules into the specific tissue. This review will 

also cover eight different biomaterials that have been used in conjunction with miR gene 

therapy approaches for promoting osteoblastic differentiation and bone regeneration.
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Regulation of stem cell self-renewal and differentiation by microRNAs

Mesenchymal stem cells (MSCs) are recognized as self-renewed and multipotent with 

the capability to differentiate into osteoblasts, chondroblasts, adipocytes and endothelium-

producing cells [28]. These cell types are required for tissue regeneration especially when 

treating craniofacial defects. Over the years, specific miRs have been identified that not 

only maintain the MSC feature, but also regulate their differentiation into desired lineages 

[29,30]. Other than the intrinsic regulation, MSCs have the ability to produce extracellular 

vesicles (EVs) including exosomes, in order to effect other cells through their paracrine 

activity [31–33]. A selected pattern of miRs can be shuttled in EVs produced by MSCs 

and delivered to other cells [34]. Thus, delivery of miRs that stimulate osteogenic lineages 

into the defect site with therapeutic approaches can promote osteogenic differentiation of 

endogenous MSCs and thus induce bone regeneration.

mirs maintain the MSC signature

It has been reported that MSC’s have their own miR expression signatures. Although 

different miR expression patterns are detected between intracellular and the EV environment 

of human embryonic stem cell derived mesenchymal stem cells (hES-MSCs), a high level 

of the let-7 family of miRs is predominant in both contexts. Intracellular miRs in hES-

MSCs also include miR-199a-3p, miR-29a, miR-21, miR-152, miR-143, miR-221, miR-103, 

miR-100, miR-24 and miR-125b [35]. In addition, adult MSCs derived from different tissues 

share a core signature in their transcriptomes but also exhibit secondary signature expression 

profiles between different origins [34,36,37]. This indicates that MSCs have a characteristic 

gene and miR expression profile that help maintain the MSC signature.

mirs regulate osteogenic differentiation of MSCs

miRs are recognized to regulate differentiation of MSCs. The regulation of osteogenic 

differentiation by miRs in MSCs have been widely studied over the decades. Most of 

these studies are done in vitro with either primary MSCs of different origins, or potential 

differentiated stable cell lines. It has been reported that specific miRs target to osteogenic 

genes including BMP2, DKK1 and SMAD genes, as well as signaling pathways involved 

in the osteogenic process (Table 1). Several miRs/miR clusters have roles in regulating 

bone formation in vivo. miR-140, miR-17-92, miR-452, miR-199/214, miR-26b, miR-135a 
and miR-200c have been reported to positively regulate osteogenesis in vivo, while 

miR-200a, miR-29cb2 and miR-378 are negative regulators [38–48]. While the whole 

miR-23a-27a-24-2 cluster is negatively regulating bone formation in vivo, miR-23 and 

miR-27 individually promote osteogenesis [49,50].

microRNA delivery systems

Recent developments in the field of gene therapy have utilized a miR-based approach to 

treat a wide range of diseases. However, the application of gene therapy suffers from issues 

related to a lack of proper delivery methods to get genes and miRs into the cells. A practical 

and safe gene delivery system is a crucial factor required for the success of miR-based 
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gene therapies. Currently, there are two approaches to express miRs: Oligonucleotide-based 

approaches and Plasmid DNA-based approaches.

Oligonucleotide-based approach

This approach uses chemically modified double-stranded RNA molecules that mimic the 

activities of select miRs. These miR mimics can be transfected and potentially interact 

with the RISC complex [69]. Like endogenous miRs, the miR mimics can function in 

a variety of ways, including translational repression, mRNA cleavage and deadenylation. 

The disadvantages of these mimics include cell toxicity, repeated applications of high 

concentrations of oligonucleotides, the transfection efficiency of mimic miRs is low and 

the formation of a functional new miR from the complementary strand has limited the use of 

this approach [70].

In cells, tissues, and cell lines most of the functional testing for miR activity (miR 

inhibition) has used chemically modified anti-miR oligonucleotides (AMOs) and locked-

nucleic acids (LNAs) inhibitors that bind miRs transiently and inefficiently, do not remain 

in dividing cells and require repeated large doses of oligos in cells to be effective and they 

have severe off target effects. The sponges and decoys also suffer from a lack of stability, 

inefficient binding of the miR, lack of specificity and require toxic delivery systems. The 

biggest issue is the off-target effects of using large quantities of these miR oligo inhibitors 

in cells that cannot distinguish between a one nucleotide difference in miR families such 

as miR-23a and miR-27a. Therefore, many reports of genes and pathways affected in 

different types of cells by these miRs have not been rigorously validated. It is well-known 

that every miR targets multiple mRNAs, which can inhibit gene networks and have large 

biological consequences [71]. The current issues of using miR-23 mimics and LNA-23 

miR inhibitors is highlighted in a current report stating that miR-23a and miR-23b target 

different transcripts, even though they have identical seed regions and only differ by one 

nucleotide outside of the seed region (Table 2) [72]. We suggest that these results are due to 

the nonspecific and off-target effects of the oligo-based mimics and inhibitors. Furthermore, 

they report using the LNA-23 miR inhibitor did not increase their target gene expression 

[72]. However, miR-24 has a completely different seed sequence and flanking sequences 

compared with miR-23 and miR-27 (Table 2). Therefore, the targets of miR-24 should have 

no overlap with the other miRs in this cluster.

Plasmid DNA-based approach

Plasmid DNA-based approaches have been introduced to overcome a short-term unstable 

expression of mimic miRs. This approach can be accomplished by inserting the miRs 

precursor sequence downstream of RNA polymerase II or III in a vector system [73,74]. 

Currently, plasmid DNA expression of a pre-miR is an attractive approach because they 

are easy to prepare and transfect, have biochemical simplicity, and more stable when 

compared with the oligonucleotide-based approach [70]. A study comparing the transient 

transfection of chemically synthesized miR mimics to lentiviral or plasmid transfection of 

miRs demonstrated that using miR mimics results in non-specific gene expression profiles 

and accumulation of high molecular weight RNA species [75]. The miR mimics also caused 

cell death and toxicity [75]. In another study it was shown that miR mimics have side-effects 
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and off-target effects that reduce specificity [76]. Therefore, a promising alternative is to use 

a plasmid DNA-based approach for expression of the pre-miR.

Our group has developed the Plasmid-based microRNA Inhibitor System (PMIS) as a 

method to efficiently knock down miRs both in vitro and in vivo [27,41,42,45,47,55,56,77–

84].

Delivery systems are also an important factor to enhance transfection efficiency. The 

simplest method to deliver miRs and/or miR inhibitors is to directly transfect cells 

with naked plasmid DNA. Some studies have reported the successful transfection using 

exogenous naked pDNA injections in high concentrations [85,86]. However, the limitation is 

the transfection efficacy of naked pDNA due to the large size of the phosphate group and the 

cells being hydrophilic in nature. Therefore, current research has developed gene delivery 

systems to increase their transfection efficiency. Currently, classification of gene delivery 

systems can be divided into two groups: Viral vectors and non-viral vector carriers.

Viral transfection vector carriers

Viral-based gene therapy was first introduced by Rosenberg et al. [87] who successfully 

inserted an exogenous gene into tumor-infiltrating lymphocytes using retroviral-mediated 

gene transduction for treating melanoma patients. This led to the development of other viral 

transfection vector carriers including adenovirus and lentivirus-mediated gene transduction 

[88]. Although, viral based gene therapy has a high transduction efficiency, the major 

challenges of this approach are complicated side effects due to immunogenicity and toxicity.

Non-viral transfection carriers

A practical and safe gene delivery system is the key to success for plasmid DNA encoding 

miR-based gene therapies. Considering the safety issues with viral vectors, non-viral 

gene delivery systems are preferred. Advantages of a non-viral delivery system are easier 

preparation processes and stability of the nanoparticle [89]. Examples of non-viral vector 

carriers commonly used are lipofectamine and polyethylenimine (PEI).

Lipid-based nanocarriers are the most used nonviral gene delivery systems in vitro. 

Besides numerous in vitro studies, lipid-mediated miR delivery is also feasible for in vivo 
applications based on recent findings.

Numerous cationic natural and synthetic polymers have been widely studied and show 

great promise for both plasmid DNA and RNA gene delivery [90]. Compared with lipid 

vectors, one obvious advantage of polymer-based delivery systems is that they are more 

flexible and versatile through variation in polymer molecular weight, structure, composition, 

and conjugation [91]. Among the currently reported polymer-based vectors, high molecular 

weight branched polyethylenimine (PEI, 25KD) is still the gold standard and has been 

most widely used in both preclinical studies and clinical trials because of its relatively high 

nucleic acid transfer efficiency. However, PEI nanoparticles are extremely toxic to cells, 

resulting in inflammation and cell death.
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Chitosan (CS) is one of the most studied natural polymeric gene carriers derived from 

partial deacetylation of chitin [92,93]. Chitosan-based gene carriers are especially attractive 

for regenerative medicine because of its high positive charge, excellent biodegradability, 

favorable biocompatibility, low toxicity, low cost, and low immunogenicity [92–94].

Calcium phosphates (CaP) have been used as gene carriers for decades through the way of 

DNA-calcium phosphate co-precipitation to introduce plasmid DNA into many cell types 

[95–97]. Among the gene vectors being considered to date, the CaP nanoparticle is one of 

the most promising materials for dental and bone tissue regeneration applications by virtue 

of the excellent osteoconductivity, biocompatibility, and biodegradability [98]. Similar to 

CaPs, nano-sized CaCO3/DNA co-precipitates were also studied for gene delivery because 

of their high biocompatibility and inducible biodegradability [99]. Our unpublished data 

indicated that the CaCO3-based approach has much higher efficiency than PEI (25KD) at 

the same culture conditions with 10% serum presence to deliver plasmid DNAs to many 

different primary cell types, including primary human stem cells and tumor cell lines with 

significantly lower cytotoxicity. Importantly, CaCO3-mediated miR delivery also showed 

great efficiency in vivo using different rodent models. Moreover, as an alternative to CaP-

based biomaterials, CaCO3-based nanoparticles have shown some unique advantages, e.g. 

biocompatibility, biodegradation, and osteoconductivity for bone regeneration [100,101]. 

Therefore, the CaCO3-based approach shows great promise for bone tissue engineering and 

translational applications.

Mesoporous silica nanoparticles (e.g. MCM-41 and SBA-15 MSNs), are emerging as 

multifunctional drug delivery carriers because they are capable of absorbing/encapsulating 

large amounts of bioactive molecules through the hundreds of empty channels with a 

honeycomb-like porous structure (mesopores). MSNs have some unique features, e.g. large 

pore volume (~0.9 cm3/g), tunable pore size (2-10 nm), high surface area (~900 m2/g), good 

chemical and thermal stability, good biocompatibility, excellent surface functionality, which 

are all advantageous for various controlled release applications [102,103].

Heat-shrinking (HS) DNA nanoparticles are polyacridine PEG-peptide stable DNA 

nanoparticles that are fully transfection competent in mice [104]. These particles are 

modified with Lysine residues to achieve high affinity and compaction with a short 18 

amino acid peptide. These polyacridine PEG-peptides are readily customizable into targeted 

carriers to prepare DNA nanoparticles for in vivo gene delivery [104]. Heat shrunken 

DNA nanoparticles were formulated by combining plasmid DNA with a high affinity DNA 

binding peptide modified with a single Cys, disulfide-linked, polyethylene glycol (PEG) 

chain. Heating the DNA to 100°C for 10 min results in partial DNA denaturation and 

increased DNA flexibility to increase folding. The addition of PEG-peptide to partially 

denatured plasmid DNA leads to rapid heat shrinking of DNA nanoparticles from 170 

nm to 60 nm diameter. Heat shrunken DNA nanoparticles remain fully functional at 

mediating gene transfer in vivo. The PEG corona layer blocks protein mediated nanoparticle 

aggregation to allow DNA particles to traverse to the cell membrane. DNA nanoparticles 

are designed to shed PEG by disulfide bond reduction upon macropinocytosis. An advantage 

of this formulation is that the nanoparticle size is unchanged during long term storage, 

freeze-thaw, freeze drying & reconstitution, and during concentration.
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Tissue engineering in craniofacial bone defects

Hydroxyapatite

Hydroxyapatite is the most prevalent nonorganic substance found in bone tissue and 

therefore serves as an effective biomaterial for bone regeneration [105–107]. Hydroxyapatite 

possesses high mechanical strength and exhibits no cytotoxicity [108], but since it 

is not readily absorbed by cells, it can hinder bone remodeling unless incorporated 

appropriately into scaffolds [109]. Since hydroxyapatite alone is brittle, it is generally 

added in composite with other biomaterials to reinforce its structural integrity [110]. Two 

studies have investigated bone healing by coculturing human mesenchymal stem cells in 

hydroxyapatite/tricalcium phosphate ceramic powder. Eskildsen et al. [111] found that 

inhibiting miR-138 resulted in the up-regulation of osteoblastic genes Runx2 and Osx, 

enhanced alkaline phosphatase (ALP) activity, matrix mineralization, and a notable increase 

in bone formation by 60%. Likewise, Chen et al. [112] concluded that the repression of 

miR-34a up-regulated key osteogenic markers such as ALP, osteopontin, osteonectin, with a 

3.5-fold increase in bone formation. Hydroxyapatite has also been successfully implemented 

in polycaprolactone nanofibers, where Sadeghi et al. inhibited miR-122 in rat mesenchymal 

stem cells. The study found that seeding such cells into the nanofiber scaffold led to 

statistically significant closures of critical sized bone defects in rats [113]. An in vitro 
study by Castaño et al. investigated the role of miR-16 in osteogenesis by utilizing collagen-

nanohydroxyapatite scaffolds that were soaked in anti-miR-16 oligomer suspensions. They 

found that inhibiting miR-16 in human mesenchymal stem cells resulted in overexpression 

of Runx2 and Ocn by values of 6.29 (±2.3)-fold and 8.19 (±1.96)-fold, respectively, and an 

increase in calcium deposition by Alizarin Red staining [114]. Wang et al. investigated the 

role of miR-26a in osteogenesis and angiogenesis [115,116]. Using a porous hydroxyapatite 

scaffold and adipose-derived stem cells transfected with miR-26a mimics by lipofectamine, 

Wang et al. [115] observed the formation of new bone tissue with hematoxylin and eosin and 

Masson’s trichrome staining, and cited an increase in ALP activity, collagen secretion and 

matrix mineralization.

β-tricalcium phosphate

β-tricalcium phosphate (β-TCP) has been widely used in several applications to regenerate 

bone in craniofacial defects. A major advantage of β-TCP is that it is capable of 

releasing large amounts of calcium and sulfate ions to catalyze new bone growth, 

while also maintaining its structural integrity [117,118]. However, β-TCP has limited 

osteoinductivity and is rather brittle alone, rendering it inapplicable to load bearing [119]. 

The mechanical strength and osteoconductivity of β-TCP are enhanced when it is reinforced 

with other bioceramics such as hydroxyapatite or polycaprolactone [120]. Recent studies 

have revealed that incorporating microRNAs into β-TCP scaffolds significantly improves 

bone regeneration. Remy et al. evinced an effective relationship between miR-200c and a 

β-TCP scaffold, and for the first time, utilized a hybrid process that incorporated both into 

one biomaterial. The research found that coating β-TCP in a collagen type I suspension 

with miR-200c plasmid DNA substantially regenerated calvaria bone defect in rats, and 

outperformed experimental controls [84]. Other studies have simply seeded transfected 

progenitor cells into β-TCP. For instance, Janko et al. transfected bone marrow mononuclear 
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cells to selectively inhibit miR335 and then seeded them in β-TCP scaffolds. After eight 

weeks, there was a 40.9% recovery of bone tissue in the femoral defects of the Sprague-

Dawley rats that had received the scaffold treatment [121]. Deng et al. inhibited miR-31 
in progenitor cells and reported a 35.42 ± 6.12% and a 41.82 ± 6.54% recovery of bone 

volume in craniofacial defects in rats and canines, respectively [122,123]. Another study, 

using micro-CT scans, determined a statistically significant increase in bone volume after 

coculturing bone marrow stem cells overexpressing miR-26a in calvaria bone defects of 

mice filled with β-TCP scaffolds [124].

Hydrogels

Since hydrogels are highly water absorbent and hydrophilic, they possess material properties 

very similar to cartilaginous and bony tissues [125]. Hydrogels comprising of natural 

materials including chitosan, collagen, alginate, fibrin, elastin, heparin, and hyaluronic 

acid are minimally cytotoxic, highly biodegradable, and versatile for filling in bone 

defect irregularities [125]. Yet, they are inadequate for load bearing [125]. Conversely, 

synthetic polymer hydrogels are stiffer and can withstand heavier loads [125]. However, 

they are found to be much less biodegradable and exhibit varying degrees of cytotoxicity 

[125]. Hydrogel synthesis therefore has tradeoffs between biocompatibility and structural 

rigidity, and oftentimes the best approach is to hybridize them with ceramic materials and 

biodegradable polymers that can both promote biological synergy and improve mechanical 

durability [126]. Hydrogel scaffolds have been documented as suitable environments for 

microRNA delivery systems and cell growth [3]. A study conducted by Li et al. utilized a 

hydrogel construct of a rather sophisticated composition (a thiol-modified analog of heparin 

with thiol-modified hyaluronan and poly(ethylene glycol) diacrylate, and Glycosil™), which 

was seeded with human bone marrow mesenchymal stem cells that were transfected with 

miR-26a oligomers. After twelve weeks, micro-CT scans revealed a complete recovery 

of calvaria defects in mice [127]. Another study conducted by Quereshi et al. compared 

Matrigel™, a thermo-reversible hydrogel, to polycaprolactone. Human adipocyte stem cells 

transfected to overexpress miR-14 were seeded into both types of matrices and were 

given twelve weeks to grow in calvaria defects. The study found that the transfected 

cells in Matrigel™ outperformed polycaprolactone in terms of calcium deposition, and 

normalized fracture healing [128]. Lei et al. investigated neurogenesis and bone regeneration 

that was regulated by miR-222, and fabricated a hydrogel comprised of a Poly(lactic-

co-glycolic acid) (PLGA) core and a poly(ethylene glycol)-poly(N-isopropylacrylamide) 

(PEG-PNIPAM) shell for localized nanoparticle delivery of miR-222 mimics and Aspirin. 

Human bone marrow stem cells that overexpressed miR-222 demonstrated an up-regulation 

of neural differentiation markers such as microtubule associated protein (MAP2), nerve 

growth factor (NGF) and neural/glial antigen (NG2) [129]. A 21.97% ± 3.99% recovery 

of bone volume was observed ten weeks after PLGA/PEG-PNIPAM hydrogels comprised 

of miR-222 mimics and Aspirin were fitted into mandibular defects [129]. The study also 

discovered an interesting dynamic that coupled stable bone growth with innervation [129]. 

Hydrogels therefore possess versatile material properties that can be tailored accordingly to 

meet diverse tissue engineering criteria.
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Silk

In recent years, silk has emerged as an alternative biomaterial that can replace metal screws 

or substitutes such as poly-L-lactic acid, polyglycolic acid (PGA) and poly-lactic-coglycolic 

acid (PLGA) in fracture fixation [130]. It has also been found to be biodegradable with 

its resorption conducive to osteoid formation and bone healing [131–134]. In vivo studies 

have found that silk screws are self-tapping, and silk plates are adaptable to the natural 

curvature of bone, eliminating additional procedures that otherwise complicate orthopedic 

surgical implantations [130]. James et al. fabricated silk films using Bombyx mori. Human 

mesenchymal stem cells were transfected with either a nonspecific vector or miR-214 
inhibition oligomers, and then seeded onto the silk films. ALP staining, xylene orange 

staining for calcium deposition, and von Kossa staining suggested that inhibition of miR-214 
in stem cells expressed higher ALP activity levels, higher calcium depositions, and a 

consequential up-regulation of Runx2, Osx, ATF4, and osteocalcin [135]. The silk films 

were then manufactured into orthopedic screws and von Kossa stains suggested a relative 

increase in the optical density of the screws that housed anti-miR-214 cells [135]. However, 

follow up in vivo studies are required to confirm the feasibility of silk screws and plates for 

bone regeneration as this biomaterial, in addition to microRNA incorporation, is still a very 

recent biomedical innovation for craniofacial reconstruction.

Polycaprolactone

Polycaprolactone (PCL) is another material used in tissue engineering due to its 

biocompatibility, biodegradability and high drug permeability [136]. Tahmasebi et al. 

fabricated a PCL/microRNA–gelatin nanofiber scaffold for culturing human induced 

pluripotent stem cells (hiPSCs), which encapsulated miR-22 and miR-126 mimics and 

was designed to sustain a controlled release of the microRNAs over a 14-day period. 

The study concluded that the hiPSC’s, after two weeks of culture, exhibited statistically 

significant up-regulation of osteoblastic markers including ALP activity, Runx2, osteocalcin 

and osteonectin [137]. Hoseinzadeh et al. engineered PCL scaffolds that were hybridized 

with nanohydroxyapatite (nHA) to augment osteogenic differentiation of adipose-tissue 

derived stem cells. The stem cells were first transfected to repress miR-221 and were then 

seeded into the scaffold. After three weeks of coculture, the transfected cells exhibited 

a statistically significant overexpression of Runx2, osteocalcin, and ALP activity [138]. 

However, the relationship between the microRNAs discussed and PCL scaffolds has yet to 

be confirmed by in vivo experiments.

Poly(lactic-co-glycolic acid)

Poly(lactic-co-glycolic acid) (PLGA), due to its biodegradability and biocompatibility, is an 

established biomaterial that has frequent tissue engineering applications with a documented 

history of successful brain implants in both mice and humans [139,140]. In the case 

study presented by Laio et al. disc shaped PLGA scaffolds that were seeded with human 

adipocyte mesenchymal stem cells were implanted into mice calvaria defects. The cells were 

transduced by baculovirus to stably express miR-26a, miR-29b, miR-148b and miR-196a. 

Stable overexpression of BMP-2 was another baculovirus vector that was incorporated. 

Interestingly, this study evinced a synergistic relationship between stable up-regulation of 
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a target microRNA and a target protein, namely miR-148b and BMP-2, that resulted in an 

impressive filling of 94% of the defect area and 89% of the defect volume twelve weeks 

postoperatively [141]. Qi et al. examined the osteoinduction of human adipose derived 

mesenchymal stem cells by miR-181-a/b-1 that were seeded into electrospun nanofibrous 

bilayer scaffolds comprised of PLGA on the outer layer and polyplex/microRNA/gelatin on 

the inner layer. Cells were either transduced into stable expression and cultured on tissue 

culture polystyrene (TCPS) or were seeded into PLGA/gelatin scaffolds that encapsulated 

miR-181a/b-1 mimics. Cells that were co-cultured in the PLGA scaffolds were reported to 

have a statistically significant increase in calcium secretion, ALP activity, Runx-2, collagen 

type I, osteocalcin and osteopontin than the TCPS control group [142]. However, the 

efficacy of miR-181 and PLGA in vivo remains in question.

Other polymers

There has been reported success of incorporating therapeutic microRNAs for bone 

regeneration in novel biomaterials. One such is poly(glycerol sebacate) (PGS), which is 

an electrospun and crosslinked nanofiber composed of sebacic acid, glycerol and gelatin 

that is cured in a vacuum under high heat for 1–2 days [143]. PGS is biocompatible 

and biodegradable, and random cross-linking gives it similar material properties to Vulcan 

rubber. Some of its limitations, however, deal with an undefined branch structure, low 

molecular weight, and a high tendency of premature crosslinking [144]. Deng et al. [145] 

investigated the osteogenic regulation of miR-31 in biomaterial scaffold comprised of PGS, 

and transfected rat bone marrow stem cells with lentivirus to stably express either non-

specific oligomers, miR-31or anti-miR-31. The cells were then seeded into disc shaped PGS 

scaffolds that filled calvaria bone defects in rats. The study found that the PGS scaffolds 

composed of anti-miR-31 transformed cells demonstrated a 60% recovery of bone in the 

calvaria defect eight weeks postoperatively [145]. Poly(sebacoyl diglyceride)(PSeD) was 

designed as an improvement to PGS with notable advantages including a longer shelf life, 

a better-defined structure with more free hydroxyl groups and a higher molecular weight, 

all while preserving the biodegradability and biocompatibility of its predecessor [144]. In 

two different experiments, Xie et al. examined the delivery of lentiviral transduced rat 

adipose derived mesenchymal stem cells in PSeD scaffolds. Both studies reported that ~50% 

of bone volume was recovered in 8 mm rat calvaria defects in mesenchymal stem cells 

transformed with miR-135 and anti-miR-146a, respectively [146,147]. Additional studies 

have also engineered scaffolds that were of complex mixtures of the biomaterials discussed 

above. Moncal et al. fabricated polymeric scaffolds that were comprised of a sophisticated 

combination of PCL, PLGA, and nanohydroxyapatite, which were then filled with a 

collagen type I gel to encapsulate rat bone marrow stem cells that were transfected with 
miR-148b by silver nanoparticles. The study found that after eight weeks of implantation 

into rat calvaria defects, micro-CT scans detected a 78.1 ± 20.8% recovery of bone volume 

and a 34.7 ± 8.9% normalized bone mineral density in the collagen scaffolds that cultured 

miR-148b overexpressing cells [148] (Table 3).
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ALP alkaline phosphatase

EVs extracellular vesicles

MSCs mesenchymal stem cells

PCL Polycaprolactone

PEG polyethylene glycol

PEI polyethylenimine

PGS poly(glycerol sebacate)

PLGA Poly(lactic-co-glycolic acid)

PMIS Plasmid-based microRNA Inhibitor System

PSeD Poly(sebacoyl diglyceride)

TCP tricalcium phosphate
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Perspectives

• The direct delivery of miRs to cells and tissues has the advantage to provide a 

promising approach for bone and tissue regeneration. PMIS-miR gene therapy 

works both in vivo and in vitro, and is specific with no off-target effects, no 

toxicity and is efficient and effective.

• We have shown that highly purified naked plasmid DNA encoding PMIS-

miR inhibitors can safely and effectively increase the expression of PMIS 

transcripts in vitro and in vivo. We have used the PMIS system to generate 

mouse models to study the in vivo role of miRs

• The PMIS transcripts expressed from the plasmid DNA can transform 

neighboring cells by extracellular vesicles containing the PMIS miR inhibitor 

transcript. Extracellular vesicle expansion of the PMIS transcripts allows for 

rapid PMIS expression during tissue regeneration. Experiments in dogs, rats 

and mice demonstrate that the PMIS is not toxic and highly effective.
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Table 1.

miRs that regulate osteogenic differentiation of MSCs.

miR MSC types
Effect on osteogenic 
differentiation Targeting gene/pathway Reference

miR-23a MC3T3-E1 Suppression Satb2/TGF-β signaling [50,51]

HOS GJA1 [52]

miR-27a MC3T3-E1 Suppression Satb2 [51]

MC3T3-E1 Prdm16/TGF-β signaling [50]

miR-200a hPDLSC Suppression ZEB2/NF-κB [53]

hBMMSC GLS [54]

miR-200c hBMMSC Promotion Klf4, Sox2/Wnt signaling [55]

HEPM IL-6, IL-8, CCl-5 [56]

miR-889 hBMMSC Suppression WNT7A/Wnt signaling [57]

miR-4286 hBMMSC Promotion HDAC3 [58]

miR-503 Rat MSC Promotion Smurf1 [59]

miR-483-3p hFOB1.19 Promotion DKK2/Wnt signaling [60]

miR-424 WJSC Promotion - [61]

miR-10b hADSC Promotion SMAD2/TGF-β signaling [62]

miR-378 hMSC Suppression WNT6, WNT10A/Wnt signaling [48]

miR-375-3p MC3T3-E1 Suppression LRP5, β-catenin/Wnt signaling [63]

miR-100-5p hBMMSC Suppression BMPR2/BMPR2-SMAD1/5/9 signaling [64]

miR-29b Primary fetal rat calvaria osteoblasts 
MC3T3-E1

Suppression COL1A1, COL5A3, COL4A2 [65]

miR-29a HUVEC Promotion - [66]

miR-16-2 hBMMSC Suppression WNT5A/Wnt signaling [67]

miR-22 hBMMSC Suppression YWHAZ [68]
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Table 2.

Comparison of miR-23-27-24 sequences

Sequences

miRs Mus musculus (mmu) Homo sapiens (hsa)

miR-23a-3p AUCACAUUGCCAGGGAUUUCC AUCACAUUGCCAGGGAUUUCC

miR-23b-3p AUCACAUUGCCAGGGAUUACC AUCACAUUGCCAGGGAUUACC

miR-24-1-3p UGGCUCAGUUCAGCAGGAACAG UGGCUCAGUUCAGCAGGAACAG

miR-24-2-3p UGGCUCAGUUCAGCAGGAACAG UGGCUCAGUUCAGCAGGAACAG

miR-27a-3p UUCACAGUGGCUAAGUUCCGC -

miR-27b-3p UUCACAGUGGCUAAGUUCUGC -

miR-27a-5p - AGAGCUUAGCUGAUUGGUGAAC

miR-27b-5p - AGGGCUUAGCUGCUUGUGAGCA

*
The difference between two sequences from the same species are shown in red.

*
The one nucleotide difference in the seed sequence osf miR-23 and miR-27 is shown in bold.

*
miR-24-1 and miR-24-2 share the same 3p sequence, which terms miR-24-3p based on the database.
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Table 3.

Biomaterials used in the application of specific miRs for bone formation and regeneration.

Biomaterial miRs Main Observation
In vivo 
testing?

Reference 
Index

Hydroxyapatite anti-miR-16 Statistically significant upregulation of osteoblastic markers no [114]

miR-26a Notably enhanced bone growth in calvaria defect yes [115]

anti-miR-34a 3.5-fold increase in formation of new bone yes [112]

anti-miR-138 60% increase in new bone growth yes [111]

anti-miR-221 Hard tissue formation detected and partial recovery of 
defect

yes [113]

β-Tricalcium 
Phosphate

miR-26a Notably enhanced bone growth in calvaria defect yes [124]

anti-miR-31 35.42 ± 6.12 % and 41.82 ± 6.54% increase in bone 
volume, respectively

yes [122,123]

miR-200c Statistically significant increase in new bone formation yes [84]

anti-miR-335-5p 40.9% recovery of femoral bone defect yes [121]

Hydrogel miR-26a Complete restoration of calvaria bone defect yes [127]

miR-148b 32.53 ± 8.3% recovery of calvaria bone defect yes [128]

miR-222/ Aspirin 21.97 ± 3.99% recovery of bone volume in mandibular 
defect

yes [129]

Silk anti-miR-214 Statistically significant upregulation of osteoblastic markers no [135]

Poly-caprolactone miR-22 Statistically significant upregulation of osteoblastic markers no [137]

miR-126 Statistically significant upregulation of osteoblastic markers no [137]

anti-miR-221 Statistically significant upregulation of osteoblastic markers no [138]

Poly (lactic-co-
glycolic acid)

miR-148b/BMP-2 94% filling of area and 89% volume recovery in calvaria 
bone defect

yes [141]

miR-181a/b-1 Statistically significant upregulation of osteoblastic markers no [142]

Poly(glycerol 
sebacate)

anti-miR-31 41.82 ± 6.54 % recovery of bone volume in calvaria bone 
defect

yes [145]

Poly(sebacoyl 
diglyceride)

miR-135 50.53 ± 4.45% increase in bone volume of cranial bone 
defect

yes [146]

anti-miR-146a 49.8 ± 5.49% increase in bone volume of cranial bone 
defect

yes [147]

Collagen miR-148b 78.1 ± 20.8% area recovery of calvaria bone defect yes [148]
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