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Abstract 

Endocrine therapies targeting the estrogen receptor (ER/ESR1) are the cornerstone to treat ER-

positive breast cancers patients, but resistance often limits their effectiveness. Understanding the 

molecular mechanisms is thus key to optimize the existing drugs and to develop new ER-modulators. 

Notable progress has been made although the fragmented way data is reported has reduced their 

potential impact. Here, we introduce EstroGene2.0, an expanded database of its precursor 1.0 

version. EstroGene2.0 focusses on response and resistance to endocrine therapies in breast cancer 

models. Incorporating multi-omic profiling of 361 experiments from 212 studies across 28 cell lines, a 

user-friendly browser offers comprehensive data visualization and metadata mining capabilities 

(https://estrogeneii.web.app/). Taking advantage of the harmonized data collection, our follow-up 

meta-analysis revealed substantial diversity in response to different classes of ER-modulators 

including SERMs, SERDs, SERCA and LDD/PROTAC. Notably, endocrine resistant models exhibit a 

spectrum of transcriptomic alterations including a contra-directional shift in ER and interferon 

signaling, which is recapitulated clinically. Furthermore, dissecting multiple ESR1-mutant cell models 

revealed the different clinical relevance of genome-edited versus ectopic overexpression model 

engineering and identified high-confidence mutant-ER targets, such as NPY1R. These examples 

demonstrate how EstroGene2.0 helps investigate breast cancer's response to endocrine therapies 

and explore resistance mechanisms.  
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Introduction 

Breast cancer remains the most common cause of cancer-associated death among women and is 

responsible for nearly 15% of all new cancer cases each year in the United States (1). This disease 

presents as a heterogeneous entity, with various subtypes distinguished by unique molecular profiles, 

guiding different treatment strategies. Among these subtypes, estrogen receptor-positive (ER+) 

breast cancer, characterized by the presence of estrogen receptor (ER/ESR1), accounts for 

approximately 70% of cases (2,3). Not surprisingly, targeted therapies which directly inhibit the 

transcriptional activity of ER, or which block the synthesis of estrogens have and will continue to be 

the cornerstone of interventions used to treat this disease at all stages (4-6).  

 

The Selective Estrogen Receptor Modulators (SERMs), like tamoxifen, function as competitive 

inhibitors of estrogen binding to ER and also disrupt the integrity of the protein-protein interaction 

surfaces needed for coactivator recruitment (7). Tamoxifen is used in combination with GnRH 

analogues (to disrupt estrogen biosynthesis) in premenopausal women with ER-positive breast 

cancer (5). In postmenopausal women with this disease subtype, aromatase inhibitors (AIs), such as 

letrozole and anastrozole, which inhibit the peripheral conversion of androgens to estrogens are now 

the standard of care for frontline intervention (8). The classic models of ER-action suggest that a 

small molecule ligand (i.e. an estrogen) is required for the activation of the receptor. However, in 

cancer cells it has been shown that ER transcriptional activity can occur in a ligand independent 

manner secondary to the overexpression of certain coactivators (i.e. SRC3) or increased activity of 

signaling pathways which impinge upon the ER-coregulator complex (9).  Further dysregulated 

expression of the expression and/or activity of coregulators such as SRC3 can also have a profound 

effect on the pharmacology of ER-modulators (10,11). These mechanistic insights gave rise to the 

idea that elimination of ER as opposed to its inhibition may be a better approach in cancer.  

 

Emerging from these efforts was the first-generation SERD fulvestrant, whose clinical efficacy, albeit 

modest, validated the general approach of eliminating the receptor as a therapeutic approach (12). 

The first non-steroidal oral SERD, Etacstil, was developed over 25 years ago and although it 

demonstrated clinical efficacy its development was discontinued (13).  However, the lessons learned 

from studying this drug informed the discovery and development of the third generation SERDs, a 

large number of which have been evaluated in the clinic (6) . Also driving SERD development is the 

identification of constitutively active hotspot mutations like ESR1 Y537S and D538G (14,15), ESR1 

fusions which exhibit neomorphic transcriptional activities and the demonstration of ESR1 

amplification in some tumors (16) (17).  Elacestrant was the first SERD of this class of medicine to be 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2024. ; https://doi.org/10.1101/2024.06.28.601163doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.28.601163
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

FDA approved and is currently used in patients whose tumors harbor an activating ESR1 mutation 

(18,19). Camizestrant, giredestrant, imlunestrant and palazestrant are all in late-stage clinical trials in 

patients with AI resistant disease with some being evaluated in earlier settings in patients at high risk 

of recurrence (20-24).  All of the SERDs described above have a common mechanism of action in 

that they induce denaturing conformational changes in ER structure which result in it being targeted 

to the proteasome. However, proteosome dependent degradation is also achieved by the ligand 

directed degrader ARV471 (vepdegestrant), a bifunctional ER ligand directed degrader (LDD) which 

has a receptor binding moiety and a second functionality which results in the recruitment of the 

cereblon E3 ligase (25). Challenging the idea that SERD activity is an absolute requirement of ER-

modulators for advanced disease is the SERM lasofoxifene, has shown substantial clinical activity in 

patients whose tumors express ESR1 mutations. It is likely that several oral SERDs, ARV471 and the 

SERM lasofoxifene will be approved clinically and thus the next challenge will be to understand how 

to distinguish these functionally distinct drugs and identify best clinical utility (26,27). Key to success 

in this regard will be to define how ER activity and pharmacology is impacted by alterations in the 

expression and activity of specific coregulators (coactivators and corepressors) and by the activity of 

PI3K(28), MAPK(29), and ERBB2 signaling pathways (30). Also important will be to define how 

epigenetic modifications, such as changes in DNA methylation and histone modifications, impact ER 

pharmacology and the response of tumors to these agents.  

 

There are few validated in vivo models of ER+ breast cancer and thus cell line models have played a 

vital role in studies that have elucidated the molecular mechanisms that determine ER pharmacology 

and how pathways are dysregulated upon drug resistance. Two broad categories of endocrine 

resistance models have been widely utilized: consequence-mimicking and molecular-mimicking 

models (31). The former involves the development of cell subclones under selective pressure of 

chronic treatment with different endocrine therapies, in vitro or in vivo, and subsequent elucidation of 

the cause-and-effect relationships between specific molecular events and drug pharmacology. The 

tamoxifen-resistant (TamR) models and long-term estradiol deprivation (LTED) models are among 

the most widely used. Molecular-mimicking models, on the other hand, engineer cells with known 

genetic alterations identified from endocrine-resistant cases, such as ESR1 mutations. These models, 

created using genome editing or ectopic overexpression, have resulted in the discovery of new 

biology and druggable therapeutic vulnerabilities (32). Advances in high-throughput sequencing 

technologies have revolutionized our ability to explore the molecular landscapes of ER modulator 

activity in models of endocrine therapy sensitivity and resistance. However, despite the wealth of 
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publicly available datasets, and tools like NCBI GEO(33) and Cistrome DB(34), accessing and 

analyzing these data in a comprehensive manner remains challenging. 

 

 

The EstroGene2.0 knowledgebase has been developed to address the limitations in processing and 

analyzing current datasets that probe ER-biology focusing on transcriptomic and cistromic analyses. 

Extending its predecessor, EstroGene1.0 (35), which focused solely on experiments analyzing 

treatment with estrogens. EstroGene2.0 encompasses transcriptomic and ER ChIP-seq profiling data 

from studies performed with a large number of different ER modulators in models of both endocrine 

therapy sensitive and resistant breast cancer cells. Our updated platform features an enhanced user-

friendly browser, enabling researchers to swiftly access and review experimental documentation, 

dataset quality controls, and insights into gene regulation and ER binding associations across 

hundreds of curated experiments. Additionally, we have integrated an unpublished ER Rapid 

Immunoprecipitation Mass spectrometry of Endogenous protein (RIME) profiling data from 16 ER+ 

cancer cell lines, offering additional access into ER interactomes. Following the development of 

EstroGene2.0, we conducted a series of pilot studies to explore potential mechanisms of response 

and resistance to ER modulators and herein report these findings and provide examples of new 

testable hypothesis that can be tested experimentally. 

 

Materials and Methods 

EstroGene2.0 data curation 

To obtain comprehensive ER modulator treatment and endocrine resistant cell model related 

database in breast cancer, we established a standardized curation model with three main steps. First, 

we conducted a literature search from the Gene Expression Omnibus (GEO database) using the 

combination of ER modulator compound (e.g. “tamoxifen” or “4OHT) or endocrine resistant model 

type (e.g. “tamoxifen resistant” or TamR) plus “breast cancer” plus the name a specific type of 

sequencing technology (e.g., “RNA-seq” or “RNA sequencing”) towards publications released earlier 

than January 2023. Secondly, we manually reviewed these articles, only literature conducting the 

required experiments on human breast cancer cell lines were incorporated into the EstroGene2.0 

database. We curated details of 1) publications including GEO accession number, PMID, publication 

date and institution; 2) experimental designs including cell lines, replicates used, compound dose, 

duration for ER modulator treatment, resistant development procedure, model construction method 

and variants type (for ESR1 mutations), library preparation method and NGS sequencing platforms. 

All the relevant information is summarized in Supplementary Table S1.  
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Website construction 

The EstroGene II website utilizes Firebase (https://firebase.google.com) for its robust NoSQL 

database infrastructure. We developed specialized gene-based indices and stored this data structure 

in Firebase, which specifically provides constant time retrieval for our website. It reduces search 

latency, thereby enhancing the responsiveness of our platform. As a result, EstroGene II operates 

with higher efficiency and speed compared to its predecessor. Our frontend is crafted using Angular 

16.2.0 (https://angular.io) with TypeScript, HTML, and CSS. Angular simplifies the development 

process with its tooling and libraries. Its efficient rendering pipelines minimize the resource footprint 

and enhance the speed of view updates. In addition, R Shiny was used to construct the external 

analysis page including mode2 and mode3 of the analysis tab. These features enable EstroGene II to 

handle complex interactions and maintain a reactive user experience across all user activities. 

 

Transcriptomic data process and analysis 

For all the RNA-seq experiments, we took advantage of the recently released NCBI-generated RNA-

seq count data (BETA version). Briefly, SRA runs are aligned to genome assembly 

GCA_000001405.15 (hg38) using HISAT2. Runs that pass a 50% alignment rate are further 

processed with Subread featureCounts which outputs a raw count file for each run. For Human data, 

the Homo sapiens Annotation Release 109.20190905 was used for gene annotation. Genes with 0 

counts in each experiment were removed and DESeq2(36) was used to compute log2-fold change 

and adjust P values of each gene between control and targeted samples. For specific datasets 

lacking replicates, we generated log2-fold change of each gene by subtracting TMM normalized 

log2(CPM+1) values of controls from the corresponding targeted samples. 

 

For microarray datasets, we collected the raw array files from GEO database and normalized the data 

with different packages according to the platform. Affy(37) and oligo(38) packages were used to 

process Affymetrix-based microarray data following RMA normalizations. For data generated based 

on Agilent platform, loess normalization was performed directly on preprocessed data were 

downloaded from GEO. Different version of probe ID were converted to gene ID using BioMart 

package. Probes representing the same gene were merged by averaging the normalized intensity. 

LIMMA(39) was used to compute differential expressing genes for datasets including biological 

replicates. For experiments without replicates, log2-fold changes were calculated by subtracting the 

control values from the matched samples. 
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For the integration of RNA-seq and microarray comparisons under the same section (e.g. short-term 

ER modulator treatment), the percentile of each gene within each comparison was calculated 

independently by ranking the E2-induced fold changes, with -100–0 as repression and 0–100 as 

activation and 0 as no regulation. For the merged regulatory percentile, genes appeared in below 80% 

comparisons of each section were filtered out. For downstream analysis, regulator prediction were 

performed using LISA(40). Venn diagrams were generated using jVenn(41). Data visualizations were 

performed using “ggpubr”(42) and “Complexheatmap”(43). 

 

For multivariant regression modeling of short-term ER modulator treatment, comparisons defined by 

ER modulator treatment group of the same cell line, drug time, and time, compared to control group, 

we linearly scaled expression fold change of each gene (from differential gene expression analysis) to 

percentile rank, ranging from -100 to 100. Specifically, the most down-regulated gene is set as -100, 

and most up-regulated gene as 100, and genes with no change remain as 0.  We selected 

experiments with tamoxifen or fulvestrant treatment as input for regression model. For each gene, we 

modeled its percentile rank by mixed effect linear regression model, using each comparison as a 

single observation.  

Percentile Rank����~ Cell Line � Sequencing Technique � Drug Type 

� Treatment Duration �h�  | Batch ID 

 

Specifically, sequencing technique is either RNA-seq or Microarray. Batch ID marks a unique 

experiment which consists of one to multiple experiment groups using same set of control samples. 

Regression model is calculated with python statsmodel package(44) (v.0.14.1). We recorded 

regression coefficient and significance p value for each term and interaction term for each model. 

 

For pathway enrichment analysis, we used EnrichR(45) (https://maayanlab.cloud/Enrichr/) to 

calculate pathway enrichment, selecting the following datasets: KEGG (human, 2021), Reactome 

(2022), Gene Ontology Biological Process (2023), Gene Ontology Cellular Component (2023), and 

Gene Ontology Molecular Function (2023). For each dataset in ER modulator treatment, the top 5 

enriched gene set, ranked by adjusted p value, were selected for presentation for each enrichment 

analysis. The enrichment plot was generated using gseapy(46) (v1.1.0) dotplot function, showing ratio 

of gene overlap with pathways as dot size, and colored by adjusted p value from pathway enrichment. 

For other data sets, we mainly focused on the Hallmark signature collection, and generated the 

enrichment bubble plots for significantly enriched pathways using adjusted p values and odds ratio. 
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We also used NES based method for different types of compound pathway enrichment in Fig. 3J. 

Briefly, we first calculated average gene percentile rankings of each gene from all comparisons 

treated with the specific ER modulator type. Then for each drug type, we ran gene set enrichment 

analysis (prerank function from gseapy v1.1.0), using MSigDB hallmark (2020) gene sets using the 

average gene percentile ranking as pre-ranked correlation. Other computation parameters include 

minimum and maximum allowed gene number from gene set and data set as 5 and 1000 respectively, 

permutation number as 1000, and random seed as 6. This generated a normalized enrichment score 

(NES) and an FDR value for each pathway and each drug type. In the heatmap, we colored drug-

pathway pairs by NES values. 

 

For clinical cohort analysis, expression data and sample metadata of POETIC trial were downloaded 

from GSE105777(47). Enrichment of interferon and estrogen response signatures were calculated 

using GSVA package(48). For ESR1 mutant metastatic breast cancer cohorts, differentially 

expression genes between WT and mutant samples in each cohort was described before using 

padj<0.1 as the cutoff. For logistic regression modeling, GSVA enrichment scores were first 

calculated with up- and down-regulated genes with regulatory percentile above 60% or below -60% 

from 32 genome-edited and 12 ectopic overexpression models. An integrated enrichment score of 

each sample were calculated by subtracting the repression score from the activation score. Lme4 

package(53) was used for the regression modeling using ESR1 mutation status as predictor and 

pROC package(54) was used to generate ROC curves. 

 

ChIP-seq data process and analysis 

ChIP-seq raw fastq files were downloaded from GEO with corresponding SRR accession numbers. 

Reads were aligned to hg19 genome assembly using Bowtie 2.0(55), and peaks were called using 

MACS2.0 with q value below 0.05(56). For gained peaks in ESR1 mutant cells versus WT controls, 

we used DiffBind package(57) to intersect BED files. Intensity plots for binding peaks were visualized 

by Seqplots(58) using BigWig files and BED files as input. Peak visualization was conducted via 

WashU EpiGenome Browser(59) using BigWig files as input. For gene annotation, Binding and 

Expression Target Analysis(60) minus was used with 100kb as the distance from gene TSS within 

which peaks. Average BETA score from 16 ESR1 mutant gained peaks sets were calculated for each 

gene.  

 

Cell culture 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2024. ; https://doi.org/10.1101/2024.06.28.601163doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.28.601163
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

BT474, BT483, EFM19, EFM192A, HCC1428, T47D, ZR751 & ZR7530 were cultured in in RPMI 

1640 Medium (no phenol red, no L-glutamine) (Gibco # 32404014). The following supplements were 

added: 1mM sodium pyruvate (Gibco # 11360039) and 2mM GlutaMax (Gico # 35050038) and heat-

inactivated (61)FBS was used. For BT483, human insulin (Sigma # I0516) was added at a final 

concentration of 0.01mg/ml. Genome-edited ESR1 WT and mutant T47D (RRID: CVCL_0553) ESR1 

mutant cell models (62)experiments, cells were deprived in phenol-red-free IMEM with 5% CSS. CSS 

was purchased from Hyclone (#SH30068).  

 

ER RIME 

Cells were seeded in 15cm plates and when 85-90% confluent, cells were double crosslinked with 

2mM disuccinimidyl glutarate for 20 mins followed by 1% formaldehyde. Pulldown was performed with 

either ER antibody mix or Rabbit IgG as described before(61). RIME samples were digested with 

trypsin (Pierce) and the peptides were purified with Ultra-Micro C18 Spin Columns (Harvard 

Apparatus)  prior to mass spectrometry analysis as previously described(62). Dried peptides were 

reconstituted in 0.1% formic acid for further LC–MS/MS analysis. 

 

For LC-MS/MS Analysis, reconstituted peptides were analysed on a Dionex Ultimate 3000 system 

coupled with the nano-ESI Fusion Lumos (Thermo Scientific). Peptides were loaded on the Acclaim 

PepMap 100, 100�μm�×�2�cm C18, 5�μm, 100 � trapping column and separated with the EASY-

Spray analytical column (75�μm�×�25�cm, C18, 2�μm.) with a 5–45% acetonitrile gradient in 0.1% 

formic acid at 300 nL/min flow rate.  The full scans were performed in the Orbitrap in the range of 400 

to 1600 m/z at 120k resolution. The MS2 scans were performed in the ion trap with 2.0 Th isolation 

window, HCD collision energy 28% and dynamic exclusion 30 seconds. 

 

For data analysis, Spectral .raw files from data dependent acquisition were processed with the 

SequestHT search engine on Thermo Scientific Proteome Discoverer 2.4 software. Data was 

searched using Uniprot Database Homo sapiens fasta file (taxon ID 9606 - Version June2). The node 

for SequestHT included the following parameters: Precursor Mass Tolerance 20 ppm, Fragment 

Mass Tolerance 0.5 Da, Dynamic Modifications were Oxidation of M (+15.995Da) and Deamidation of 

N, Q (+0.984Da). The Precursor Ion Quantifier node (Minora Feature Detector) was used for label-

free quantification included a Minimum Trace Length of 5, Max. ΔRT of Isotope Pattern 0.2 minutes. 

The consensus workflow included peptide validator, protein filter and scorer. For calculation of 

Precursor ion intensities, Feature mapper was set True for RT alignment, with the mass tolerance of 
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10 ppm. Precursor abundance was quantified based on intensity and the level of confidence for 

peptide identifications was estimated using the Percolator node with a Strict FDR at q-value < 0.01. 

 

For bioinformatics analysis, label-free quantification was used to generate peptide intensity values. 

The data analysis was performed using Bioconductor based R package qPLEXanalyzer. Initially, the 

data was normalized via within-group median scaling, where IgG served as one group and all other 

pulldowns constituted the other. Peptides detected in less than 25% of pulldown samples were 

excluded from subsequent analysis. For the remaining peptides, missing values were imputed by two 

methods: utilizing the minimum value in each sample (for all IgG controls and in pulldown samples for 

peptides found in less than half of replicates) or employing a k-nearest neighbours algorithm (for 

pulldown samples with peptides detected in more than half of replicates). Subsequently, a limma-

based statistical analysis was conducted to identify differentially enriched proteins compared to the 

IgG control. 

 

Transient siRNA transfection 

Individual ESR1 WT and mutant T47D clones were hormone-deprived in IMEM/5% CSS for 3 days 

and evenly pooled for siRNA transfection. Briefly, 500,000 cells were seeded in 6-well plates in 

IMEM/5% CSS and forward transfected with 50 nM final concentration of ON-TARGETplus Non-

targeting Control Pool siRNA (Dharmacon #D-001810-10-05), ON-TARGETplus Human NPY1R 

SMARTPool siRNA (Dharmacon #L-005672-00-0005), ON-TARGETplus Human RLN1 SMARTPool 

siRNA (Dharmacon #L-017403-00-0005), or ON-TARGETplus Human SUSD3 SMARTPool siRNA 

(Dharmacon #L-016811-02-0005) using Lipofectamine RNAiMAX (Invitrogen #13778) protocol for 24 

or 72 hours.  

 

qRT-PCR 

ESR1 WT and mutant T47D cells were collected after 3 days of hormone deprivation or 72 hours 

post-siRNA transfection. RNA extraction was performed using RNeasy mini kit (Qiagen #74106). 

Reverse transcription to cDNA was performed with PrimeScript™ RT Master Mix (Takara Bio 

#RR036B). RT-PCR was then performed with SsoAdvanced Universal SYBR (Bio-Rad #1726275) 

with primers as detailed in supplemental materials (see below). The ΔΔCt method was used to 

analyze relative mRNA fold changes with GAPDH serving as the internal control. Statistical 

differences evaluated using a paired t-test. Sequences of primers are list below:  

Name Sequence 5'>3' 

 NPY1R-F CCATCGGACTCTCATAGGTTGTC 
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NPY1R-R GACCTGTACTTATTGTCTCTCATC 

GAPDH-F TCGGAGTCAACGGATTTGGTC 

GAPDH-R AAACCATGTAGTTGAGGTCAATG 

 

Growth assay 

Twenty-four hours after siRNA transfection, ESR1 WT and mutant T47D cells were plated into 96-well 

plates at 2000 cells per well. Cell viability was measured at day 0, 2, 4, 6 and 8 and quantified with 

PrestoBlue HS Cell Viability Reagent (Life Technology #P50201) following the manufacturer’s 

protocol. Growth rate was determined as fold change compared to day 0.  

 

Results 

Expansion of EstroGene database to include studies of ER modulator response and 

resistance. 

To increase the clinical relevance and utility of the EstroGene database, we expanded its scope to 

include data generated in breast cancer cell models subjected to ER modulator treatment or designed 

to mimic endocrine therapy resistance. A comprehensive search was undertaken of publicly available 

data from the Gene Expression Omnibus (GEO) using specific keywords related to compound names 

(e.g., tamoxifen, fulvestrant) or resistant model types (e.g., tamoxifen resistance, ESR1 mutation), 

coupled with the name of a specific technology (e.g., "RNA-seq" or "RNA sequencing"). Following this 

initial search, we performed manual filtration to ensure data accuracy. Our focus for endocrine-

resistant models centered on tamoxifen-resistant (TamR), long-term estradiol deprivation (LTED), and 

ESR1 mutation models, given their prevalence in published literature. This search strategy yielded 

178 experiments from 94 studies, comprising 104 RNA-seq, 57 microarray, and 17 ER ChIP-seq 

experiments, supplementing the existing 92 transcriptomic and 75 ER ChIP-seq experiments from the 

first version of the EstroGene database. Additionally, we incorporated in-house experiments of ER 

RIME (Rapid Immunoprecipitation Mass Spectrometry of Endogenous proteins )(65) proteomic 

profiling across 16 ER+ cancer cell lines (15 breast cancer and one endometrial cancer) representing 

an unbiased survey of ER-associated protein complexes using IP-mass spectrometry. The 

EstroGene2.0 database now encompasses multi-omic profiling data from 361 experiments across 

212 studies, spanning 28 cell lines and publications from 2004 to 2023 (Fig. 1A and Supplementary 

Table S1). 

 

Similar to observations from EstroGene1.0 (35), publicly available data from studies performed after 

2017 was for the most part generated using next-generation sequencing technologies, while 
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microarray was more prevalent in earlier studies (Fig. 1B). Notably, most studies (78.6% RNA 

profiling and 77.4% ChIP seq) were performed in the ER-positive MCF7 and T47D cell lines (or 

endocrine therapy resistant models thereof), and while this ensured that the data generated were 

robust it is also expected to introduce unavoidable biases (Fig. 1C). Most of the transcriptomic 

profiling experiments employed biological duplicates (39.8%) or triplicates (36%), whereas 82.3% of 

ER ChIP-seq experiments included only one sample (Fig. 1D). 

 

For experiments using ER -modulators, we ingested data from six categories of compounds (SERM, 

SERD, SERM/SERD Hybrid, SERCA, LDD/PROTAC and SERD Analog), with tamoxifen (42.7%) and 

fulvestrant (29%) being the most frequently used SERM and SERD, respectively (Fig. 1E). It is 

noteworthy that the majority of studies used doses of tamoxifen or fulvestrant ranging from 100 

nmol/L to 1000 nmol/L (Fig. 1F), considerably higher than the reported physiological serum peak 

concentrations from previous pharmacokinetic studies in animal models and in humans (66,67) (68). 

This raises the concern that some of the changes noted may be related to off-target activities of these 

drugs. Transcriptomic profiling experiments typically involved longer compound exposure, with a 

median treatment duration of 24 hours, while all ER ChIP-seq experiments employed a maximum 

treatment duration of only 1 hour (Fig. 1G). 

 

We gathered 30, 16, and 8 experiments from ESR1 mutation, TamR, and LTED endocrine-resistant 

models, respectively (Fig. 1H). TamR models were profiled as early as 2008, whereas studies on 

ESR1 mutation models have increased since 2013 (Supplementary Fig. S1A). Researchers have 

employed various strategies to model hotspot ESR1 mutations in breast cancer cells, including 

genome editing approaches such as CRISPR/Cas9 or recombinant adeno-associated viral system 

(rAAV, 53.3%), and conventional ectopic overexpression (33.3%). Only one study revealed cell lines 

with natural occurrence of ESR1 mutations under long-term estradiol deprivation. In genetically 

engineered cells, the ESR1 Y537S and D538G hotspot variants were the most frequently modeled, 

reflecting their high frequency detected in patient samples (49) (Fig. 1J). The impact of clonal 

selection of engineered cells and how this introduces biases into the resultant transcriptomes is 

largely unanswered in studies performed to date. Regarding TamR models, the development 

procedures vary, with most models using in vitro selection with 100-1000 nmol/L 4OHT for over six 

months, while one study employed in vivo selection followed by harvesting of tumor cells for 

downstream characterization (Supplementary Fig. S1B-S1C) (69). 

 

The EstroGene2.0 browser 
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With the curated datasets, we downloaded and performed unified data processing (detailed in the 

Methods section). We amalgamated these datasets into a singular web server platform, facilitating 

tailored data exploration and visualization for researchers, particularly those without specialized 

bioinformatics skills. The EstroGene2.0 web server categorizes datasets into five distinct biological 

sections: treatment with an estrogen (from EstroGene1.0), ER-modulator treatment, TamR, LTED, 

and ESR1 mutation models. Building upon the foundation of the original EstroGene browser, this 

updated version introduces significant feature enhancements detailed below. 

 

The web server is structured around two primary functional modules: ‘metadata’ and ‘analysis’ (Fig. 2). 

The metadata section offers detailed insights into individual experiments, including sample-level 

details and experimental quality controls. Users can navigate through specific sections and refine 

their search parameters by employing filters such as modalities, cell lines, compounds (ER-

modulator), or mutation variants (ESR1 mutation) (Supplementary Fig. S2A). Upon identifying 

experiments of interest, users can delve deeper into sample-level documentation by accessing 

corresponding experiment IDs. For transcriptomic profiling, a searchable framework is provided 

alongside the experimental details. Users can retrieve raw normalized gene expression values from 

the "Expression Matrix" tab by inputting a gene of interest (Supplementary Fig. S2B), while the 

"Differential Expression" tab furnishes log2 fold change values with adjusted p-values for all reasoned 

comparisons within a specific experiment (Supplementary Fig. S2C). This functionality enables users 

to assess the suitability of chosen experiments or models for addressing their research queries. 

Additionally, principal component analysis is available for each experiment, aiding in the evaluation of 

variations across replicates and biological intervention (Supplementary Fig. S2D). The complete 

sample-level normalized expression matrix and differential expression output are accessible for 

download via the "Download" tab (Supplementary Fig. S2E). For ER ChIP-seq datasets, users can 

access ER peak numbers and mapped reads for each sample (Supplementary Fig. S2F). Notably, a 

sample-level genomic track view feature allows direct visualization of ChIP signal intensity and the 

distribution of the user's locus of interest through integration with the WashU Epigenome Browser 

(Supplementary Fig. S2G). Additionally, sample-level peak calling files and normalized read counts 

are available for download (Supplementary Fig. S2H). 

 

The analysis module encompasses four modes (Supplementary Fig. S3A). The single gene 

visualization mode (Mode1) continues the same strategy used in the Estrogene1.0 browser, whereby 

users can input a gene of interest (GOI) and generate volcano plots to visualize concordance of gene 

expressional changes associated with the specific conditions across all the pre-computed 
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comparisons (E2: n=149; ER modulators: n=112; TamR: n=15; LTED: n=16; ESR1 mutation: n=46, 

Supplementary Fig. S3B). A filter function allows users to tailor analyses towards specific 

experimental contexts. Users can access the original GEO deposition page by clicking on a data point 

in the plot. In Estrogene2.0, we additionally provide a percentile distribution plot as an alternative 

approach, which projects the gene regulatory percentile in a -100 to +100 window (100 represents the 

value of the topmost repression or activation normalized to all the processed genes in each 

comparison) within each comparison and merges all the results together, which offers further 

quantitative estimation of regulatory trend and consistency across experiments. As shown in 

Supplementary Fig. 3C, a well studied ER inducible gene GREB1 showed predominant enrichment in 

the range of +80 to +100 with a few exceptions below 0 in ESR1 mutant cells, depicting the quality of 

this visualization method alongside a representation of noted experimental variations. For the 

estrogen treatment and ESR1 mutation sections, the analysis pages include targeted ER genomic 

binding plots based upon ER ChIP-seq data. The TSS (Transcriptional Start Site) region view 

summarizes peak intensities within a -/+ 200 kb range of the input gene's transcriptional start site 

(Supplementary Fig. S3D), while the genomic track view redirects users to the WashU Epigenome 

Browser for more detailed visualization (Supplementary Fig. S3E). While the dot represents the 

center of each ER peak in the TSS proximal region view, users can directly assess the full genomic 

coordinates by hovering the mouse over a dot, facilitating the selection of regions of interest for 

downstream applications such as ChIP-qPCR. The gene signature enrichment analysis mode (Mode2) 

enables an estimation of enrichment changes of a user-defined multiple-gene signature across all the 

comparisons in a volcano plot format. The backend calculates geometric mean of all the customized 

input genes, estimates the fold change and associated adjusted p value of each comparison and 

separately plots by estrogen treatment, ER-modulator treatment and endocrine resistance models 

with specific condition filters. As shown in Supplementary Fig. S3F, inputting our previously generated 

EstroGene estrogen response signature (35) resulted in nearly all positive values in all the E2-

treatment experiments, confirming the robustness of this signature. In Mode 3, the cross-model 

pattern and similarity analysis provides a holistic examination of a user's input gene. Firstly, it 

showcases the regulatory trend and consistency across four biological models in a side-by-side 

comparison. Secondly, it identifies other genes displaying similar regulation patterns within each 

section, scored by Pearson correlation of regulation percentile. Thirdly, it determines the intersection 

of significantly similar genes across different models. For instance, using GREB1 as an illustration, 

we observe a bimodal distribution of its regulatory percentile in E2 treatment and ESR1-mutant 

models (close to +100%) and ER modulator treatment experiments (close to -100%) and vice versa 

for an ER repressed gene CCNG2 (Supplementary Fig. S3G). Notably, ESR1-mutant cells exhibit a 
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considerably higher number of genes with similar regulatory trends as GREB1 (Supplementary Fig. 

S3H). Finally, in Mode 4, we integrate in-house RIME experiments from 16 ER+ cancer cell lines 

cultured in full medium. Users can ascertain whether a target of interest is an ER interaction partner 

and determine the most suitable cell line for studying this interaction. FOXA1, an ER interactive 

pioneer factor, is presented as a default entry (Supplementary Fig. 3I). 

 

In summary, the EstroGene2.0 browser not only broadens the scope of biological contexts and 

experimental modalities but also significantly enhances analytical functionality and diversity. This 

update provides an accessible, rapid, and comprehensive overview of cis- and trans regulation in 

estrogen/ER modulator response and resistance in breast cancer. 

 

Diversity of short-term transcriptomic response to ER-modulators  

The EstroGene2.0 database not only represents a user-friendly accessible webserver for customized 

investigation, but also produces a harmonized large data set. We utilized this opportunity to address 

several crucial questions in the field, particularly focusing on data congruence. We first analyzed the 

impact of short-term treatment with ER modulators, based upon 123 pre-computed comparisons 

across 51 individual studies. Within each comparison, genes were ranked based on fold change 

normalized to corresponding controls, with regulatory percentiles scaled from -100 to +100, 

representing the spectrum from topmost down-regulation to up-regulation. Given the prevalence of 

tamoxifen (n=63 comparisons) and fulvestrant (n=29 comparisons) experiments in our dataset and 

the long-standing history in breast cancer therapeutics of both drugs, we initiated our analysis by 

directly comparing their effects. We observed a significantly higher variation in overall gene regulation 

in tamoxifen-treated experiments compared to fulvestrant-treated (Fig. 3A), indicating a more 

heterogeneous response to tamoxifen. To elucidate the factors driving this variation, we constructed a 

multivariate regression model incorporating drug type, dose, duration, sequencing modality, and cell 

line for each gene across all tamoxifen and fulvestrant experiments. In addition to drug types, dose 

emerged as one of the most influential predictors for post drug treatment transcriptomic alterations 

(Fig. 3B). Previous studies have highlighted the dose-dependent nature of interventions with ER 

modulators (66,67). Therefore, we initially assessed the regulatory percentile correlation between 

experiments using 1 μmol/L and 100 nmol/L doses of tamoxifen and fulvestrant. Fulvestrant exhibited 

a robust positive correlation (R=0.78) between the two doses (Supplementary Fig. S4A), whereas 

tamoxifen displayed a weaker correlation (R=0.21) (Supplementary Fig. S4B), indicating a notable 

dose-related discrepancy. Further stratification identified 193 and 169 genes that were more 

susceptible to repression by 1 μmol/L and 100 nmol/L doses of tamoxifen (Supplementary Table S2), 
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respectively, including notable candidates such as TFF3 and IRX4 (Supplementary Fig. S4C). 

Pathway enrichment analysis revealed that 100 nmol/L tamoxifen could more effectively block 

estrogen response signaling, while 1 μmol/L tamoxifen preferentially suppressed TNFα/NFkB, 

hypoxia, and TGF-β pathways (Supplementary Fig. S4D). These analyses underscore the importance 

of dose in considering the pharmacology of ER-modulators and explain in part the large intrinsic 

variation among data sets describing the activities of these drugs in different models. 

 

We next integrated the regulatory effects of tamoxifen and fulvestrant. Analyzing the gene-level 

correlation of average regulatory percentiles between tamoxifen and fulvestrant treatments revealed a 

positive association (R=0.49). Notably, tamoxifen exhibited a narrower average distribution range, 

confirming the higher intrinsic variation (Fig. 3C). To delve deeper, we examined genes showing 

concordant or discordant changes between these two compounds. Pathways associated with cell 

cycle and DNA replication were downregulated in both models (Fig. 3D), aligning with the anti-

proliferative activities that are attributable to SERMs and SERDs. Among commonly upregulated 

genes, enrichment was observed in FOXO-mediated cell death, glycan degradation, and lysosome 

pathways, indicating an acute elevation in adaptation to external stress stimuli (Fig. 3E). Notably, 

genes specifically upregulated with tamoxifen but downregulated with fulvestrant were enriched in 

transport activity (Fig. 3F), while genes upregulated with fulvestrant but downregulated with tamoxifen 

were involved in amino acid metabolism (Fig. 3G). Some of these differences may relate to the partial 

agonist activity of tamoxifen manifest in some cell/promoter contexts but may also be a manifestation 

of the difference in inhibiting ER action (SERM) vs eliminating ER expression (SERDs). 

 

Tamoxifen and fulvestrant are currently used for the treatment of ER-positive breast cancers. 

However, of late there have emerged several new classes of ER-modulators among these are (a)  

oral SERDs (camizestrant (AZD9833), giredestrant (GDC9545), imlunestrant, and palazestrant  (b) 

SERMs (lasofoxifene) (c) SERM/SERD hybrids (i.e. elacestrant and bazedoxifene), (d) Ligand 

directed degraders (LDDs) (ARV471), (e) ligands which inhibit ER through covalent binding to the 

receptor (SERCAs) and (f) ER non-degrader structurally similar to SERD (SERD analog) (6). This 

prompts the question as to the mechanisms by which these drugs distinguish themselves at the level 

of transcriptional activity and how and if this could impact their clinical use. In our analysis, we 

evaluated four types of compounds (SERMs, SERDs, a SERCA, and ARV-471) from 10 individual 

studies, using ESR1 siRNA knockdown as a reference. Pairwise average gene regulatory percentile 

correlations of each compound revealed an overall positive correlation, with R values ranging 

between 0.2 and 0.7, except for the SERM endoxifen, which showed no correlation with other 
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compounds (Fig. 3H). ARV-471 and a number of SERDs (including fulvestrant, GDC9545, and 

AZD9833) were generally more similar to each other, whereas SERMs/SERM SERD hybrids 

(including tamoxifen, raloxifene, and bazedoxifene) were distinctly clustered from each other. 

Additionally, SERCA H3B-6545 and H3B-9707 showed a more similar regulatory landscape. 

Unsupervised clustering of all genes recapitulated an overall similar regulatory trend, despite data 

from the same studies tending to be more alike (Fig. 3I). To investigate unique pathway regulation by 

each drug type, we calculated normalized enrichment scores (NES) using the MSigDB Hallmark 

database (Fig. 3J). Notably, we observed consistent inhibitory effects of all drugs towards estrogen 

response and cell cycle-related signatures, as expected. The two SERCAs (H3B-6545, H3B-9709), 

endoxifen and lasofoxifene, specifically inhibited metabolic pathways involved in peroxisome and fatty 

acid metabolism. ARV-471 and AZD9833 exhibited additional blockade towards notch signaling, Wnt-

β catenin, and apical surface cell adhesion function, which were not discerned with fulvestrant. 

Furthermore, a strong repression of interferon response signaling was observed in with second 

generation SERDs GDC0927, GNE274, and with lasofoxifene. Overall, this analysis highlights the 

functional diversity exhibited by different types of ER-modulators despite their similar antiproliferative 

activities in cellular models.   

 

Context-dependent effects of ER modulators was observed by gene level clustering in a few cell lines 

(Fig. 3I), namely MDA-MB-330, HCC1500, and CAMA1. These cell lines displayed distinct gene 

regulatory patterns, with some genes even showing opposite regulation (Fig. 3I). This effect was 

further reflected in a cell-line based clustering, where a major cluster (MCF7, T47D, BT483, BT474, 

and EFM19) and a minor cluster consisting of MDA-MB-330, CAMA1, and HCC1500 were 

segregated (Fig. 3K). Additionally, MDA-MB-134VI, an invasive lobular carcinoma cell line, exhibited 

a distinct response pattern distinguished from other models, as we reported previously (70). It is likely 

that these differences in response to ER-modulators reflects the impact of these ligands on receptor 

structure and how this regulates the interaction of the receptor with functionally distinct cell-line 

specific coregulators. To explore this possibility, we conducted ER RIME profiling in 16 ER+ cell lines, 

including all five in the major cluster and CAMA1 in the minor cluster. Among the 15 breast cancer 

lines, we identified 95 proteins that consistently interact with ER including the canonical coregulator 

NCOA5 (Supplementary Fig. S4E and Supplementary Table S3). Further intersection analysis 

identified 42 CAMA1-specific ER interactors (Fig. 3L, Supplementary Fig. S4F and Supplementary 

Table S4). We inferred the upstream regulators controlling genes uniquely up and down-regulated in 

CAMA1 normalized to the major cluster cell lines using LISA (40) (Supplementary Table S4) and 

overlaid the unique ER interactors with the predicted regulators in CAMA1 (Fig. 3L and 
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Supplementary Fig. 4G-4H). We identified four overlapping targets, including FOXA1, DDX20, and 

SUPT5H in both groups, and TLE3 as a unique ER interactor associated with CAMA1-specific up-

regulated genes in response to ER modulator treatment. Of note, TLE3 has previously been 

characterized as an ER co-repressor (71). This suggests that ER repression in CAMA1 cells might 

rely heavily on TLE3, and dictate a subset of transcriptional responses in this cell line. 

 

Transcriptomic heterogeneity of endocrine resistant breast cancer cell models 

The substantial diversity in response to ER-modulators underscores the heterogeneous mechanisms 

that impact receptor pharmacology and which underly resistance. Consequently, we classified the 

transcriptomic features of models with resistance to different types of ER-modulators. Our primary 

focus was on models of Tamoxifen Resistance (TamR), Long-Term Estrogen Deprivation (LTED), 

and  those which harbored ESR1 mutations, where the number of datasets collected provided 

sufficient statistical power to draw solid conclusions (n=15 comparisons for TamR, n=16 for LTED, 

and n=46 for ESR1 mutation). Correlation analysis utilizing average regulatory percentages from all 

comparisons of these three models, along with E2 regulation as a control, revealed distinct shifts in 

estrogenic signaling amongst the three models (Fig. 4A): 1) ESR1-mutant cells exhibited a high 

similarity to E2 treatment (R=0.46), indicative of their well-characterized ligand-independent ER 

activation. 2) LTED displayed a strong negative association with E2 stimulation and ESR1 mutant 

models, underscoring the selection of clones with a repression of ER signaling, potentially making 

their growth less dependent on ER. 3) Transcriptomic features of TamR models showed minimal 

association with global estrogen response. Examining the overlap of genes enriched in the top 10% 

percentile of up- or down-regulated targets across at least 40% of comparisons for each model 

highlighted the distinct nature of different endocrine-resistant types (Fig. 4B and Supplementary Table 

S2) with minimal to no overlap of regulated genes. LIN7A emerged as the only consistent 

downregulated target, while ER target genes GREB1, PGR, and CA12 were shared down-regulated 

targets between TamR and LTED models. Unsupervised clustering of Hallmark signature alterations 

within each model normalized to their corresponding controls (i.e., parental cells for LTED and TamR, 

isogenic ESR1 wild-type models for ESR1 mutants) further revealed divergent functional shifts that 

correlated with the resistance phenotype (Fig. 4B). On average, ESR1 mutant cells strongly 

upregulated the expression of genes associated with estrogen signaling, cell cycle progression E2F 

and G2M checkpoints, as well as Wnt- β-catenin signaling. In contrast, LTED and TamR models 

showed a decline in estrogenic and cell cycle progression signature enrichment but gained unique 

features. LTED models exclusively exhibited enhanced metabolic functions such as fatty acid 

metabolism, bile acid metabolism, and peroxisome activities, while TamR lines displayed a more 
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diverse range of gain-of-functions with several exclusively enriched in proinflammatory signatures 

such as TNFα signaling via NFκB, IL6-JAK-STAT3, and inflammatory responses (Fig. 4C). Notably, 

the evident repression of E2 response signatures but lack of a global E2 regulation association in 

TamR models suggests that only a subset of canonical estrogen response program was impacted, 

which might be sufficient to trigger or maintain tamoxifen resistance. 

 

Correlating the probability of a gene being in the top 10% of up- and down-regulated genes revealed 

a non-linear negative association, indicating that most genes are regulated in a single direction. The 

majority of these genes showed a correlation below 20%, underscoring significant variation among 

these experimental models (Fig. 4D). Intriguingly, we identified a subset of bidirectionally regulated 

genes in each model within the top 10% of both upregulated and downregulated targets and in at 

least 15% of comparisons (Fig. 4D and Supplementary Table S2). Five genes were shared among all 

three models, with four of them being involved in innate immune response (BST2, IFI27, IFIT1, and 

OAS1) (Fig. 4E and Supplementary Fig. S5A). Furthermore, unbiased pathway analysis consistently 

revealed enrichment of interferon α and γ response signatures in these bidirectional gene sets from 

all three models, and this divergence was not associated with the cell line background 

(Supplementary Fig. S5B). Given that the shift in estrogen response is a prominent feature of these 

endocrine-therapy resistant models, we tested whether the noted heterogeneity in the innate immune 

response signatures and estrogen response are linked. We separately analyzed this correlation in 

ESR1-mutant and TamR/LTED models, given the previously characterized nature of activated or 

repressed estrogen response programs, respectively. Surprisingly, we found that the degree of 

change in estrogen response signature showed a negative association with an interferon response 

signature in both models (Fig. 4G), where interferon signatures were only elevated in ESR1-mutant 

models with weak estrogen activation and TamR/LTED models with weak estrogen repression (Fig. 

4H). These results highlight the possibility that the innate immune cascade serves as a universal 

negative mediator of estrogen signaling in endocrine-therapy resistant breast cancer. 

 

We examined the relationship between response to endocrine therapy and innate immunity using 

data from the recently published POETIC phase III neoadjuvant endocrine therapy trial in 

postmenopausal women (n=115)(72). We compared baseline and surgical samples after treatment 

with an aromatase inhibitor revealing a significant overall decrease in estrogen response signatures 

in both responders (n=85) and non-responders (n=30), albeit with considerable inter-patient 

heterogeneity (Fig. 4I). Intriguingly, interferon response signatures were increased within the 

responder group (Fig. 4I). Moreover, we found that the degree of estrogen response and interferon 
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response associated with endocrine therapy were inversely correlated, regardless of patient outcome 

(Fig. 4J), suggesting either mutual or mono-directional inhibitory effects between the two signals and 

consistent with the observation in cell models. Importantly, we observed a numerically significant 

inverse correlation between interferon response and changes in tumor Ki67 levels associated with 

treatment, specifically in non-responders (Fig. 4K). In conclusion, these analyses unveiled that 

endocrine therapy may trigger interferon response signatures which is associated with greater 

endocrine response. This sheds light on potential therapeutic avenues for overcoming endocrine 

resistance in breast cancer patients. 

 

Concordance among ESR1-mutant breast cancer cell models 

Among all the endocrine resistance model types, hotspot ESR1-mutant models have the largest data 

set available. These mutations have undergone extensive characterization over the past decade, 

facilitated by the establishment of a variety of different cell models (64,73-75). However, the majority 

of published studies have drawn their conclusions from a single cell model, with only a few 

conducting cross-validation experiments through collaborative efforts (49,52). Leveraging our 

comprehensive collection of datasets we aimed to address several key questions regarding data 

congruency. 

 

First, the distinct methods of cell model construction using either genome editing (GE), or ectopic 

overexpression (OE) may introduce potential artifacts. We compared transcriptomic regulation in 12 

ectopic overexpression and 32 genome-edited ESR1 mutant models to their wild-type control 

counterparts in the absence of estrogen stimulation. Surprisingly, only a weak correlation (R=0.19) 

was observed in regulatory percentile correlation, highlighting significant inter-model discrepancies 

(Fig. 5A). Subsequently, we identified 539 and 133 genes that were more prevalently regulated in GE 

and OE models, respectively (delta regulatory PCT>70%), such as BFSP2 and ENTPD8 

(Supplementary Table S2 and Supplementary Fig. S6A). Interestingly, 32 out of 133 (24%) OE-

specific targets belonged to the category of noncoding RNA such as lncRNA, ncRNA, and miRNA 

(e.g., LINC00886, Supplementary Fig. S6B), suggesting that the overexpression step might 

particularly influence RNA processing. Importantly, this elevation was consistent in both transient 

doxycycline-inducible models and long-term stable overexpression models (Supplementary Fig. S6B). 

Pathway analysis identified a strong enrichment of innate immune response pathways (Interferon, 

complement, and TNFα/NFkB) in GE unique genes, possibly as a result of genome disruption. On the 

other hand, OE unique genes were enriched for estrogen response signatures, likely due to the 

overexpression of receptor levels amplifying ER-related differences (Fig. 5B). Given the differences 
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identified, we examined how each type of model compared to clinical samples harboring ESR1 

mutations. We harmonized four published cohorts comprising 313 ER+ metastatic breast cancer 

patients, consisting of 246 and 67 patients harboring WT and mutant ESR1, respectively. Logistic 

regression modeling, using genes with average regulatory PCT above 60% in each model type, 

revealed that signatures from both models could effectively distinguish ESR1 mutant samples from 

WT counterparts, with genome-edited models showing a greater performance in terms of specificity 

and sensitivity trade-off (Fig. 5C), suggesting a better clinical representation. 

 

Multiple research teams, including ours, have reported de novo transcriptomic reprogramming by 

ESR1 mutations, which may confer neomorphic gain-of-function phenotypes not observed by ligand-

activated wild-type ER (15,64,73). However, there are considerable differences in results  from 

different groups. We observed a strong positive correlation (R=0.46), between genes regulated in 146 

estrogen-treated experiments and 46 experiments in ESR1-mutant cells compared to their 

corresponding WT controls in the absence of E2 (Fig. 5D). However, we noted 78 genes showing 

ligand-independent activation and 113 genes showing ligand-independent repression (average 

PCT>40% in both E2 and ESR1 mutation regulation) (Fig. 5D and Supplementary Table S2), such as 

EGR3 and FNBP1L, as well as 87 de novo targets (average PCT>40% in ESR1 mutation and -15%-

15% in E2 regulation), such as CNTFR and CRLF1 (Supplementary Fig. S6C,S6D). Next, we 

investigated whether these ligand-independent and de novo targets are associated with mutant ER 

genomic binding. We analyzed gained peak sets from 16 ER ChIP-seq datasets in ESR1-mutant 

models normalized to their corresponding wild-type controls from four independent studies 

(32,49,52,64,74), and calculated the proximal gene regulatory score (-100 to +100 kb range of the 

TSS) from the peak union using Binding and Expression Target Analysis (BETA)(60). De novo genes 

showed significantly lower BETA scores compared to both upregulated and downregulated ligand-

independent genes (Fig. 5E), suggesting these targets are less likely to be direct ER transcriptional 

targets. Utilizing the LISA algorithm (40), we predicted potential regulators of these genes. Canonical 

ligand-independent genes were closely associated with ER and FOXA1, while numerous epigenetic 

regulators at the DNA and histone levels were linked to de novo genes, including DNA methylation 

and histone modifiers such as KDM5C, JARID2, and KDM2B (Fig. 5F). Furthermore, we 

comprehensively assessed the regulatory percentile correlations of 127 epigenetic modifiers in ESR1-

mutant and E2-stimulated conditions (Fig. 5G). We found that top mutant-specific mediators 

predominantly regulate histone H3 lysine 27 (H3K27) methylation, including the unique increase of 

H3K27me3 demethylase KDM6B. In line with this, we found H3K27me3 marked regions in ESR1 

mutant cells presented higher degree of chromatin accessibility by projecting ATAC-seq signals from 
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a previous study  (64), which was not discerned in other histone marked regions such as H3K9me3, 

H3K27ac and H3K4me3 (Fig. 5H). In summary, these analyses provide valuable insights indicating 

that ESR1-mutant cells exhibit an ER binding-independent gene expression profile via H3K27me3 

modification-driven epigenetic remodeling. 

 

Y537S and D538G are the two most frequently detected ESR1 mutations in metastatic breast 

cancers resistant to endocrine therapy (49). While both mutations contribute to constitutive ER 

activation, pre-clinical studies have also revealed allele-specific effects (15,49,64,73), although with 

limited consistency across studies. We correlated the global gene regulatory percentiles and hallmark 

pathway alterations from 18 Y537S and 15 D538G cell model comparisons. While we observed a 

strong positive correlation (R=0.74), we identified 420 and 364 genes that were more prevalently 

regulated in Y537S and D538G variants compared to WT in the absence of E2 (Fig. 5I and 

Supplementary Table S2), respectively, such as SYT3 and SH3TC1 (Supplementary Fig. S6E). At the 

pathway level, Y537S was enriched for genes encoding proteins associated with metabolic functions 

such as glycolysis, oxidative phosphorylation, and fatty acid metabolism, while D538G regulated 

genes were more associated with hedgehog signaling. However, estrogen response and E2F 

signatures were highly upregulated in both variants (Supplementary Fig. S6F). LISA analysis 

revealed that Y537S-specific genes were consistently linked to ESR1 and FOXA1 across different 

studies, whereas the top D538G regulomes involved a diverse range of developmental-related 

regulators such as EOMES and WT1, as well as alternative nuclear receptors such as AR and PR 

(Fig. 5J). Integration of ER ChIP-seq data from 9 Y537S and 6 D538G specific models revealed that 

Y537S-specific genes showed significantly higher association with Y537S ER genomic binding, while 

such a difference was not observed in the D538G ER ChIP-seq profile (Fig. 5K). In conclusion, we 

found highly consistent transcriptomic regulation between ESR1 Y537S and D538G variants, while 

each variant possesses unique features. The unique alteration in Y537S is likely due to its distinct ER 

genomic binding, while D538G may involve the hijacking of nonconventional transcriptional factors to 

partially reshape its unique transcriptome. 

 

Consensus targets in ESR1-mutant breast cancer cell models 

We have determined that despite the differences in gene expression in the ESR1 mutant cell models, 

they show similarities to the transcriptomes identified in human clinical samples. With this in mind, we 

merged the ESR1-mutant cell model data with profiles of clinical specimens to pinpoint consistently 

regulated genes that may have been overlooked in previous studies using single models and 

datasets. We focused primarily on upregulated genes, given their potential utility as therapeutic 
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targets. Among all 46 comparisons in ESR1 mutant models, we identified 25 genes that consistently 

ranked among the top 10% of upregulated targets in at least 50% of comparisons. Notably, twelve of 

these genes also overlapped with differentially upregulated genes (padj < 0.1, log2FC > 0) detected 

in ESR1 mutant versus WT clinical samples from at least one of four individual metastatic breast 

cancer cohorts (Fig. 6A and Supplementary Fig. S7A). Surprisingly, many of these genes have not 

been previously studied in the context of ESR1 mutation or even estrogen regulation, such as RBM24 

and C5AR2. Examination of their estrogen regulatory potential revealed that the majority of these 

targets are regulated via ligand-independent ER activation, while a few, such as RND2 and NUPR1, 

are subject to de novo regulation (Fig. 6B). This finding underscores the potential value of 

comprehensive data analysis in uncovering novel insights that might otherwise be missed in single-

dataset analyses. 

 

Of particular interest, we observed two neuropeptide Y receptor (NPYR) genes, NPY1R and NPY5R, 

among the top three consistently upregulated targets in all the ESR1 mutant models. NPY1R has 

been studied in the context of endocrine sensitivity in ER+ breast cancer(76) although it specific 

role(s) in ESR1 mutant breast cancers has not been explored. Initially, we confirmed a significant 

upregulation of NPY1R in ESR1 mutant tumors in three out of four clinical cohorts (Fig. 6C), along 

with its consistent elevation in ESR1 mutant cell models (irrespective of cell line and ESR1 mutant 

type) (Fig. 6D and Supplementary Fig. S7B). Notably, NPY1R demonstrated dominant upregulation 

upon E2 stimulation, while its expression was suppressed by inhibitors of ER signaling (Fig. 6E). 

Furthermore, we consistently observed gained ER binding at the proximal region of the NPY1R locus 

in ESR1 mutant cells (Fig. 6F). Taken together, these findings identify NPY1R as one of the most 

consistent and universal upregulated targets in ESR1 mutant breast cancer, likely driven by the 

constitutive activation of mutant ER and their increased binding activity at this gene locus. To further 

investigate its role in endocrine resistance in ESR1 mutant cells, we conducted knockdown 

experiments using MCF7 and T47D genome-edited cell models(73). qRT-PCR validated its elevated 

expression in both T47D cell lines and MCF7 Y537S models (Fig. 6G). Remarkably, knockdown of 

NPY1R significantly inhibited the growth of T47D WT cells under E2 stimulation, as well as the ligand-

independent growth of ESR1 mutant cells (Fig. 6H and Supplementary Fig. S7C), underscoring the 

essential role of NPY1R in estrogen-dependent and ESR1 mutant breast cancer cell growth. 

 

Discussion 

The increase in multiomic cancer data represents an invaluable resource, yet integration and cross-

comparison between individual studies poses significant challenges. The initial EstroGene database 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2024. ; https://doi.org/10.1101/2024.06.28.601163doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.28.601163
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24

(35) laid a solid foundation by providing a unified analysis of multiple datasets and offering a versatile 

tool for comprehensive exploration of transcriptional responses to estrogens in validated models of 

breast cancer. EstroGene2.0 represents a substantial enhancement by incorporating experimental 

data on responses to endocrine response and on resistance to various interventions. EstroGene2.0 

has a robust and user-friendly interface, empowering researchers to assess individual genes or gene 

signatures generated under specific experimental conditions. With access to both gene expression 

data and ER proximity binding information, users can investigate cross-dataset consistency. 

EstroGene2.0 provides an unprecedented opportunity to dissect the technical and biological 

intricacies inherent in response to endocrine therapies. 

 

In this study, we identified a more heterogeneous transcriptomic response in tamoxifen treatment 

compared to fulvestrant. This disparity may stem from the fact that tamoxifen is a partial ER agonist 

(77). For instance, the diverse transcriptomic reprogramming triggered by different doses of tamoxifen 

may arise from the recruitment of distinct co-activators and the distinct status of monomeric versus 

dimeric ER. Moreover, despite an overall positive correlation between gene regulation across all ER-

modulators evaluated, each compound type can regulate distinct gene clusters. Notably, the ER LDD 

ARV-471 exhibited similar effects to SERDs, attributable to their shared mechanism of ER 

downregulation. Among SERMs, tamoxifen, raloxifene, and bazedoxifene elicited markedly different 

effects compared to lasofoxifene and endoxifen. While this variation may reflect the limited 

experiments included for the latter two compounds and the differential distribution of cell model and 

modality used, it is plausible that different SERMs confer unique molecular portraits, warranting 

further investigation. It is also possible that these agents may differentially regulates other estrogen 

receptors such as ERβ and G Protein-Coupled Estrogen Receptor (GPER). Furthermore, we 

observed a tight link between transcriptomic response and cell line context. Integration with RIME 

data revealed the differential dependency of cell-line-specific transcriptional regulators. For instance, 

ER demonstrated a stronger binding affinity with co-repressor TLE3 in the CAMA1 cell line, and ER 

modulator treatment could more profoundly reshape TLE3/ER-related downstream targets, resulting 

in a distinct molecular signature compared to other cell lines. Importantly, the identification of these 

context-dependent effects underscores the necessity for future studies to encompass a wider 

spectrum of models when testing ER modulators. The examination of more clinically relevant models, 

such as patient-derived organoids and immunocompetent animal models, is warranted to further 

elucidate the complex interplay between ER modulators and complexed breast cancer biology. 
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Endocrine resistance presents a complex landscape of molecular determinants, as our integrated 

analysis revealed. We observed interferon response signaling showing as a consistent negative 

association with estrogen signaling shift. Mutual regulation between these two axes has been 

previously reported in wild-type breast cancer cells. Specifically, activation of ER signaling can inhibit 

type I interferon response by restricting the engagement of the IFN-stimulated gene factor 3 (ISGF3) 

complex at the ISG promoters and disrupting the ISGF3 complex via interaction with STAT2 (78). 

Additionally, it has been demonstrated that the addition of type I and II interferon treatment can 

enhance the anti-proliferative effects of tamoxifen in breast cancer cell lines (79). These findings 

suggest that the plasticity of interferon response may buffer the alterations in estrogen signaling seen 

in endocrine-resistant settings, either boosting ER signaling in ER repressive models like LTED or 

attenuating ER signaling in ER hyperactivation models like ESR1 mutants. Combining therapies that 

increase interferon signaling with standard-of-care ER modulator treatment may offer a potential 

avenue to overcome this resistance. Analysis from the POETIC clinical trial (47) also highlights a 

potential prognostic role of interferon response in endocrine-resistant cases. However, caution should 

be exercised when interpreting these data, as the interferon response signature from bulk tumor 

sequencing may also be influenced by immune infiltration patterns. Additionally, the source of 

divergent interferon response in these models warrants further investigation. One possibility relates to 

the method of model construction; for instance, tamoxifen is known to induce DNA damage (80), 

which could trigger innate immune responses via the cGAS-STING pathway. Therefore, the varying 

doses and durations of tamoxifen selection in various studies could introduce different degrees of 

interferon response, and some selected clones may harbor mitigated interferon signaling. It once 

again emphasizes the importance of incorporating optimal control into experimental design, 

particularly for models undergone extensive engineering or selection. 

 

ESR1 mutations are likely drivers of resistance to endocrine therapy and are associated with 

metastatic disease. While pre-clinical cell models have extensively probed this phenomenon, the 

consistency of findings from in vitro models remains to be examined. In our prior studies we 

uncovered epigenetic dysregulation in ESR1 mutant cells, notably the pronounced enrichment of 

FOXA1, CTCF, and OCT1 in open chromatin present in ESR1 mutant cells (64), alongside alterations 

in chromatin interaction patterns driven by CTCF/cohesin complex remodeling(52). Building upon this 

foundation, investigation of 46 ESR1 mutant transcriptomic profiles highlights a tight association 

between epigenetic regulators and de novo transcriptomes. This correlation may stem from increased 

accessibility at facultative heterochromatin regions marked by H3K27me3, while changes at 

H3K27ac-marked regions were not discerned. These insights underscore how ESR1 mutations, by 
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reducing repressive effects at existing heterochromatin marks, can sufficiently reshape the 

transcriptome, and the elevation of H3K27me3 demethylase KDM6A in ESR1 mutant cells supports 

this proposition. Furthermore, our observations point towards the involvement of DNA methylation in 

regulating these de novo genes, aligning with findings of mutant-specific alterations in DNA 

methyltransferase, such as DNMT3B. Notably, previous pharmacological studies have revealed 

heightened sensitivity of ESR1 mutant cell models towards epigenetic modifier inhibitors like OTX015, 

which targets the bromodomain and extra terminal domain (BET)(81). These findings underscore the 

potential for further exploration into the mechanisms of epigenetic reprogramming in ESR1 mutant 

breast cancer, offering a promising avenue for uncovering novel vulnerabilities and therapeutic 

strategies. 

 

Previous preclinical studies have shed light on allele-specific functions of ESR1 Y537S and D538G 

variants, an idea bolstered by several clinical observations. For example, the BOLERO2 trial 

showcased differences in overall survival and response to everolimus treatment between tumors 

harboring Y537S and D538G mutations(82). Our comprehensive analysis, comparing 18 Y537S and 

15 D538G-induced transcriptomic experiments, reveals an overall high degree of similarity but we 

also note unique biology attributable to each mutant. Specifically, our findings suggest that Y537S 

variant-specific transcriptomes are predominantly regulated by ER genomic binding, whereas the 

shifts unique to D538G variants stem from a diverse array of ER-independent functions. This aligns 

with previous clinical data analyses indicating that Y537S mutant tumors exhibit a more pronounced 

enhancement of ER signaling(49). Given that these models predominantly utilize MCF7 and T47D 

cell lines, there is an urgent need to establish additional ESR1-mutant cell lines and PDX and 

organoid models with diverse genetic backgrounds to corroborate these observations. Lastly, 

leveraging our comprehensive data collection, we identified several consistently upregulated genes in 

both ESR1 mutant models and clinical samples, many of which have not been previously described. 

Notably, two neuropeptide Y receptor (NPYR) genes, NPY1R and NPY5R, emerged among the top 

three genes in our analysis. Our additional experiments validated the increased expression of NPY1R 

in ESR1 mutant cells and its role in conferring growth dependency. Interestingly, a recent study also 

identified NPY1R as an estrogen (E2)-activated gene in breast cancer cell lines(76), and showed that 

activation of NPY1R by ligand stimulation partially inhibited E2-driven cell proliferation. This finding 

contrasts with our finding that knockdown of NPY1R reduced estrogen stimulated and ESR1 mutant 

mediated growth, however, our studies were performed in the absence of NPY1R ligand activation. It 

is plausible that the inactive state of NPY1R itself may engage in crosstalk with other signaling 

pathways at baseline, contributing to the ligand-independent growth phenotype in ESR1 mutant cells, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2024. ; https://doi.org/10.1101/2024.06.28.601163doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.28.601163
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27

given previous studies demonstrating its extensive crosstalk network in central nervous system 

diseases(83). 

 

In conclusion, the EstroGene2.0 database stands as a user-friendly platform tailored for the analysis 

and visualization of endocrine response and resistance in breast cancer. Similar to our initial 

observations stemming from Estrogene1.0, meta-analysis of multiple experiments and model systems 

reveals numerous novel findings not possible from single model studies. Our future vision extends 

beyond its current capabilities, as we aim to enrich the platform with additional epigenetic datasets, 

including histone modifications (e.g., histone ChIP-seq) and chromatin interaction profiles (e.g., Hi-C), 

thereby providing deeper mechanistic insights in the future. Furthermore, our roadmap includes the 

integration of datasets from clinical trials involving various endocrine therapies in ER+ breast cancer. 

This expansion will culminate in the development of a consensus network informed by user input from 

clinical settings, facilitating informed decision-making in patient care. Moreover, our studies have 

generated a plethora of hypotheses, underscoring the need for future experimental validation and 

analysis of clinical specimens. We anticipate that the EstroGene2.0 database will serve as a catalyst 

in the quest to overcome resistance to endocrine therapy in breast cancer patients and beyond, 

ultimately contributing to improved patient outcomes. 

 

Data Availability 

Details of all the curated all data sets used for database construction are summarized in 

Supplementary Table S1. This includes all the associated publication information, GEO accession 

numbers, experimental designs including cell models, compound dose, duration, resistant model 

generation methods, library preparation method and NGS sequencing platforms. For ChIP-seq 

integration with other epigenetic data, preprocessed BED files for ChIP-seq of H3K27ac, H3K9me3 

and H3K27me3 in T47D were downloaded from GSE63109(63). T47D ESR1 mutant cell ATAC-seq 

data were downloaded from  GSE148277(64). For clinical cohort analysis, expression data and 

sample metadata of POETIC trial were downloaded from GSE105777(47). For ESR1 mutant 

metastatic breast cancer cohorts, data set availability was described in our previous publication(49), 

including our local WCRC cohort (46 ESR1 WT and eight mutant tumors) and three previously 

reported cohorts—MET500(50) (34 ESR1 WT and 12 mutant tumors), POG570(51) (68 ESR1 WT 

and 18 mutant tumors), and Dana-Farber Cancer Institute (DFCI; 98 ESR1 WT and 32 mutant 

tumors)(52). 
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Figure Legends 

Figure 1. Expansion of EstroGene database towards ER modulator response and resistance 

profiles 

A. A flow chat depicting the process for the EstroGene2.0 database collection. 

B-J. Stacked histogram showing the metadata separated by technologies and two major model types, 

ER modulator treatment and endocrine resistance (Endo Resistant), across all the curated datasets 

related to year of dataset publication (B), cell line used (C), replicates used (D). Within ER modulator 

treatment collection, further separation by compound types (E), dose (F) and duration (G) for 

tamoxifen and fulvestrant are shown. Within endocrine resistant models, further subgroup by specific 

model types (H), ESR1 mutant cell model types (I) and specific variants (J) are shown. 

 

Figure 2. The EstroGene2.0 browser 

A flow chart summarizing the conception of EstroGene2.0 website construction, including interface 

design, five biological models and specific functions for metadata and analysis modules. 

 

Figure 3. Diversity of short-term ER modulator transcriptomic response  

A. Boxplots depicting the log10 (coefficient variations)^2 as a measurement of data set variation 

within all the tamoxifen and fulvestrant comparisons. Mann Whitney U test was used. 

B. Distribution of log p values of each variable from mixed effect multivariant linear regression model 

of gene regulatory percentiles tile from -100% to 100% with short-term tamoxifen or fulvestrant 

treatment experiments, among all genes.  

C. Scatter plot showing Pearson correlation of average regulatory percentiles of each gene from 

tamoxifen and fulvestrant treatment experiments. Highlighted dots include consistently regulated 

genes with average fold change percentile ≥25 and ≤-25  in both tamoxifen or fulvestrant treatment 

experiments (‘Tam-up & Fulv-up’, blue and ‘Tam-down & Fulv-down’, green) as well as inconsistently 

regulated genes with average regulatory percentile ≥25 and ≤-25 in one of the compounds (‘Tam-up 

& Fulv-down’, red and ‘Tam-down & Fulv-up’, yellow). 
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D-G. Dot plots showing enriched pathways in genes which were ‘Tam-up & Fulv-up’ (D), ‘Tam-down 

& Fulv-down’ (E), ‘Tam-up & Fulv-down’ (F), and ‘Tam-down & Fulv-up’ (G), using five different 

databases. 

H and K. Heatmaps illustrating the Pearson correlation coefficients of global gene regulatory 

percentile between each of the two compounds (H) and cell lines (K) with unsupervised clustering. 

I. A heatmap showing the regulatory percentile of 11,191 genes in each of the indicated experiments 

and average values of fulvestrant and tamoxifen. Cell lines and compound names are labeled with 

color coded experiments and drug types. 

J. A heatmap showing GSVA normalized enrichment score (NES) of average drug-caused 

enrichment changes from 50 MSigDB Hallmark signatures with unsupervised clustering. 

L. Left: Venn diagram showing the overlapping of ER interactors from RIME experiment (log2FC>5, 

padj<0.05 to IgG) between CAMA1 and union of MCF7, T47D, BT483, BT474 and EFM19. Right: 

Overlapping of CAMA1 unique ER interactors and predicted regulators from CAMA1-specific up- and 

down-reglated genes. Consistent targets are labelled. 

 

Figure 4. Transcriptomic heterogeneity of endocrine resistant breast cancer cell models 

A. A heatmap representing the Pearson correlation coefficient between average regulatory percentile 

from each of the two endocrine resistant models and estrogen treatment experiments.  

B. Venn diagrams showing the overlay of genes that fall into top 10% up- and down-regulation and 

consistent in at least 40% comparisons of each endocrine resistant models.  

C. A heatmap depicting the average alteration of GSVA enrichment scores of each cell models 

normalized to the corresponding controls from 50 MSigDB Hallmark signatures with unsupervised 

clustering. 

D. Scatter plots showing the correlation of percentage of each gene that falls into top 10% up- and 

down-regulated parts. Color code indicates the density of each proportion. Bi-direction genes are 

highlighted in red frame and defined as genes showing top10% activation and repression 

simultaneously in at least 15% comparisons. 

E. A Venn diagram depicting the overlapping of bidirectional genes from the three endocrine resistant 

models in D. 
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F. Dot plot showing the significantly enriched Hallmark pathways from bidirectional genes of each 

mode. Pathways are prioritized towards commonly changed ones. 

G. Scatter plot showing the Pearson correlation between average shift of interferon response 

signatures (mean of interferon response α and γ) and estrogen response signatures (mean of 

estrogen response early and late) in ESR1 mutant models and TamR/LTED models respectively.  

H. Heatmaps showing the average shift of interferon response signatures and estrogen response 

signatures of each comparison indicated in G as rows. 

I. Line plots depicting the change of interferon response signatures (right) and estrogen response 

signatures (left) between baseline and surgical samples in responder and non-responder from 

POETIOC clinical trial. Wilcoxon signed rank paired sample test was used. 

J and K. Scatter plots representing the Pearson correlation between treatment-caused changes of 

interferon response signatures and estrogen response signatures (J) as well as each of them towards 

treatment-induced changes of KI67% (K) of each patient separated by responders and non-

responders. 

 

Figure 5. Concordance among ESR1 mutant breast cancer cell models 

A. Scatter plot showing Pearson correlation of average regulatory percentile between 12 ectopic 

overexpression models (OE) and 32 genome-edited (GE) ESR1 mutant models of all the genes. 

Genes that more pronouncedly regulated by each model were highlighted (|delta regulatory 

percentile| >100 between the two models). 

B. Bar graph showing the significantly enriched Hallmark pathways in GE and OE- preferentially 

regulated genes in I. 

C. Receiver operating characteristic curve depicting the performance of GE and OE upregulated 

genes (average percentile >60%) as signatures in distinguishing ESR1 mutant from WT clinical 

samples from four merged cohort of 313 samples. 

D. Scatter plot showing Pearson correlation of average regulatory percentile between ESR1 mutant 

and estrogen treatment of all the genes. Genes are subgrouped into three parts: ligand-dependent 

genes (average percentile above 50% or below -50% in both conditions, red and blue) and de novo 

genes (average percentile above 50% in TamR and within -15%-15% in E2 treatment, green). 
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E. Box plot representing the BETA score comparison of each selected gene subgroups in A. BETA 

score were calculated based on gained peaks of ESR1 mutant cells merged from 16 ChIP-seq 

samples normalized to their corresponding controls. Mann Whitney U test was used. 

F. Scatter plot showing the correlation of -log10 p values of LISA predicted regulators from ligand-

dependent and de novo genes in A. Only significantly enriched regulators were shown, and top 

targets skewed to each side were labelled. 

G. Scatter plot showing correlation of average regulatory percentile between ESR1 mutant and 

estrogen treatment of 127 epigenetic modifiers. Targets consistently altered in both conditions or 

uniquely altered in one of the conditions were labelled. 

H. Linge plot representing the intensity of ATAC-seq signals from MCF7 WT and ESR1 mutant cell 

lines on different histone modification regions from ChIP-seq data of MCF7 cell line. 

I. Scatter plot showing Pearson correlation of average regulatory percentile between Y537S and  

D538G ESR1 mutant variants of all the genes. Genes that more pronouncedly regulated by Y537S 

and D538G were highlighted (|delta regulatory percentile| >70 between the two variants). 

J. Scatter plot showing the correlation of -log10 p values of LISA predicted regulators from Y537S 

and D538G-preferrentially regulated genes in F. Only significantly enriched regulators were shown 

and top targets skewed to each side were labelled. 

K. Box plot representing the BETA score comparison of each selected gene subgroups in F. BETA 

score were calculated based on gained peaks of ESR1 mutant cells merged from 9 Y537S and 6 

D538G ChIP-seq samples normalized to their corresponding controls. Mann Whitney U test was used. 
 

Figure 6. Consensus targets in ESR1 mutant breast cancer cell models 

A. A bar plot ranking the genes by consisteny of falling into top10% upregulated targets in ESR1 

mutant cell models. Only genes showing equal to or above 50% consistency out of 46 comparisons 

were shown. Color code indicates the number of cohorts (four in total) in which this gene is also 

identified as a significantly upregulated target in ESR1 mutant samples. 

B. Scatter plot showing the correlation of average regulatory percentile between ESR1 mutant and 

estrogen treatment of 25 targets in A. 

C. Box plots showing the expression of NPY1R between ESR1 WT and mutant samples from the 

three cohorts. 
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D and E. Bar plot showing the distribution of regulatory percentile of NPY1R in all the comparisons 

from ESR1 mutant cells (D), estrogen and ER modulator treatments (E) experiments. Percentiles are 

ranged between -100 to +100 and larger number indicates stronger regulation. 

F. Genomic track view of ER ChIP-seq signal from ESR1 WT and ESR1 mutant models in two cell 

lines from GSE148277. Genomic track scale is adjusted to the identical level for all the samples. 

G. Box plots showing the relative expression of NPY1R in genome-edited MCF7 and T47D ESR1 

mutant cells and WT treated with E2 condition. ∆ ∆Ct method is used and p values were calculated 

using one-way ANOVA. 

H. Line plot showing the growth rate of T47D WT and ESR1 mutant cells in the presence of scramble 

(siNT) and NPY1R siRNA transfection for 8 days. Two-way ANOVA was used for statistic comparison. 

Experiment has been repeated for 3 times. 
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Figure 1. Expansion of EstroGene database towards ER modulator 
response and resistance profiles

Data Search

-ER Modulators Treatment

Transcriptomic & ER ChIP-
seq profiling for:

-Endocrine Resistant

Breast Cancer Models of

178 Experiments from
94 Studies

Manual
Curation

Uniformly
Processing

2.0

Merge

EstroGene 1.0-E2 treatment

Data IncorporationData Ingestion

ER Modulators
-74 RNA-seq
-44 Microarray
-6 ER ChIP-seq

Endocrine Resistance
-30 RNA-seq
-13 Microarray
-11 ER ChIP-seq estrogeneii.web.app

A

B

Normal 
Breast 
Model

Year of publication

ER Modulators Endo Resistant

Cell line usedC

SERM/SERD Hybrid

SERD

D E

Endo Resistant model type

SERD Analog

SERCA

Tamoxifen dose (nM) Tamoxifen duration (h)

Fulvestrant dose (nM) Fulvestrant duration (h)

Genome-
Edited

Ectopic Other

ESR1 mutant model type ESR1 mutant variants

F G

H J

Endo Resistant

Endo Resistant

LDD/PROTAC

I

-39 RNA-seq
-53 Microarray
-75 ER ChIP-seq

ER RIME
16 ER+ 
cancer 
cell lines

Overall Collection

-143 RNA-seq
-110 Microarray
-92 ER ChIP-seq
-16 ER RIME

361 Experiments from
212 Studies
Modalities

Cell lines
-23 breast cancer
-4 normal breast
-1 endometrial cancer

ER Modulators

ER Modulators

S
am

ple  N
um

ber
S

am
ple  N

um
ber

SERM

ER Modulators

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2024. ; https://doi.org/10.1101/2024.06.28.601163doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.28.601163
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.0

estrogeneii.web.app Estrogen 
Treatment

Anti-estrogen 
Treatment

Tamoxifen 
Resistant

Long-term 
Estradiol 

Deprivation

ESR1 Mutation

Metadata

Analysis

Sample-level 
Inventory

Experimental 
quality control

Preprocessed 
data download

Single 
gene 
plot

Inter-model 
similarity 
analysis

ER 
Interactome 
search

Five Biological Models Two Functional ModulesUser-friendly Interface

Figure 2. The EstroGene2.0 browser

Gene 
signature 
enrichment 
analysis

Searchable 
raw values

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2024. ; https://doi.org/10.1101/2024.06.28.601163doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.28.601163
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3. Diversity of short-term ER modulator transcriptomic 
response 
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Figure 4. Transcriptomic heterogeneity of endocrine resistant 
breast cancer cell models
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models
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Figure 6. Consensus targets in ESR1 mutant breast cancer cell
models
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