
 

 

1 

APOE, Immune Factors, Sex, and Diet Interact to Shape Brain 
Networks in Mouse Models of Aging 

 

Steven Winter1, Ali Mahzarnia2, Robert J Anderson2, Zay Yar Han2, Jessica Tremblay2, Jacques Stout3, Hae 
Sol Moon4, Daniel Marcellino5,6, David B. Dunson1, Alexandra Badea2,3,4,7* 

 
1Statistical Science, Trinity School, Duke University, Durham, NC, 27710 USA 
2Department of Radiology, Duke University School of Medicine. Durham, NC, 27710. USA 
3Duke UNC Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, 27710, 
USA 
4Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, 
USA 
5Department of Medical and Translational Biology, Umeå University, Umeå, 901 87, Sweden 
6Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, 22184, Sweden 
7Department of Neurology, Duke University School of Medicine. Durham, NC, 27710, USA 
 
*Alexandra Badea, PhD 
Box 3302 Duke University Medical Center 
Durham, NC, 27710 
Office Phone: +1-919-917-3095 
Email:  alexandra.badea@duke.edu 

Author Contributions: Steven Winter, Ali Mahzarnia, Robert J Anderson, Hae Sol Moon, Jacques Stout, 
Alexandra Badea-data analysis. Zay Yar Han, Jessica Tremblay – animal studies. Daniel Marcellino, David B. 
Dunson, Alexandra Badea conceptualization, and supervision. All authors contributed to the manuscript editing. 

Competing Interest Statement: The authors have no conflicts to declare.  

Classification: Biological Sciences, Neuroscience  

Keywords: APOE, connectomics, MRI, Alzheimer’s disease, mouse 

This PDF file includes: 

Main Text 
Figures 1 to 3 
Tables 1  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2024. ; https://doi.org/10.1101/2023.10.04.560954doi: bioRxiv preprint 

mailto:alexandra.badea@duke.edu
https://doi.org/10.1101/2023.10.04.560954
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

2 

Abstract 
 
Alzheimer's disease (AD) presents complex challenges due to its multifactorial nature, poorly understood 
etiology, and late detection. The mechanisms through which genetic, fixed and modifiable risk factors influence 
susceptibility to AD are under intense investigation, yet the impact of unique risk factors on brain networks is 
difficult to disentangle, and their interactions remain unclear. To model multiple risk factors including APOE 
genotype, age, sex, diet, and immunity we leveraged mice expressing the human APOE and NOS2 genes, 
conferring a reduced immune response compared to mouse Nos2. Employing graph analyses of brain 
connectomes derived from accelerated diffusion-weighted MRI, we assessed the global and local impact of risk 
factors in the absence of AD pathology. Aging and a high-fat diet impacted extensive networks comprising AD-
vulnerable regions, including the temporal association cortex, amygdala, and the periaqueductal gray, involved 
in stress responses. Sex impacted networks including sexually dimorphic regions (thalamus, insula, 
hypothalamus) and key memory-processing areas (fimbria, septum). APOE genotypes modulated connectivity 
in memory, sensory, and motor regions, while diet and immunity both impacted the insula and hypothalamus. 
Notably, these risk factors converged on a circuit comprising 63 of 54,946 total connections (0.11% of the 
connectome), highlighting shared vulnerability amongst multiple AD risk factors in regions essential for sensory 
integration, emotional regulation, decision making, motor coordination, memory, homeostasis, and 
interoception. These network-based biomarkers hold translational value for distinguishing high-risk versus low-
risk participants at preclinical AD stages, suggest circuits as potential therapeutic targets, and advance our 
understanding of network fingerprints associated with AD risk. 

 

Significance Statement 
 
Current interventions for Alzheimer’s disease (AD) do not provide a cure, and are delivered years after 
neuropathological onset. Addressing the impact of risk factors on brain networks holds promises for early 
detection, prevention, and revealing putative therapeutic targets at preclinical stages. We utilized six mouse 
models to investigate the impact of factors, including APOE genotype, age, sex, immunity, and diet, on brain 
networks. Large structural connectomes were derived from high resolution compressed sensing diffusion MRI. 
A highly parallelized graph classification identified subnetworks associated with unique risk factors, revealing 
their network fingerprints, and a common network composed of 63 connections with shared vulnerability to all 
risk factors. APOE genotype specific immune signatures support the design of interventions tailored to risk 
profiles. 
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Introduction 
 
Late onset Alzheimer’s disease (LOAD) is a complex neurodegenerative disease affecting >13% of people over 
75 [1]. In the absence of a cure, a better understanding of risk factors is central to early detection, prevention, 
and unlocking the potential of early interventions. Age is the largest LOAD risk factor. Amongst risk genes, APOE 
has the strongest impact [2, 3] [4], the APOE2 allele being thought of as protective, APOE3 as neutral, and 
APOE4 conferring the greatest risk [5, 6]. It is however unclear how APOE4 interacts with age, immunity [7], 
metabolic status [8], and sex to increase vulnerability; females constitute 2/3 of LOAD patients [9]. Modifiable 
risk factors include a history of brain injuries, diabetes, hypertension, and obesity in middle age [10]. 
Understanding the unique role and interactions of risk factors can allow for early and more personalized 
interventions, novel targets, and preventive strategies for successful aging. 
Pathological changes may be present in the brain decades prior to AD clinical symptoms [11], thus identifying 
subjects at risk, and early biomarkers can significantly increase the efficacy of interventions. Brain networks, or 
connectomes, can inform on disease etiology, progression, and response to treatments in humans [12-14], and 
animal models [15-18]. Connectome properties are preserved across species, providing a translational bridge 
between preclinical and clinical studies [19, 20]. Understanding the dynamics of the connectome in relation to 
genetic and other risk factors is of great interest [21, 22], yet most studies have examined one risk factor at a 
time. While AD is highly heterogeneous, mouse models offer the ability to control both genetics and environment, 
including exposure to modifiable risk factors. Revealing their impact on connectomes may identify vulnerable 
regions and circuits, to help disentangle disease heterogeneity [23].  
Mice provide tools to study the interaction of AD risk factors along the life span, since they age faster than 
humans; and replicate the main functional networks in the human brain, e.g. the default mode network [24]. To 
reveal changes in functional and structural networks before disease onset Chen and colleagues [25] compared 
elderly APOE4 and non-APOE4 carriers with normal cognition, showing lower global efficiency, and functional 
connectivity loss in medial temporal areas in APOE4 carriers. The parahippocampal gyrus had functional and 
structural damage, and its efficiency mediated the APOE4 effect on memory. In mice, APOE4 and APOE-KO 
genotypes affected functional connectivity independently of age, which was lower for the auditory, motor, 
somatosensory and hippocampal areas, with APOE-KO accelerating decline in motor, visual and retro splenial 
cortices [26, 27]. Most research has addressed functional networks, but investigating structural networks and 
the interplay between these two can provide novel insight. For example, reduced functional and structural 
coupling has been observed in sensory motor regions during aging, but was preserved for areas of higher 
cognitive function [28]. LOAD causes aberrant structural connectivity in the prefrontal areas, and temporal pole 
[21], accompanied by functional changes in the prefrontal, cingulate [29], and temporal cortices [30]. The 
literature is less clear on the ability to detect vulnerable networks before symptoms onset [31].  
Here we examined the impact of fixed and modifiable risk factors, and their interactions, revealing how they 
converge onto on a small number of vulnerable networks, in mouse models of aging, expressing human APOE 
alleles. We also evaluated the impact of humanized innate immunity, by replacing the mouse mNos2 gene with 
the human NOS2 gene, reducing the levels of nitric oxide (NO) production to provide a more similar redox activity 
to humans [32]. We sought to understand how APOE interacts with age, sex, diet and immunity to confer 
vulnerability to brain networks estimated from diffusion MRI. MRI was accelerated 8 times by the use of 
compressed sensing, allowing us to reconstruct diffusion images at 45 µm resolution, segment 332 brain regions 
[33] [34], and reconstruct connections based on tractography. Connectomes were tested using graph based 
approaches to estimate risk associated network fingerprints [35], and provide confidence bounds [36]. Figure 
1A shows a schematic of our approach to reveal networks vulnerable to unique and multiple interacting LOAD 
risk factors. 
We hypothesized that module hubs for the default mode and lateral cortical networks [37], including the anterior 
cingulate and frontal association cortices, are also candidates for structural networks. Candidate hubs include 
the dorsal hippocampus (hippocampus module), accumbens and olfactory nuclei (basal ganglia), pons/ventral 
subiculum (ventral midbrain), and centromedial thalamic nuclei (thalamus module). The temporal association 
cortex, cerebellar nuclei and pons are also candidates, since they serve as connector hubs, with high connectivity 
between modules [38]. Figure1 B illustrates network regions hypothesized to be susceptible to fixed and 
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modifiable risk factors. Our study aims to reveal networks vulnerable to specific risk factors, and shared networks 
vulnerable to multiple risk factors. Such information may be valuable in providing sensitive circuit targets for 
preventive or pharmaceutical interventions. 
 
 
Results 
 
To understand how risk factors impact connectomes to increase susceptibility to LOAD, we first examined global 
effects through topological network parameters, followed by local impact to determine the network fingerprints 
for each distinct risk factor, and finally determined common vulnerable networks shared by all risk traits.  
 
Group-level Differences in Network Parameters Differentiate with LOAD Risk Factors Exploratory analysis 
revealed global differences for key network parameters, e.g. eigenvector centrality, betweenness centrality, 
global efficiency, local efficiency, average clustering, shortest path length, and degree Pearson correlation 
(Table 1). Aging (comparing above and below median age) was associated with significant differences in 
eigenvector/betweenness centrality, local efficiency, average clustering, and shortest path length, suggesting 
extensive differences in connectivity, information flow, and resilience. No significant effect was found for different 
diets. Local efficiency and shortest path length varied with sex, suggesting innate differences in resilience and 
information flow. All measures except local efficiency and degree Pearson correlation were significantly different 
when altering innate immunity (comparing mNOS and hNOS), indicating strong differences in connectivity, 
information flow, and resilience. All pairwise APOE allelic comparisons had significant differences in eigenvector 
and/or betweenness centrality, suggesting strong differences in connectivity. Average clustering was significant 
only for APOE2/APOE3. The degree Pearson coefficient was only significant for APOE genotypes, i.e. for 
APOE2/APOE3, and APOE2/APOE4, highlighting variations in network assortativity for the APOE2 genotype. 
 
Vulnerable Networks Associated with Individual LOAD Risk Factors  
We identified subgraphs associated with risk factors such as APOE genotype, age, sex, diet, and immune 
background (Figure 2, Dataset S1), discriminating amongst mouse models with different levels of each trait. To 
aid with interpretability, we retained the highest ranked 50 pairwise connections (edges) within each high 
selection probability (HSP) subnetwork, noting that the same false selection bounds still apply to this 
subpopulation of edges. 
 
APOE2/APOE3: We hypothesized AD vulnerability increases from APOE2 to APOE3 to APOE 4. Comparing 
the neuroprotective APOE2 allele to the neutral APOE3 resulted in 273 connections or edges, with <8 false 
selections. The most significant subnetwork (BIC 107.4) included 7 regions: the dorsolateral orbital cortex, 
caudomedial and dorsolateral entorhinal cortex, insula, ectorhinal cortex, parasubiculum, and perirhinal cortex.  
Interestingly, weights were higher for the left hemisphere, yet contralateral nodes were also represented in the 
subgraph. The next ranked subnetwork (BIC=126.5) included 16 regions, i.e. the entorhinal cortex (dorsolateral 
and intermediate), bilateral piriform cortex and amygdala (posterior cortical amygdaloid nucleus, basolateral, rest 
of amygdala), hippocampus, parasubiculum, accumbens and striatum; and the white matter of the anterior 
commissure (Left, or L), corpus callosum (Right, or R), and optic tracts (R). The 3rd ranked network (BIC=131.3) 
included the preoptic telencephalon, striatum and amygdala. Alterations were observed in subnetworks of the 
limbic system, and in brain regions related to executive function, memory and sleep, as well as in 
interhemispheric connections. 
 
APOE3/APOE4: Since APOE4 is the most significant genetic risk for AD, we compared APOE4 carriers relative 
to the control APOE3 allele, and identified a vulnerable graph comprising 773 edges with <40 false selections. 
Massive networks with looser false selection bounds were observed. The two highest ranked networks included 
connections between left frontal association cortex and primary motor cortex (M1) (BIC=147.5); and between 
visual cortex and corpus callosum (BIC=148.8). Subsequent ranked subnetworks involved the brain stem, 
giganotocellular nucleus, trigeminal and tectospinal tracts, the periaqueductal gray and superior colliculus. A 
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large subgraph (33 regions) included the insula, lateral orbital cortex, entorhinal and piriform cortex, 
parasubiculum, hippocampus, striatum, amygdala, accumbens, and cerebellum, as well as V1, medial geniculate 
and cerebellar peduncle, preoptic telencephalon and septum (BIC=156.9). Thus, in addition to executive function 
and memory networks, observed when comparing APOE2 versus APOE3, a sensorimotor component was 
revealed between APOE3 and APOE4, as a potential biomarker. 
 
APOE2/APOE4: We compared the protective versus the high risk APOE allele and identified 204 edges with <4 
false selections, the sparsest subgraph of the pairwise APOE genotype comparisons. The highest ranked 
subnetwork comprised 21 regions (BIC=104.8), including the frontal association cortex, insula, ventral orbital 
cortex, entorhinal cortex, piriform cortex, septum, parasubiculum and hippocampus, ventral thalamus, striatum, 
globus pallidus, accumbens, and superior colliculus. The 2nd subnetwork included the frontal association cortex, 
frontal cortex area 3, the entorhinal cortex, piriform cortex, amygdala, and amygdala-piriform transition area, 
preoptic telencephalon and anterior commissure. The third network included the primary somatosensory cortex 
(S1, forelimb area), M1, and M2. Subnetworks involved in executive function, memory, as well as sensorimotor 
areas, sleep, and reward processes, were identified in this fingerprint. 
 
Age: Since age is the largest risk for AD, we compared animals below and above the median age of 16 months, 
which corresponds to late middle age, and obtained 300 high selection edges with <5 false selections. The top 
50 edges included interhemispheric periaqueductal gray connections, involved in responses to threatening 
stimuli (BIC=211.2); the spinal trigeminal and gigantocellular reticular nuclei (BIC=213.8); the temporal and 
frontal association cortices, S1, secondary auditory cortex, ectorhinal and perirhinal cortex (BIC=239.4). Thus, 
age impacted circuits involved in executive, sensory and motor functions, and in the response to stressors. We 
also observed changes to subnetworks including the hypothalamus, S1, S2, V1, and the pons. The largest high 
selection probability (HSP) subnetwork included 31 regions, e.g. the frontal and temporal association cortex, 
ventral orbital cortex, S1, S2, entorhinal and piriform cortices, amygdala, accumbens, globus pallidus and 
striatum, as well as the cerebellum gray, and white matter. Other connections involved the anterior commissure, 
lateral olfactory tract, trigeminal nerve, and corpus callosum. Unsurprisingly, age influenced a large portion of 
the brain connectome.   
 
Sex. Because females constitute 2/3 of AD patients, we compared female to male connectomes, and obtained 
540 high selection probability edges with <7 false selections. The top subgraph (BIC=201.4) included the reticular 
nuclei (parvicellular, principal sensory trigeminal, intermediate), gigantocellular, medial longitudinal fasciculus, 
tectospinal tract. The 2nd and 3rd subgraphs (BIC=203.2 and 213.5, respectively) included the right (2nd subgraph) 
and left (3rd subgraph) thalamus, ventral and reticular nuclei, internal capsule, and striatum.  The corpus callosum 
was also part of the 2nd subgraph. The 4th network (BIC=215.5) included the entorhinal cortex, parasubiculum, 
hippocampus and cerebellum; and the 8th included the preoptic telencephalon, amygdala and hypothalamus. 
The hypothalamus influences energy balance and metabolism, and the gigantocellular component supports 
differences in recovery after injury [39].  
 
Diet: Since diet can significantly impact brain milieu, e.g. providing nutrients, modulating glucose metabolism, 
oxidative stress, inflammation, and insulin signaling, we compared the impact of a high fat versus regular diet 
and identified 1626 high selection probability edges with <31 false selections. The top subgraph (BIC=193.5) 
included the caudomedial entorhinal cortex, hippocampus, amygdala, reticular nucleus of thalamus, 
periaqueductal gray, superior colliculus, cerebellar cortex, and primary visual cortex (V1). The 2nd subgraph 
(BIC=200.25) included the insula, piriform, lateral orbital and dorsolateral entorhinal cortex, septum, preoptic 
telencephalon, striatum and the lateral olfactory tract. The 3rd and 4th graphs related the olivary complex with the 
brain stem rest (BIC=201.5, 204.5). The auditory and temporal association cortices were also present in top 
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subnetworks.  Diet impacted circuits involved in sensory processing, reward and motor control, emotion 
regulation, response to stress and inflammation, and memory. 
 
mNos/hNOS: Since immune alterations have been associated with AD, we performed a comparison of high 
versus lower NOS production (moving from mNos to hNOS) and identified 411 edges with <9 false selections. 
The top subgraph (BIC=165.3) was composed of 32 regions, including the secondary auditory cortex, 
somatosensory cortex and motor cortex, as well as the frontal association cortex, perirhinal and entorhinal 
cortices, parasubiculum, hippocampus, hypothalamus, thalamus, superior colliculus, striatum, globus pallidus, 
preoptic telencephalon, gigantocellular reticular nuclei, periaqueductal gray, areas of the brain stem, plus tracts 
i.e. the corpus callosum, spinocerebellar, tectospinal, medial longitudinal fasciculus. The 2nd subgraph 
(BIC=171.8) included the piriform cortex, septum, accumbens, amygdala, fimbria, and the olfactory tract. 
Interestingly the 3rd and 4th networks included the cerebellar fastigial nucleus and white matter. The insula and 
entorhinal cortex were found in the next ranked subgraph (BIC=216.8). The pontine reticular nuclei and dorsal 
tegmentum were also present in the top ranked subnetworks. Thus, we identified extensive networks that interact 
with immune mechanisms, influencing and being influenced by neuroinflammation and immune responses. 
 
Validation of Vulnerable Networks Associated with Individual Risk Factors for LOAD 
High selection probability networks were validated by predicting each trait using only edges in the selected 
network. The areas under the curve (AUC) across 10 train split tests were: 0.96±0.03 for sex; 0.95±0.02 for 
immunity (mNos/hNOS), 0.90±0.03 for age, 0.860±02 for diet; 0.92±0.03 for APOE2 vs APOE3, 0.87±0.03 for 
APOE2 vs APOE4, 0.87±0.04 for APOE3 vs APOE4 (Figure 2). Thus, all models performed very well, despite 
the extreme sparsity of the selected networks  
 
Brain Networks with Shared Vulnerability Across Risk Factors for LOAD  
To reveal vulnerable networks associated with multiple risk factors, we pooled the independent analyses and 
retained the top 50 edges ranked by cumulative weight across all the HSP networks (Figure 3A and C, Dataset 
S2). 
 
APOE Genotype: 110 edges were sensitive to variation in APOE genotype for all paired comparisons. The 
largest subnetwork involved 25 regions, including the bilateral dorsal intermediate entorhinal cortex, 
posterolateral amygdaloid area, piriform cortex, hippocampus, amygdala, striatum, preoptic telencephalon, and 
anterior commissure. The visual cortex, accumbens, superior colliculus, medial geniculate and septum were also 
part of this large subnetwork. Interhemispheric tracts e.g. the corpus callosum, optic and olfactory tracts emerged 
as important. The 2nd network involved the caudomedial and dorsolateral entorhinal cortex, parasubiculum, and 
perirhinal cortex. The 3rd network included the contralateral components for the first 3 regions and the cerebellar 
cortex. Among the remaining subnetworks we noted the frontal association cortex, interhemispheric 
hypothalamic and ventral thalamic connections, S1, and S2, M1, insula, ectorhinal cortex, and periaqueductal 
gray. The gigantocellular reticular nuclei and tectospinal tract were amongst the top 13 subnetworks. Thus, the 
APOE sensitive networks included regions vulnerable in AD, and a set of regions with roles in integrating 
information and orchestrating cognitive, emotional, behavioral responses, sensory and motor control.  
 
Age and APOE Genotype: 239 edges were common for the risk factors represented by age and APOE4 versus 
APOE3 allele carriage. The top subnetwork involved 24 regions, 6 unique to the left hemisphere, and 2 unique 
to the right hemisphere. The 8 nodes with bilateral presence included the lateral orbital cortex, the dorsal 
intermediate and caudomedial entorhinal cortex, piriform, accumbens, cerebellar cortex, lateral olfactory tract 
and anterior commissure. The nodes present only in the left hemisphere included the dorsolateral entorhinal 
cortex, S1 (barrel field), insula, amygdala, hippocampus, striatum; the nodes only present in the right hemisphere 
included the medial entorhinal cortex, and cerebellar white matter. The 2nd subnetwork included the right septum, 
hippocampus, striatum, S2, V1, and corpus callosum. The 3rd subnetwork included the frontal association cortex, 
insula, S1, M1, ectorhinal cortex. We noted the presence of the temporal association cortex, hypothalamus and 
preoptic telencephalon, visual and auditory cortices, periaqueductal gray, gigantocellular nucleus, tectospinal 
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tract. While we recognized the presence of top subnetworks including regions responsible for APOE genotype 
differences, we also noted an additional cerebellar component. 
 
Age, Sex, and Diet: 197 edges were common for the risk factors represented by age, sex and diet. The top 
larges subnetwork comprised 19 regions, including the bilateral cerebellar cortex, right hippocampus, entorhinal 
cortex, amygdala, piriform, parasubiculum, amygdala, lateral olfactory tract, right striatum, reticular thalamic 
nuclei, temporal association cortex, insula, and auditory cortex. The 2nd subnetwork included contralateral 
components, i.e. left entorhinal cortex, amygdala, piriform, parasubiculum, amygdala, lateral olfactory tract. The 
3rd subnetwork included 6 regions in the left hemisphere, i.e. the frontal association cortex, S1, S2, M1, lateral 
orbital cortex, and insula. We noted the hypothalamus, septum and fimbria, periaqueductal gray, gigantocellular 
nuclei, and contralateral components for regions in the top subnetworks. Thus memory, sensory, emotion, and 
motor circuits, were identified as networks with shared vulnerability to these three risk factors.  
 
APOE Genotype Specific Vulnerability to Immune Perturbations  
We examined APOE genotype specific connectome fingerprints associated with the manipulation of the innate 
immune system. For the APOE2 versus APOE2HN comparison we obtained 265 HSP with upper bound of 185 
false discoveries; for APOE3 versus APOE3HN we obtained 47 HSP with less than 3 false discoveries; for 
APOE4 versus APOE4HN we obtained 1091 HSP with less than 598 false discoveries. Larger networks and 
numbers of regions were found in APOE4 (61 regions) relative to APOE2 (39 regions) and APOE3 mice (40 
regions). The innate immune changes affected memory networks, and regions changing early in AD for all 
genotypes, such as the entorhinal and temporal association cortex; as well as the ventral orbital, ectorhinal and 
perirhinal cortex, secondary somatosensory cortex (S2) and gigantocellular nucleus, and the auditory cortex. 
However, APOE3 had almost neutral effects for connections within the entorhinal cortex, APOE2 mice had 
negative and APOE4 mice had positive weights associated with connections within the entorhinal cortex (black 
arrows in Figure 3B) between Caudal to Dorsal Entorhinal cortex). Upon examining the top 50 edges we noted 
that APOE2 mice spared the corpus callosum, APOE3 mice had changes in the cingulate cortex and corpus 
callosum, and APOE4 mice had changes in the callosum-hippocampus connectivity, bilaterally, but with a 
stronger weight for the left hemisphere.  
 
Common Edges: 63 edges, constituting 12 subnetworks, were common for age, sex, APOE genotype, HN 
genotype, and diet (Figure 3C shows the top subnetworks, ranked by weight). The top subnetwork included 29 
regions, e.g. bilateral entorhinal cortex, hippocampus, amygdala, striatum, piriform cortex, and the anterior 
commissure and corpus callosum;  the left ventral orbital cortex, V1, S2, accumbens, perirhinal cortex; and right 
parasubiculum and lateral orbital cortex. The 2nd subnetwork included interhemispheric thalamic connections. 
The 3rd network included hypothalamus, preoptic telencephalon connections. The other subgraphs included 
frontal association cortex, insula, S1 and M, septum, fimbria, temporal association areas, auditory cortex, fimbria, 
olfactory and optic tracts. The periaqueductal gray and superior colliculus were also present, as well as 
gigantocellular reticular nucleus. Thus, a small set of edges (0.11 % of the total 54946 edges in the mouse brain 
connectomes) were common to all the risk factors.  
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Discussion  
 
Our study leveraged mouse models to reveal network fingerprints associated with LOAD risk factors i.e. APOE 
genotype, age, sex, and innate immunity. The most frequent differences (3 of the 6 comparisons) were observed 
for eigenvector centrality describing the influence of nodes on a network, betweenness centrality describing the 
importance of a node in controlling the information flow within a network, clustering coefficient which measures 
the degree to which neighboring nodes aggregate, i.e. local connectivity, and shortest path length related to 
global integration. Two comparisons were significant for local efficiency (the inverse of the shortest path length 
for all neighbors of a node), and assortativity. Our results support that in addition to age, immunity strongly 
impacts connectivity, information flow, and network resilience; and APOE and sex impact networks architecture 
in the absence of AD pathology.   
We obtained mainly symmetrical networks, although weights appeared generally higher for the left hemisphere. 
When comparing APOE genotypes, the largest networks, and highest number of selection probability edges 
were detected when comparing APOE3 to APOE4 mice, i.e. 1.4 % of the total number of connections or edges 
in a connectome, followed by 0.5% for APOE2 versus APOE3, and 0.4% for APOE2 versus APOE4. Surprisingly, 
APOE2 connectomes were more similar to APOE4 connectomes, which is in agreement with a similarity in spatial 
navigation strategies of APOE2 and APOE4 mice [40].  APOE2 versus APOE3 differences involved the lateral 
orbital cortex, entorhinal and perirhinal cortex. Besides regions involved in executive function and memory, the 
APOE3 versus APOE4 comparison emphasized the role of sensory and motor areas including vision, taste, and 
pain (insula, periaqueductal gray). Sensory and motor associated regions differed in asymptomatic APOE4 
carriers relative to APOE3 carriers [41]. Here we also observed connectivity differences for the cerebellum, well-
known for its role in movement control, and emerging as important in language, learning and memory function 
[42]. Our results also support a significant role for the basal ganglia and amygdala connectivity, involved in 
affective memory. 
We identified the largest networks for diet, followed by sex, immunity, and age. The large number of impacted 
edges for diet (1626) is likely the consequence of it being an intervention, whereas the low number for age (~300) 
reflects healthy aging. Similar to humans [43], mouse networks changed with aging, which impacted association, 
motor and sensory circuits, e.g. olfactory, the basal ganglia and cerebellum.  
Our results help understanding sex specific vulnerability [44], as this network fingerprint pointed to sexually 
dimorphic regions i.e. the basal ganglia, hypothalamus (48[45], hippocampus, and amygdala [46]. Memory 
related circuits (including the entorhinal cortex, hippocampus, septum and fimbria [47] [48], were supplemented 
with cerebellum and gigantocellular  nuclei circuits, suggesting differences in locomotor recovery after injury[39] 
[49]. 
Diet impacted networks involved in appetite control, e.g. insula and hypothalamus [50] [51] [52], which was also 
impacted by immune differences. The hypothalamus triggers inflammatory responses following a high-fat diet, 
which have downstream effects on synaptic plasticity, neurogenesis and neuromodulation [53]. The finding of 
visual, auditory and cerebellar regions corroborate human studies showing changes in somatomotor, and visual 
areas, and suggest diet impacts memory (entorhinal cortex, and hippocampus) [54], and attention 
(parahippocampal gyrus) networks, possibly accelerating brain aging [55].  
The immune network fingerprint emphasized a role for reticular nuclei, which may act either through autonomic 
modulation, or indirectly on the hypothalamus. The corpus callosum, piriform cortex and amygdala were 
impacted across all APOE genotypes. Within genotype comparisons consistently converged onto memory and 
sensory networks, including S2, and the auditory cortex. Significantly larger networks were observed for APOE4, 
relative to APOE2 and APOE3, suggesting increased sensitivity to immune perturbations for APOE4 genotypes. 
The interactions of APOE with aging impacted large limbic circuits (hippocampus, entorhinal cortex, amygdala), 
interacting with sensory and motor areas, the reward system (insula, accumbens, lateral orbital cortex, striatum), 
association cortices; and impacted anterior commissure and olfactory tract circuitry.  Our results parallel human 
studies showing that APOE4 carriers had accelerated structural connectivity loss in the inferior temporal, medial 
and lateral orbital cortex [56], and support that olfaction may provide early markers of risk for accelerated aging, 
and the need for further probing the specific role of the highly connected cerebellum in AD [57].  
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Common networks for age, sex and diet included S1, S2, M1, lateral orbital and entorhinal cortex, insula, septum, 
amygdala and hypothalamus, fimbria and olfactory tract, in agreement with aging human functional 
connectomes, and faster cortical thinning in aging, e.g. the temporal and sensory-motor areas. Our study 
identified the auditory cortex, while the human study identified the visual cortex, however this only accounted for 
aging but not sex and diet associated vulnerability.  
The network with shared vulnerability for all risk factors consisted of only 63 edges, and 12 subnetworks, and 
supported a role for the orbitofrontal cortex, association cortices, insula, S1, M1, auditory cortex, and cerebellum 
in addition to well-known AD vulnerable regions, and their connections. These results underline the importance 
of early sensory motor markers in AD.  
Most preclinical MRI studies have examined functional brain networks in models of familial AD, thus in the 
presence of AD pathology. The 5xFAD mouse has lower clustering coefficients, small worldness, and modularity 
in functional networks including: the hypothalamus, superior colliculi; amygdala, brainstem, central gray, 
cerebellum, pallidum, hippocampus, inferior colliculus, neocortex, olfactory, midbrain, basal forebrain/septum, 
thalamus [19]. In models of genetic risk for LOAD, APOE4 as well as APOE-KO genotypes had different 
functional connectivity independently of age, in particular for the auditory, motor, somatosensory and 
hippocampal area, and APOE-KO mice had faster decline in motor, visual and retro splenial cortices [26, 27]. 
How AD risk impacts structural mouse brain networks has been less studied, but the strong link between 
structural and functional connectomes led to many of the regions detected by our structural analyses to appear 
as critical for predicting functional alterations in networks containing these nodes. 
Our study adds a structural, fine grained anatomical substrate to support previously reported alterations of mouse 
functional networks, including the default mode network, the lateral cortical network, hippocampus, basal 
forebrain, ventral midbrain, and thalamus [58]. While it has been shown that aging differentially affected these 
networks [38], the effect of multiple risk factors has been insufficiently addressed. We revealed alterations in 
structures involved in the default mode network, salience network and executive control network that are likely 
to impact memory retrieval, and executive function in the absence of pathology, in models of preclinical AD. This 
supports the importance of preclinical human studies in populations at risk. Our findings of impacted sensory 
networks suggest potential early biomarkers based on auditory, olfactory, and sensory motor tests. 
Targeted replacement APOE mice have differences in behavior, cerebral perfusion and functional connectivity 
[59], [60] [3] [61]. The hNOS2 gene has been linked to oxidative processes, DNA repair, and mitochondrial 
activity, altering TNFα and CCR1 mRNA expression [62, 63]; our study shows that immune changes affect brain 
networks in an APOE dependent fashion. 
Our study has limitations since mouse models do not fully replicate the complexity of human AD, however they 
provide a uniform genetic background and control over risk factors; enabling smaller studies to reveal 
mechanistic insight into disease etiology, and testing the ability to curb its evolution, through interventions such 
as diet or exercise, in a causal connectomic approach.  
Our method provides stable network estimates with bounds for false discoveries, carefully controlling for multiple 
comparisons. The false discovery rate bounds hold under general conditions, and remain valid for subsets of 
selected edges. The comparison of the APOE4 high-risk genotype, to the neutral APOE3 genotype revealed 
vulnerable networks; while that of the protective APOE2 to the neutral APOE3 revealed potentially resilient 
networks. We showed that immunity impacted memory and sensory networks, but future studies including more 
animals shall further assess genotype specific differences. We identified most candidate regions hypothesized 
to change with AD risk, with the exception of the cingulate cortex, only present in one of the comparisons. The 
small size of cingulate cortex subdivisions likely influenced our ability to detect changes, and this could be 
improved by using a hierarchical parcellation scheme. 
Our results revealed network fingerprints for unique AD risk factors, and provided insight into networks with 
shared vulnerabilities to multiple risk factors. These networks may provide the substrates underlying functional 
network alterations, but at higher anatomical granularity than fMRI. Further mechanistic studies may reveal 
metabolic and omic bases for structural networks. Our results provide motivation for exploring structural networks 
as early neurodegeneration markers, to enable designing more targeted interventions to delay onset or 
progression of AD.  
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Materials and Methods 
 
Animals 
Animal procedures were approved by the Duke Institutional Animal Care and Use Committee. To model genetic 
risk for LOAD, we used mice lacking the mouse Apoe gene, and homozygous for the three major human APOE 
alleles [64, 65]: the high-risk gene APOE4, the control APOE3 and the protective APOE2 allele. These lines 
were crossed with mice where the mouse Nos2 gene has been replaced with the human NOS2 gene 
(HuNOS2tg/mNos2-/- mice, termed HN) [62, 63]. This modification addresses, in part, the differences between 
the human and mouse inflammatory responses, where human, in contrast to mouse macrophages, express little 
NOS2, and generate much less NO in response to inflammatory stimuli [66]. Introducing the human NOS2 gene 
changes redox balances to better mimic those in the human brain. Removing the mNos2 gene, and introducing 
the human NOS2 gene lowers the amounts of NO produced, and brings the mouse immune/redox activity more 
in tune with the human redox activity, which promotes AD pathologies [62]. Animals were bred as homozygous 
for each of the APOE alleles, either to completely lack the mNos2 and to express hNOS2, or on a mNos2 
background. Both males and females were included, for a total of 173 mice; aged from 13 to 20 months. Of the 
59 APOE2 mice, 28/31 were male/female, 15/44 were control/high fat diet, 36/23 were above/below median age, 
25/34 were HN/mNOS2; of the 58 APOE3 mice, 28/30 were male/female, 26/32 were control/high fat diet, 27/31 
were above/below median age, 23/35 were HN/mNOS2; of the 58 APOE4 mice, 29/29 were male/female, 16/42 
were control/high fat diet, 33/25 were above/below median age, and 20/28 were HN/mNOS2. 
Thus animals were homozygous for each of the APOE alleles, and either expressing the mNos2 or completely 
lacking the mNos2 and expressing hNOS2. Both males and females were included, for a total of 173 mice; aged 
from 13 to 20 months of age, the median age was 16.2 months. These animals were aged naturally, either on a 
regular chow (2001 Lab Diet) for the whole duration, or switched for 4 months prior to imaging to a high fat diet 
(D12451i, Research Diets).  
These animals were aged naturally, either on a regular chow (2001 Lab Diet) for their whole life duration, or 
switched for 4 months prior to imaging to a high fat diet (D12451i, Research Diets) containing 45 kcal % fat (39 
kcal % from lard; 5 kcal % from oil), 35 kcal % carb (17 kcal % sucrose), and 20 kcal % protein for ~4 months. 
Control diet animals received 13.6 kcal % fat, 57.5 kcal carb (3.25 sucrose), and 28.9 kcal % protein throughout 
their life span. Animals had free access to food and water. The means of each age category were 14.60±1.13 
months, and 19.35±1.59 respectively; while the median age was 16.2 months. Animals were sacrificed during a 
transcardiac perfusion fixation under surgical plane anesthesia with 100 mg/Kg ketamine and 10 mg/Kg xylazine, 
before being perfused through the left cardiac ventricle, with outflow from the right atrium. Saline (0.9%) was 
used to flush out the blood, at a rate of 8 ml/min for ∼5 min. For fixation we used a 10% solution of neutral 
buffered formalin phosphate containing 10% (50 mM) Gadoteridol (ProHance, Bracco Diagnostics Inc., Monroe 
Township, NJ, United States), at a rate of 8 ml/min for ∼5 min. Gadoteridol reduced the spin lattice relaxation 
time (T1) of tissue to ∼100 ms, enabling rapid imaging. Mouse heads were trimmed of extraneous tissue, and 
stored in 10% formalin for 12 h, then transferred to a 0.01 M solution of phosphate buffered saline (PBS) 
containing 0.5% (2.5 mM) Gadoteridol, at 4°C for ∼30 days to rehydrate the tissue. Specimens were placed in 
MRI-compatible tubes, immersed in perfluoropolyether (Galden Pro, Solvay, NJ, United States) for susceptibility 
matching. Specimens were left inside the skull to preserve tissue integrity and shape, but extraneous muscle 
tissue and the lower jaw were removed to allow close positioning in a tight-fitting solenoid coil. 
 
Image Acquisition and Processing 
 
Diffusion weighted MRI was done using a 9.4T high field MRI, with a 3D SE sequence with TR/TE: 100 ms/14.2 ms; matrix: 
420 × 256 × 256; FOV: 18.9 mm × 11.5 mm × 11.5 mm, 45 μm isotropic resolution, BW 62.5 kHz; using 46 diffusion 
directions, 2 diffusion shells (23 at 2,000, and 23 at 4,000 s/mm2); 5 non-diffusion weighted (b0), as in [40]. The max diffusion 
pulse amplitude was 130.57 Gauss/cm; duration 4 ms; separation 6 ms, eightfold compressed-sensing acceleration [67] 
[68]. Diffusion tensor properties such as fractional anisotropy, orientation distribution functions, and tractograms were 
reconstructed and SIFT filtered using MRtrix3, which was also used for calculating connectomes [69]. We used the SAMBA 
pipeline implemented in a high-performance computing environment to segment the brain in 332 regions[70], to reconstruct 
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connectomes as adjacency matrices, where each entry represented the number of streamlines connecting a pair of brain 
regions. The symmetrized mouse brain atlas used by SAMBA to produce anatomical parcellations is available from  
https://zenodo.org/records/10652239 [68], and the list of brain regions, abbreviations, and indices is provided in Dataset 
S3.  
 
Exploratory Network Analysis 
As a first step we performed an exploratory data analysis to assess global differences for key network parameters 
in relation to AD risk traits. These parameters included eigenvector centrality, betweenness centrality, global 
efficiency, local efficiency, average clustering, shortest path length, and degree Pearson correlation, calculated 
using NetworkX (https://networkx.org/). Eigenvector centrality is a relative score measuring the influence of a 
node; nodes gain influence by being connected to other influential nodes. Betweenness centrality is a node 
specific measure counting the number of shortest paths in the graph that pass through a node, and illustrates 
the nodes control over the network. Global efficiency summarizes the average inverse distance between nodes 
in a graph. Conversely, local efficiency is a measure of the average inverse distance between a node and its 
neighbors. The shortest path length between a pair of nodes reflects efficiency of information transfer. Finally, 
assortativity is Pearson correlation between the degrees of connected nodes (weighted sum of edges), and 
illustrates the dependency of neighboring nodes. Node specific measures in each brain were averaged to 
produce mouse specific summaries of connectivity. These measures provided a broad overview of structural 
variation in connectomes [71]. A t-test was used to detect differences in the summary statistics across risk trait 
levels, and controlled for false discoveries based on adjusted p-values (FDR =0.05). It is possible to identify 
subnetworks which vary across groups using node-to-node comparisons, but this approach does not share 
information across nodes and requires many comparisons, reducing efficiency. In addition, the identified 
networks are sensitive to the graph metrics used, with no clear optimal choice. For these reasons, we preferred 
a sparse network classification model. 
 
Sparse Network Regression 
To reveal group differences between APOE2/APOE3, APOE3/APOE4, APOE2/APOE4, mNos/hNOS, 
below/above median age, female/male, and regular/high-fat diet, we fit a GraphClass [36] sparse logistic 
regression model to each group. Logistic regression models the probability that a mouse is in one group (e.g., 
below median age) over another (e.g., above median age) using the vectorized brain connectomes. The 
probability is obtained by (1) multiplying each edge in the connectome by a coefficient, (2) summing the weighted 
edges, and (3) transforming this number to be between 0 and 1 so it is a valid probability. Coefficients which 
best explain the data are estimated via maximum likelihood. Due to the high dimensional nature of the 
connectomes, it is difficult to interpret the many coefficients. Consequently, we used a sparse model, which 
penalizes nonzero coefficients and dramatically reduces the number of parameters to visualize.  
GraphClass [36] is one implementation of sparse logistic regression which takes advantage of the brain network 
structure to produce more interpretable results, that is subnetworks that are predictive of each trait. The goal is 
to estimate the coefficient matrix which best explains the data; by maximizing the likelihood of the observed data. 
No additional thresholding of coefficients is required after fitting the model. 
Our sparse logistic regression models used the GraphClass double sparsity penalty defined in [36].  Let B be a 
332x332 symmetric matrix of coefficients, with bij the coefficient for the edge between regions i and j in a logistic 
regression model. Let 𝐵(") be the vth row (or column) of B, v=1,…,332. The GraphClass penalty is: 

𝜆 $𝜌‖𝐵‖$ +(‖𝐵(")‖%

&&%

"'$

) 

where 𝜆, 𝜌 > 0 are sparsity hyperparameters. The first term, ‖𝐵‖$, is the usual Lasso penalty and shrinks the 
coefficients of each edge towards zero. The second term, ‖𝐵(")‖%, penalizes the coefficients of all edges 
connected to region v. In practice, this effectively deletes entire regions from the connectome, resulting in sparser 
and more interpretable subnetworks. The penalized model is fit with the alternating direction method of multipliers 
(ADMM). Hyperparameters were selected via 10-fold cross-validation minimizing misclassification rate, and ties 
were broken by selecting the sparsest model. 
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Stability Selection 
A subnetwork selected by a single run of GraphClass may be unreliable due to noise in the data and high 
correlation between entries of the connectomes. Following [36], we used complimentary pairs stability selection 
(CPSS, [72]) to improve model robustness and reliability. CPSS is based on the intuition that important edges 
will be selected in a high fraction of repeated experiments (e.g., selecting new mice, reproducing the study, and 
fitting GraphClass), whereas less important edges will be selected in a low proportion of repeated experiments. 
The collection of high and low selection probability edges may be estimated via resampling. In CPSS, this entails 
(1) splitting the data into halves, (2) fitting GraphClass to each half, and (3) saving the selected (nonzero) 
coefficients from both models. This is repeated, and the proportion of times a coefficient was nonzero across all 
runs is used to estimate the true unknown selection probability of the corresponding edge. We define high 
selection probability (HSP) edges as those which appeared in >99% of runs. CPSS comes with theoretical upper 
bounds on the number of low selection probability edges (LSP) which are falsely labeled as HSP edges; this is 
a direct analogue of false discovery rate control. We used this procedure with defaults from Shah and Samworth  
[73] to identify small, reliable subnetworks with false-selection guarantees.  
 
Subnetwork Ranking 
To make the results more interpretable, we ranked the relative importance of connected components within each 
HSP network by comparing the Bayesian Information Criterion (BIC) of unpenalized logistic regression models 
predicting the trait using only the edges in a single connected component. BIC balances predictive performance 
and model complexity, allowing for fair comparisons between subnetworks of different sizes. We consider 
connected components with lower BIC to be more important for explaining a trait than those with higher BIC. 
 
Validation 
GraphClass and stability selection were used to produce robust subnetworks for predicting each of 
APOE2/APOE3, APOE3/APOE4, APOE2/APOE4, mNos/hNOS, below/above median age, female/male, and 
regular/high-fat diet. We validated these subnetworks using AUC/ROC. AUC/ROC was computed by fitting 
GraphClass regression on half of the samples, using only edges in the HSP subnetwork. This model was used 
to predict class labels for the other half of the samples. The entire procedure was repeated 10 times with different 
train/test splits. 
 
Common Networks 
We defined the shared high selection probability (HSP) network across multiple models as the intersection of 
the HSP networks for each model. For example, the shared networks across age and APOE3/APOE4 contain 
all the edges that are in the HSP network for age and also in the HSP network for APOE3/APOE4; edges that 
were only in the HSP network for age or only in the HSP network for APOE3/APOE4 were not included.  
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Table 1. FDR corrected p-values for t-tests comparing topological summary statistics (*p<0.05, 
**p<0.005). 
 
 Age Diet Sex mNos/hNOS APOE2-3 APOE2-4 APOE3-4 
Eigenvector 
centrality 

0.0017** 0.78 0.58 0.039* 1.8x10-5** 0.29 0.03* 

Betweenness 
centrality 

0.78 0.073 0.45 0.017* 2.9x10-7** 3.5x10-5** 0.073 

Global efficiency 0.20 0.69 0.38 0.0063* 0.24 0.75 0.36 
Local efficiency 0.044* 0.79 0.022* 0.38 0.20 0.72 0.36 
Average 
clustering 

0.0037** 0.10 0.31 2.0x10-6** 0.039* 0.75 0.20 

Degree 0.20 0.66 0.36 0.0056* 0.24 0.75 0.36 
Shortest 
path length 

0.0053* 0.40 0.022* 0.022* 0.9 0.24 0.14 

Degree Pearson 
correlation 

0.72 0.78 0.66 0.91 1.45x10-5** 0.0009** 0.38 
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Figure 1. The approach for detecting networks impacted by distinct AD risk factors (APOE genotype, 
age, immune factors, sex, and diet) comprises a data preprocessing and network analysis pipeline with 
model validation. We leveraged mouse models expressing various combinations of risk traits, imaged using 
compressed sensing diffusion weighted MRI. Brains were parcellated using atlas-based segmentation, which 
was combined with tractography to construct connnectomes; every entry in the connectome matrix represents 
the number of streamlines that connect each region pair. The analysis pipeline used the network summary 
statistics in an initial exploratory analysis, followed by graph class and validation of the resulting networks (A). 
The candidate networks hypothesized to change when varying the levels of risk traits included: the piriform cortex 
(Pir), hippocampus (Hc), hypothalamus (Hyp), orbital cortex (OrbitalCx), temporal association cortex (TeA), 
insula (Ins), amygdala (Amy), frontal association cortex (FrA), motor (M1, M2) and entorhinal cortex (Ent), 
accumbens (Acb), cingulate cortex (Cg), primary somatosensory cortex (S1), visual cortex (V1/V2), and 
cerebellum (Cblm).  
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Figure 2. Network fingerprints associated with APOE genotype, age, sex, diet and immunity, and their 
validation ROC curves. We noted a central role for the entorhinal cortex, parasubiculum, dorsolateral orbital 
cortex and insula for the APOE2/APOE3 comparison; the frontal association cortex, M1, and a large network 
including limbic regions, striatum and piriform cortex for APOE3/APOE4; the frontal association cortex, entorhinal 
cortex, parasubiculum, basal ganglia, insula for APOE2/APOE4. Age also impacted circuits including the 
entorhinal and piriform cortex, and also giganto cellular reticular nuclei. Sex differences impacted the 
hypothalamus and amygdala, and also the hippocampus, septum, and fimbria - linking sex vulnerability to 
memory function. Diet impacted the hippocampus, amygdala and entorhinal cortex, insula, accumbens, and 
olfactory areas. Immunity (HN presence) showed a role for the frontal association cortex, hypothalamus, piriform 
cortex and amygdala, and interhemispheric connections though the corpus callosum. Red denotes positive, blue 
denotes negative edge weights.  
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Figure 3. Common edges for vulnerable networks associated with multiple risk factors for LOAD, and 
their interactions (A). The immune changes due to HN affected similar networks in different APOE genotypes, 
including memory networks, with a strong entorhinal circuitry component, but also S2, the auditory cortex, insula 
and cerebellum. Relative to the neutral APOE3 allele, the connections within the entorhinal cortex (black arrows) 
in APOE2 mice had negative weights, while in APOE4 mice they had positive weights (Caudal to Dorsal 
Entorhinal cortex). Common networks with shared vulnerability for APOE genotype, age, sex, diet and immunity 
(C). 
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Figures and Tables Legends 
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