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Abstract 

Aging is a major driver of diseases in humans. Identifying features associated with aging is 

essential for designing robust intervention strategies and discovering novel biomarkers of aging. 

Extensive studies at both the molecular and organ/whole-body physiological scales have helped 

determined features associated with aging. However, the lack of meso-scale studies, particularly 

at the tissue level, limits the ability to translate findings made at molecular scale to impaired tissue 

functions associated with aging. In this work, we established a tissue image analysis workflow - 

quantitative micro-anatomical phenotyping (qMAP) - that leverages deep learning and machine 

vision to fully label tissue and cellular compartments in tissue sections. The fully mapped tissue 

images address the challenges of finding an interpretable feature set to quantitatively profile age-

related microanatomic changes. We optimized qMAP for skin tissues and applied it to a cohort of 

99 donors aged 14 to 92. We extracted 914 microanatomic features and found that a broad 

spectrum of these features, represented by 10 cores processes, are strongly associated with 

aging. Our analysis shows that microanatomical features of the skin can predict aging with a mean 

absolute error (MAE) of 7.7 years, comparable to state-of-the-art epigenetic clocks. Our study 

demonstrates that tissue-level architectural changes are strongly associated with aging and 

represent a novel category of aging biomarkers that complement molecular markers. Our results 

highlight the complex and underexplored multi-scale relationship between molecular and tissue 

microanatomic scales.  
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Introduction 

Aging is a complex process marked by the gradual decline of physiological functions and 

deterioration across various organs and tissues1. Biological age, as opposed to chronological age, 

is a key risk factor for numerous diseases and health conditions that impact overall health and 

lifespan of individuals2. Recent advances in geroscience have revealed connections between 

seemingly unrelated diseases, highlighting the central role of aging in their onset and progression3. 

It is imperative to understand the natural aging process and the alterations occurring in biological 

systems over time to pinpoint novel therapeutic avenues and effective biomarkers for aging. 

Identifying reliable and robust biomarkers of biological aging is critical for accurately stratifying 

the risk of individuals to design anti-aging interventions and novel therapeutic strategies4.  

As individuals age, they tend to experience progressive dysfunctions, including those of 

the cardiovascular, musculoskeletal, and respiratory systems5–7. Extensive research efforts have 

revealed features of biological systems over a wide range of length scales, from the molecular 

scale to the organ scale, that change over time8–10. At the molecular level, advances in omics 

techniques have facilitated the development of aging biomarkers11,12 in genetics13,14, 

epigenetics15–17, transcriptomics18,19, proteomics20–23, and metabolomics19.  At the organ level, 

aging is associated with changes in blood biochemistry23, immune cells composition24–26, and 

morphology of organs5–7 . 

As the functions of biological systems emerge from the integration of multiple scales, 

including the molecular, cellular, tissue, and physiological levels, exploring the association and 

utility of aging at the cellular and tissue scales is crucial27. These scales are critical for bridging 

changes at the molecular scales to the physiological scales, thereby facilitating a deeper 

understanding of the aging process and promoting the delineation of chronological and biological 

aging biomarkers. Examining histological tissue sections is one of the primary approaches to 

simultaneously study biological systems at both the cellular and tissue scales28–32. However, 

performing effective quantitative analysis on tissue sections has been a challenging task due to 

the spatial complexity and variability of tissue structures, as well as the limitations of analytical 

techniques33. These challenges hinder the utility of tissue architectural information as potential 

biomarkers of aging28. 

In this study, we developed a deep-learning-based tissue image analysis pipeline named 

quantitative micro-anatomical phenotyping (qMAP). This pipeline quantitatively profiles 

microanatomical tissue and cellular features in histological sections stained with hematoxylin and 
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eosin (H&E). qMAP accurately labels distinct tissue compartments and individual cells from 

whole-slide tissue images using deep learning frameworks. We implemented qMAP to 

quantitatively profile microanatomic changes in human skin of the back and explore the potential 

use of tissue architectural features as aging biomarkers. 

 

Results 

Overall workflow of human skin tissue analysis  

To investigate age-related changes in non-diseased skin, we obtained 379 formalin-fixed, 

paraffin-embedded (FFPE) skin biopsy specimens from patients at the Johns Hopkins Hospital 

collected between 2015 and 2021. These samples comprised histologically normal adjacent 

tissues from excision specimen of patients diagnosed with various conditions, such as melanoma, 

seborrheic keratosis, epidermal cysts, fibrosis, basal cell carcinoma, and squamous cell 

carcinoma. A board-certified dermatopathologist reviewed all H&E slides for each tissue 

specimen and identified 167 patient cases with substantial healthy margin, defined by the 

absence of disease or other damage, such as solar elastosis, excessive inflammation, or cicatrix 

(Figure 1a and Supplementary Figure 1).  Among these, the majority (N=130) were skin tissue 

blocks from the back, with the remainder from the abdomen, chest, head, neck, arms, and legs. 

Out of the 130 back tissues, 99 originated from Caucasian donors; with 56 males and 43 females. 

The samples were split into three age groups: young (age<30), middle-aged (30≤age≤60), and 

old (60<age). Of the 99 donors, 17 were young, 41 middle-aged, and 41 old (Supplementary 

Table 1).  

To comprehensively analyze the micro-architecture of the skin and its constituent cells, 

we spatially mapped the architecture of the tissue and cell components in these tissue specimens. 

We identified twelve primary microanatomical compartments distinguishable from H&E images: 

1. Stratum corneum, 2. Stratum spinosum, 3. Hair shaft, 4. Hair follicle, 5. Smooth muscle, 6. 

Sebaceous gland, 7. Eccrine coils (sweat gland), 8. Nerve, 9. Vasculature, 10. Extracellular matrix 

(ECM), 11. Fat, and 12. Interstitial space (Figure 1b and Supplementary Figure 2). We 

established a deep learning-based workflow that precisely delineated these tissue 

microanatomical compartments (i.e. tissue compartment labeling) and the nuclei of the cells 

contained in these compartments. This was achieved by combining the DeepLabV3+ tissue 

labeling pipeline34 with HoVerNet for nuclei segmentation35 (Figure 1b). To train and validate our 

deep learning model for tissue compartment labeling, we performed manual annotations on 50 
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instances of each tissue microanatomical compartment in 20 skin samples. Out of these samples, 

15 were allocated for training, and the model's performance was assessed on the remaining 5 

unseen tissue images. The trained model achieved a precision of 96.6% and an average recall of 

93.9% across all tissue types (Supplementary Figure 3).  

To segment the nuclei in skin tissues, we first tested the performance of the pretrained 

HoVerNet model trained on CoNSeP pancreatic tissue images35. The pretrained model achieved 

a DICE score of 0.66, DICE is defined as  
2 × 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛
 when the predicted nuclei are 

compared to the manually annotated nuclei. To improve nuclei segmentation, we developed a 

semi-supervised learning workflow (Supplementary Figure 4) based on the model training 

strategy36 that does not require additional manual annotations or curation to re-train the model on 

the skin tissue images. Our results showed that this semi-supervised model substantially 

improved nuclei segmentation on skin with a DICE score of 0.73 (Supplementary Figure 4).  

The quantitative micro-anatomical phenotyping (qMAP) workflow begins with precise 

segmentation of both tissue and nuclei based on H&E-stained tissue slide images. The workflow 

is followed by the extraction of morphological features and their spatial information.  

 

Establishing a robust tissue and cell morphometric analysis 

To quantitatively assess the association between tissue micro-architecture and cellular content 

within these skin tissues, we developed a panel consisting of 914 morphological features 

categorized into five groups: 1) tissue composition, 2) tissue and cell morphology, 3) dermal ECM 

structure, 4) epidermal and dermal lamellar structure, and 5) spatial distributions of tissues/cells 

(Figure 1c). The detailed features list is found in Supplementary Table 2. Of note, our tissue 

analysis focuses on the epidermis and dermis, and does not include the subcutaneous tissue.  

Qualitative assessment of the skin images showed changes in tissue architecture, such 

as dermal thinning and epidermal flattening, indicating that changes in tissue composition and 

architecture were associated with aging (Figure 2a-b).  Quantitative analysis of skin tissue 

composition, based on the deep learning labeled tissue component map, indicated that the 

average human back skin was composed of approximately 89.3% ECM and interstitial space, 4.6% 

intradermal fat, 2.6% epidermis, 1.5% pilosebaceous unit (including the hair shaft, hair follicle, 

sebaceous gland, and arrector pili muscle), 1.3% neurovascular bundle (consisting of nerve and 

blood vessel), and 0.6% sweat gland. (Supplementary Figure 5).  
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To identify potential aging-associated tissue changes in the microarchitecture of skin, we 

used a ranked-based Spearman correlation (r) of the 914 microarchitectural features with aging 

across all tissue samples (Figure 2b).  In addition, we measured the Cohen’s distance (d), which 

describes the difference between two sample populations: samples from patients < 30 years and 

> 60 years old. We found that 108 features were significantly associated with aging with absolute 

values of r  > 0.3, p-value < 0.05, and d > 1 (Figure 2c, Supplementary Table 3). Among these 

108 features, we identified several features previously known to be associated with aging, such 

as epidermal thinning37–41 and loss of hair follicles and associated appendageal structures42,43, 

which validated our morphometrics analysis (Figure 2d). This approach allowed for the precise 

quantitation of those changes. The epidermal thickness decreased from 117µm to 100µm from 

young (less than 30 years old) to old (more than 60 years old) age groups. Across the tissue 

samples of all ages, this metric had a Spearman’s correlation of -0.36 and p-value of 2.4x10-4. 

The average reduction of epidermal thickness is 0.28 microns per year. Additionally, our results 

showed a significant decrease in the density of hair follicles, decreasing from 0.4% in young 

patient samples to 0.1% in old patient samples (Spearman’s correlation coefficient -0.55, p-value 

5.11x10-9), and sebaceous glands, which decrease from 1.0% in young patient samples to 0.3% 

in old patient samples (Spearman’s correlation -0.42, p-value 1.3x10-5). 

Besides these highly correlated features, we identified several features that had previously 

been thought to be associated with aging; however, the changes in these 806 unselected features 

were not significant. For example, dermal thickness decreased with age from 5.0mm to 4.8mm 

(Spearman’s correlation -0.16, p-value 0.10). The full list of unselected features is presented in 

Supplementary Table 3.   

Importantly, we also established and identified several novel biomarkers of the aging skin, 

such as increased interstitial space, reduced sebaceous gland size, reduced hair density, and 

increased alignment of stromal cells to ECM components in the back skin (Figure 2e). We 

performed unsupervised hierarchical clustering analysis to group these 108 aging-associated 

features (Figure 2f). This analysis revealed that these features could be further grouped into ten 

distinct core aging processes, including:  Core 1. Reduced stromal cell density and nuclei size, 

Core 2. Interstitial space alignment, Core 3. Hair and sebaceous gland shrinking, Core 4a. Hair 

shortening, Core 4b. Narrower sebaceous gland, Core 4c. Shorter dermal white adipose tissue, 

Core 4d. stromal cell alignment, Core 4e. Shorter smooth muscle, Core 4f. Epidermal thinning, 

Core 5. Smaller immune cells, Core 6. Stromal cell local alignment, Core 7. Hair loss, Core 8. 

Reduced inflammatory cell density, Core 9. Elongated fibroblasts, Core 10a. Extracellular matrix 
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alignment, and Core 10b. Interstitial space widening (Supplementary Table 4). The analysis 

showed that core 3 (Hair and sebaceous gland shrinking) and core 4 (Shorter smooth muscle and 

stromal cell alignment) had the largest numbers of features, comprising 25 and 28 features, 

respectively (Figure 2g). 

 

Skin tissue microarchitecture as biomarker of aging 

To assess whether the identified aging-related morphometric features of the skin might serve as 

predictive biomarkers of chronological age, we conducted analysis on the mean absolute error 

(MAE) associated with each individual feature predict age. This was carried out using leave-one-

out validation combined with univariate generalized linear regression (GLM) (Figure 3a). Overall, 

the MAE from these individual features ranged from 13 to 29 years, with an average of 17 years 

and a standard deviation of 0.7 years (Figure 3a and Supplementary Table 5). The ten best 

predictors are listed in Supplementary Table 5. Among all aging-associated features, the 

reduction in blood vessel radius was the most accurate aging predictor with an MAE of 13.1 years 

(Figure 3b). This result may explain the reduced blood flow observed with aging44. Comparing 

the ten distinct core aging processes, we found that features from core 2 (Interstitial space 

alignment) and core 3 (Hair and sebaceous gland shrinking) had better univariate prediction with 

their univariate MAE of 14.9 years and 14.6 years, which were significantly lower than the MAE 

of other cores (Figure 3c, Supplementary Table 4). 

To explore the connection between aging-associated features, we primarily evaluated the 

prediction power of bivariate pairs among them, using the bivariate generalized linear regression 

(GLM). Our results showed that the MAE derived from a bivariate model was generally lower than 

the univariate MAE (Figure 3d). The best predictive bivariate pair was ECM alignment and hair 

follicle composition with an MAE of 11.7 years (Figure 3e). Among the top 100 most predictive 

bivariate pairs, 41 were pairs between core 3 (Hair and sebaceous gland shrinking) and core 10 

(ECM matrix alignment and Interstitial space widening) (Figure 3f, Supplementary Table 6). 

Finally, we investigated the age predictive power of these features using a multivariate 

model. Principal component analysis (PCA) was used to reduce the 108 features into 29 principal 

components (PCs), capturing 95% variance within the data set. The reduced PCs space readily 

exhibited a strong association with age (Figure 3g).  We evaluated the predictive power of the 

reduced feature space with various machine learning (ML) algorithms including the generalized 

regression model (GLM), support vector machines (SVMs), Random Forest Regression (RF), and 
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Lasso (least absolute shrinkage and selection operator), which drops some features by penalizing 

coefficients and driving them to zero (L2 penalty). The results showed that the SVM displayed the 

most accurate prediction with an MAE value of 7.7 years compared to 9.3 years from GLM and 

8.9 years from Lasso. (Figure 3h, Supplementary Table 7).  

Overall, our analysis indicates that morphometric features of the human skin are quantitatively 

linked to the aging process and could be further developed as biomarkers for aging. 

 

No significant effect of biological sex on aging in skin tissue 

Next, we investigated whether the predictive power of aging-associated morphometric features of 

the skin was associated with sex. We found that the age predictive accuracy from the multivariate 

model was comparable between males and females, with an average MAE of 8.45 years for males 

and 7.76 years for females, respectively (Figure 4a). Analysis of sex-discrimination capability 

among 108 aging features, revealed seven features which had absolute effect size difference 

larger than 10% and p-value lower than 0.1 from two-tailed t-test (Figure 4b and Supplementary 

Table 3). Among the seven sex discriminant features, three were tissue/cell spatial distribution 

feature, three were dermal ECM fine structure features, and one was a tissue shape feature. We 

ranked the aging biomarkers based on the GLM accuracy in classifying the sex (Figure 4c). 

Stromal cell density was the top feature that differentiated biological sex with a classification 

accuracy of 66%, where samples from females had higher stromal cell density (169 N/mm2) than 

observed in samples from males (132 N/mm2) with a p-value of 0.78x10-5 (Figure 4d). Sex 

classification accuracy narrowly increased to 67% when using the multivariate GLM using the 

principal components reduced from the seven predictive features (Figure 4e). Overall, these 

results indicate that sex is not strongly associated with skin aging features of the back, as the 

inclusion of these features in the aging prediction does not significantly affect the prediction results 

(Figure 4f). 

 

Discussion 

Using a deep learning-based framework, we present a rigorously curated and segmented atlas of 

normal skin microarchitecture at both tissue and cell levels from FFPE skin tissue sections. With 

the fully segmented skin tissue atlas, we captured the comprehensive cell and tissue 

morphometrics and associated spatial distributions. We identified ten core processes that occur 

in the aging skin. Among identified age-associated architecture changes, several features were 
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consistent with previous studies, such as epidermis thinning45–47, hair loss42,48, decreased 

collagen content49, and collagen alignment and bundling50. Our study highlights five under-

reported features of skin aging: 1) fewer and smaller pilosebaceous units; 2) narrower blood 

vessels; 3) increased distance between the blood vessel and epidermis; 4) Aligned ECM with 

epidermis; and 5) expanded interstitial space.   

Our findings suggest that skin aging on the back is primarily characterized by progressive 

fibrosis and the loss of supporting structures in the dermis. This fibrosis is promoted by more rigid 

and aligned dermal extracellular matrix (ECM) where stromal cells are adapted into, likely 

resulting in the flattening and thinning of the epidermis and compressing interstitial structures 

such as hair follicles, sebaceous glands, blood vessels, and dermal adipose tissue (Figure 5). In 

addition, our results show that the decreased radius of blood vessels (Figure 3b) was one of the 

top predictors of aging and indicates the substantial vasculature architecture transformation as 

skin ages, which can, in part, explain the reduced blood circulations identified previously 40,44,51.  

Blood vessels play crucial roles in nutrient and oxygen delivery, waste removal, carbon dioxide 

exchange, and facilitating immune cell access 52. Furthermore, we observed that blood vessels 

tended to be located farther from the epidermis with increasing age (Supplementary Figure 6). 

These findings imply reduced nutrient delivery, contributing alongside dermal fibrosis to epidermal 

thinning (Figure 2d) due to slower basal cell replication rates 52. This vascular change could 

potentially drive the decrease in stromal cell density (Figure 4d) and ECM content, ultimately 

contributing to decreased dermal thickness and increased interstitial spaces as the dermis loses 

its structural integrity with age.  

One primary mission in aging research is to identify intervention approaches that promote 

healthy aging and longevity by slowing down the aging process. Molecular analyses at the 

epigenetic, transcriptomic, and proteomic levels have provided potential molecular therapeutic 

targets for healthy aging53. These molecular analyses mainly reflect transformations at the cellular 

level54,55. Our tissue-level assessments further highlight that there is a large-scale coordinated 

transformation in tissue architectures with aging. The transformed tissue microanatomy could be 

closely associated with deteriorating tissue functions due to aging. Effective anti-aging therapy 

should reverse the course of tissue microanatomical transformation by editing the cells56–58. 

Therefore, evaluating the performance of aging drugs at the tissue microanatomy level can 

provide valuable insights and serve as an early surrogate marker for aging biomarkers59. 

While all skin follows the same general architecture, significant variations occur throughout 

the body60–63. This study focused on evaluating samples from the human back, a large area of the 
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body that suffers relatively less from body location variance63. However, other areas of the body 

show significantly different histologic features; scalp, for example, has an abundance of hair 

follicles and other dermal appendages64,65, whereas volar skin of the palms and soles of the feet 

has no hair, but presents a thickened epidermis and stratum corneum to withstand pressure29. 

Future directions include comparing the unique morphometric features of aging back skin with 

skin from other locations throughout the body. A combination of morphometric feature analysis 

with spatially resolved proteomics or genomic approaches may also provide significant insights 

on molecular drivers of age-related biophysical changes and changes within biological niches 

within the skin microenvironment. It is well established that image-based features derived from 

tissue images are often influenced by sample processing procedures, imaging parameters, and 

image quality 66,67. Therefore, developing an effective algorithm to normalize batch effects in 

cohorts with multiple batches is essential for further development and validation of generalized 

aging biomarkers in tissue sections. 

 

Methods 

Sample acquisition. 

Excisional skin specimens with substantial margin of normal tissue around the lesions were 

identified and collected from the archives at the Johns Hopkins Hospital. We compiled a cohort 

of patients whose skin samples were acquired as part of clinical routine from year 2015 to 2019 

with underlying diseases, such as melanoma, keratosis, epidermal cyst, fibrosis, basal cell 

carcinoma, and squamous cell carcinoma. This cohort was compiled based on the volume of 

sample, evaluation on clinical notes whether the margin is free of disease, and their age 

distributions. The H&E stained tissue section of archive skin tissue samples from the cohorts were 

than obtained from the archive and imaged. The images of H&E stained sections were then 

evaluated by a board-certified dermatopathologist to identify the sections with grossly normal skin 

margins free of solar elastosis, inflammation, cicatrix, and the primary underlying disease.  

Each slide contains between 1 and 6 tissue sections, depending on the size of the biopsy. Larger 

biopsies are split and placed into the same tissue cassette to form a formalin-fixed paraffin 

embedded (FFPE) block. All tissue sections on a slide are evaluated, and only the sections free 

of diseases are used for further analysis. Out of 295 patient samples, 165 samples were selected. 

Among these samples, the majority (N=130) of tissue blocks are from the skin from the back, and 
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the rest are from the abdomen, chest, head, neck, arms, and legs. Out of 130 back tissues, 101 

are from Caucasian patients.  

Image acquisition  

Each selected H&E tissue slide is scanned at 20x magnification using a Hamamatsu Nanozoomer 

S210 scanner with a resolution of 0.454 mm per pixel. Nine focus points are used per tissue 

section.  

Tissue semantic segmentation 

To segment skin tissue objects (e.g., glands, smooth muscles, etc.), we used a DeepLabV3+ 

CNN architecture68 pretrained on ImageNet69. To train the CNN for tissue labeling, we first 

establish the training data set. We randomly selected 20 out of the above 165 tissue images and 

manually annotated them using Aperio ImageScope. We labeled twelve tissue components in the 

skin including: 1. stratum corneum, 2. stratum spinosum, 3. hair shaft, 4. hair follicle, 5. smooth 

muscle, 6. sebaceous gland, 7. sweat gland, 8. Nerve, 9. blood vessel, 10. ECM, 11. fat, and 12. 

interstitial space. The annotated tissue components are validated by a board-certified dermal 

pathologist. The DeepLabV3+ model was trained, cross-validated, and applied to all 165 whole 

slide images for pixel-wise classification of these 12 tissue components. Our skin tissue 

segmentation is validated using 5 independent, randomly selected samples. The model’s 

precision is 96.61%, and its recall is 93.94% (Supplementary Figure 3). 

Rotational alignment of skin tissue 

The epidermis was labeled by a deep learning model. The labeled epidermal is converted to 2D 

point clouds70,71 (Supplementary Figure 6). The Y coordinate of the point clouds is subtracted 

by their means in Y-axis direction to be flattened along the horizontal X-axis. These flattened point 

clouds are the target for the alignment. Next, we compute the rotational angle needed to minimize 

the error between the original point clouds and the target using singular value decomposition. 

This type of problem is called an orthogonal Procrustes problem72. Once the rotational angle is 

found, we can use it to rotate each skin tissue section so that the horizontal axis of the resulting 

image is aligned with the skin surface. Detailed mathematical method is the following. Given that 

original point cloud 𝑄 = {𝑞1, … , 𝑞𝑁}  and target cloud 𝑃 = {𝑝1, … , 𝑝𝑁} has correspondences 𝐶 =

{(𝑖, 𝑗)}, the error between the two are defined as 𝐸(𝑅, 𝑡) =  ∑  ‖𝑞𝑖 − 𝑅𝑝𝑗 − 𝑡‖
2

(𝑖,𝑗)∈𝐶 . Singular value 

decomposition (SVD) is used to decompose the cross-covariance matrix 𝑊 = ∑  𝑞𝑖′(𝑖,𝑗)∈𝐶 𝑝𝑗′𝑇 to 

𝑊 =  UDV𝑇, providing the values of U, D, VT. Then, the rotational matrix can be found as 𝑅 =  UV𝑇. 
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This matrix is 2x2 dimensions with the following elements, 𝑅 =  [
cos 𝜃 −sin 𝜃
sin 𝜃 cos 𝜃

]. Finally, we take 

arctan of 
sin 𝜃

cos 𝜃
 from the rotational matrix to compute the rotational angle. When the transpose of 

the rotational matrix has negative determinant, the matrix is in a reflection position, resulting in a 

negative value of rotational angle. To compute the correct angle, we multiply -1 to the rotational 

angle to flip its sign.  

Tissue composition and architecture quantification 

The fully labeled skin tissue images allowed us to assess the composition of tissue subtypes and 

their respective organization. The composition is calculated by counting the number of pixels 

occupied by each tissue component and dividing it by the total number of pixels in the whole 

tissue section. The tissue architectural features such as thickness, waviness, roughness, etc. A 

detailed list of tissue architecture features can be found in the supplementary table 2. 

Nuclei detection 

A deep neural network model was applied to detect hematoxylin-stained nuclei. HoVerNets, a 

convolutional neural network for nuclear segmentation in H&E73, was trained using several 

images selected arbitrarily from each group of tissue component for a total of N samples. Detailed 

workflow for training the model is illustrated in Supplementary Figure 3. Our implementation of 

HoVerNet takes a different approach from the original workflow in training the model to associate 

the Human Skin H&E images with nuclear regions. After training for 100 epochs, the HoVerNet 

was applied to detect nuclei for all 165 whole slide images, producing output images of predicted 

nuclei regions along with the coordinates of nuclei contour. Each tissue section size from 15mm2 

~ 35mm2 generated 5000~12000 detected nuclei. From the entire Skin tissue dataset, we 

detected 7.8 million nuclei.  To determine the cell type of the nuclei, we use the location of nuclei 

centroid with regards to the tissue component label to identify which tissue component is a 

nucleus reside in. For instance, a nucleus detected within sweat gland region is almost certainly 

from a sweat gland cell. The spatial correlation between neighboring nuclei is quantified using 

metrics such as distance between neighboring cells using K-nearest neighbor algorithm (KNN), 

alignment between adject cells, and local nuclei population density within a tissue component 

object. 

Nuclear morphology 

The nuclei contours are used to quantify morphological features of the nuclei, including, but not 

limited to, area, circularity, aspect ratio, orientation, and extent. A detailed list of nuclear 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 6, 2024. ; https://doi.org/10.1101/2024.04.03.588011doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.03.588011
http://creativecommons.org/licenses/by-nd/4.0/


morphology features can be found in the Supplementary Table 2. The area A is the total number 

of pixels within the contour and then converted to micrometer squared given that width and height 

of pixel are both 0.454µm. Perimeter P is defined by the length of contour line. The circularity is 

computed using the equation: 
4𝜋𝐴

𝑃2  . The aspect ratio is defined as the major axis length divided by 

minor axis length. The orientation is quantified by a conic fitting algorithm described by Fitzgibbon 

et al74. The extent is defined as area of contour divided by area of bounding box.  

 

Software 

The following software tools were used for the predictor and related analysis: python 3.8.10, 

tensorflow-gpu 2.4.1, tensorflow-probability 0.11.1, scipy 1.6.2, statsodels 0.12.0, scikit-learn 

0.23.2, pandas 1.1.1, seaborn 0.11.1 and numpy 1.21.6, R 4.0.2, MATLAB R2024a. 

 

Statistics and reproducibility 

A correlation between a sample’s age and a morphometric feature was made using spearman 

rank coefficient. The linear regression p value for each morphometric feature tests the null 

hypothesis that the feature has no correlation with a sample’s age. 

Figure captions  

Fig. 1: Overall workflow of human skin tissue analysis a. Skin excisional sample typically with 

an elliptical shape is cut into multiple pieces before embedding into a paraffin block. The skin 

pieces with abnormal tissue architecture (such as lesion, sun damage, …etc.) are excluded for 

further analysis through examining the image of H&E-stained tissue section. b. Whole slide H&E 

images are labeled with tissue components automatically using a trained CNN with DeepLab V3+ 

framework. Cell nuclei within each labeled tissue component are segmented using HoVerNet. 

Scale bar, 1mm in tissue, 100µm and 20µm in zoom-in c. Five groups of morphometric features 

with a total of 914 features are established to characterize the tissue and cellular architecture of 

skin. Tissue scale bar, 100µm. Cell scale bar, 20µm. H&E scale bar, 50µm. 

 

Fig. 2: Core aging processes through extensive morphometric analysis. a. Representative 

image of H&E-stained tissue section from donors and at young, middle age and old (top). The 

corresponding tissue component maps labeled by the trained CNN (bottom). b.  Histogram of age 
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distribution of the sample cohort (56 male and 43 female) obtained from the back of skin. c. Age 

associated features are selected based on the spearman correlation coefficient with aging and 

Cohen’s d from comparing young (30 years old or younger) vs old (60 years old or older). A scatter 

plot showing each features spear correlation coefficient and Cohen’s d. A total of 108 features 

with Cohen’s d >1 and |spearman’s rho| >0.3 are identified as aging-associated features. d. 

Representative H&E images of skin and scatter plots showing the hair follicle content and 

epidermis content are among the identified aging-associated features. Hair follicle content and 

epidermis content are features known to be correlated with age.  Scale bar, 1mm. e. 

Representative H&E images of skin and scatter plots show the increment of interstitial gap and 

shrinkage of the sebaceous gland, which are novel features of skin aging, among others. Scale 

bars, 100µm. Wide interstitial gap ratio is measure by ratio of the interstitial gap exceeding 4µm 

thickness among total by length.  f-g. Hierarch clustering analysis groups the aging-associated 

features into ten distinct cores of the aging process using pair-wise correlation distance (f). 

Summary of general characteristics of each core based on the morphometric features of skin in 

each core (g). Cores 4 and 10 are further divided into subgroups to describe distinct 

characteristics of the assigned features better. 

 

Fig. 3: Morphometric features are predictive of chronological age. a. A scatter plot shows 

correlation coefficient with aging and mean absolute error of aging prediction for each individual 

aging associated feature. Mean absolute error is calculated from leave-one-out validation using 

univariate generalized linear regression model (GLM). b. The blood vessel radius is the best 

predictive feature with MAE of 13.1 years. Two representative H&E images from a young and an 

old donor are shown. Scale bar = 20µm. A scatter plot shows a negative correlation between 

blood vessel radius from each sample and their corresponding ages. Predicted age with blood 

vessel radius from leave-one-out validation and actual chronological ages for each sample is 

shown as a scatter plot.  c.  Violin plot shows MAE distribution for features in each core of aging 

process.  Features from core 2 (interstitial space alignment) and core 3 (Hair and sebaceous 

gland shrinking) show the overall best performance in aging prediction as single variable among 

others. d-f. Aging prediction uses bivariate features. A scatter plot shows the MAEs from all pairs 

(N=5,778) of features using bivariate aging prediction with GLM compared to the average MAE 

of each pair with univariate prediction with GLM. The MAE is calculated using the leave-one-out 

validation. In most pairs, bivariate MAE is lower than the mean univariate MAE (d). The best 

predictive bivariate pair is ECM alignment and hair follicle composition with an MAE of 11.7 years. 
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Representative H&E images of skin in young and old highlight decrement in ECM alignment and 

loss of hair follicles with aging. Scale bar, 100µm for ECM and 1mm for hair follicle composition. 

A 3d scatter plot shows the association of these two features with aging among all samples (e). 

Analysis of the occurrence of predictive paired features associated with cores of the aging process. 

In the top 100 most predictive bivariate pairs, the most frequently occurred pairs are between core 

3 (hair and sebaceous gland shrinking) and core 10 (ECM alignment and Interstitial space 

widening) (f). g. The heatmap shows 99 tissue specimens (ranked in order by age) and the 

corresponding 108 age-associated features.  Principal component analysis shows the first 29 

principal components contain 95% of the total variance. A scatter plot shows the distribution of 

the sample along the first two principal components (PCs) and readily shows the chronological 

age of samples is associated with PC1 and PC2. h, Implementation of multivariate models with 

first 29 PCs for aging prediction. A violin plot shows the MAE of each sample from leave-one-out 

validation using GLM, Lasso, and SVM. A scatter plot shows predicted age (leave-one-out 

validation) vs chronological age using SVM in each sample. SVM achieved the lowest MAE of 7.7 

years. 

 

Fig. 4: Skin aging features are not strongly associated with biological sex. a. A scatter plot 

of predicted ages and chronological ages in males and females. Predicted age is derived from 

leave-one-out using the multivariate SVM. MAE is 7.3 years among female samples compared to 

8.1 years among male samples. b. A scatter plot illustrating the association between gender and 

108 aging features with relative differences in mean and p-value (two-way t-test) between genders. 

Seven features have a relative difference of 10%+ with a p-value less than 0.1. c. Summary of 

the gender-associated features and their corresponding accuracy in classifying gender. d. A 

scatter plot shows the relation between stromal cell density and the age of donors in both genders. 

Violin plots comparing stromal cell density between genders in both young (30 years old or 

younger) and old (60 years old or older) show that stromal cell density is significantly higher in 

females than in males in both age ranges. e. The accuracy of gender classification is based on 

an increasing number of principal components derived from gender-associated features. The 

highest accuracy, reaching 68%, is attained using the first 4 principal components (PCs). f. 

Incorporating gender information into the aging prediction using the multivariate SVM model as 

depicted in Fig. 3h, a scatter plot illustrates the predicted age versus chronological age for donors 

of both genders. The Mean Absolute Error (MAE) is 7.8 years when gender information is 

considered in the prediction model. The scatter plot further depicts the difference in prediction 
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errors for each sample, comparing models with and without considering gender. On average, 

there is a +0.8 years change in males and a -0.5 years change in females. The overall MAE 

increases by 0.1 year with the inclusion of gender information when compared to the MAEs 

obtained without considering sample gender information. 

Fig. 5: the effect of aging on the microanatomy of human skin a. illustration of distinct 

macroscopic differences between young (age 10~30) and old (age 60~90) human skin, labeled 

with the corresponding number in the following list: 1 and 2. flatter and thinner epidermis, 3. 

thinner dermis, 4. fewer pilosebaceous units (a unit includes hair shaft, hair follicle, sebaceous 

gland, and arrector pili muscle), 5. smaller pilosebaceous units, 6. narrower blood vessels, 7. 

blood vessel distant from epidermis, 8. ECM more aligned with epidermis, 9. thicker ECM bundles, 

10. wider interstitial bundles. 
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Fig. 1: Overall workflow of human skin tissue 

analysis a. Skin excisional biopsy sample typically 

with an elliptical shape is cut into multiple pieces 

before mounting into a paraffin block. Tissue section. 

The skin pieces with abnormal tissue architecture 

(such as lesion, sun damage, etc.) are excluded for 

further analysis through examining the image of H&E-

stained tissue section. b. Whole slide H&E images are 

labeled with tissue components automatically using a 

trained CNN with DeepLab V3+ framework. Cell nuclei 

within each labeled tissue component are segmented 

using HoVerNet. Scale bar, 1mm in tissue, 100µm and 

20µm in zoom-in. c. Five groups of morphometric 

features with a total of 914 features are established to 

characterize the tissue and cellular architecture of skin. 

Tissue scale bar, 100µm. Cell scale bar, 20µm. H&E 

scale bar, 50µm.
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Fig. 2: Core aging processes through extensive morphometric analysis. a. Representative image of H&E-

stained tissue section from donors and at young, middle age and old (top). The corresponding tissue component 

maps labeled by the trained CNN (bottom). b. Histogram of age distribution of the sample cohort (56 male and 43 

female) obtained from the back of skin. c. Age associated features is selected based on the spearman correlation 

coefficient with aging and Cohen’s d from comparing young (30 years old or younger) vs old (60 years old or 

older). A scatter plot showing each features spear correlation coefficient and Cohen’s d. A total of 108 features 

with Cohen’s d >1 and |spearman’s rho| >0.3 are identified as aging-associated features. d. Representative H&E 

images of skin and scatter plots showing the hair follicle content and epidermis content are among the identified 

aging-associated features. Hair follicle content and epidermis content are features known to be correlated with 

age.  Scale bar, 1mm. e. Representative H&E images of skin and scatter plots show the increment of interstitial 

gap and shrinkage of the sebaceous gland, which are novel features of skin aging, among others. Scale bars, 

100µm. Wide interstitial gap ratio is measure by ratio of the interstitial gap exceeding 4µm thickness among total 

by length. f-g. Hierarch clustering analysis groups the aging-associated features into ten distinct cores of the 

aging process using pair-wise correlation distance (f). Summary of general characteristics of each core based on 

the morphometric features of skin in each core (g). Cores 4 and 10 are further divided into subgroups to describe 

distinct characteristics of the assigned features better.
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Fig. 3: Morphometric features are predictive of chronological age. a. A scatter plot shows correlation 

coefficient with aging and mean absolute error of aging prediction for each individual aging associated feature. 

Mean absolute error is calculated from leave-one-out validation using univariate generalized linear regression 

model (GLM). b. The blood vessel radius is the best predictive feature with MAE of 13.1 years. Two representative 

H&E images from a young and an old donor are shown. Scale bar = 20µm. A scatter plot shows a negative 

correlation between blood vessel radius from each sample and their corresponding ages. Predicted age with blood 

vessel radius from leave-one-out validation and actual chronological ages for each sample is shown as a scatter 

plot.  c.  Violin plot shows MAE distribution for features in each core of aging process.  Features from core 2 

(interstitial space alignment) and core 3 (Hair and sebaceous gland shrinking) show the overall best performance 

in aging prediction as single variable among others. d-f. Aging prediction uses bivariate features. A scatter plot 

shows the MAEs from all pairs (N=5,778) of features using bivariate aging prediction with GLM compared to the 

average MAE of each pair with univariate prediction with GLM. The MAE is calculated using the leave-one-out 

validation. In most pairs, bivariate MAE is lower than the mean univariate MAE (d). The best predictive bivariate 

pair is ECM alignment and hair follicle composition with an MAE of 11.7 years. Representative H&E images of skin 

in young and old highlight decrement in ECM alignment and loss of hair follicles with aging. Scale bar, 100µm for 

ECM and 1mm for hair follicle composition. A 3d scatter plot shows the association of these two features with 

aging among all samples (e). Analysis of the occurrence of predictive paired features associated with cores of the 

aging process. In the top 100 most predictive bivariate pairs, the most frequently occurred pairs are between core 3 

(hair and sebaceous gland shrinking) and core 10 (ECM alignment and Interstitial space widening) (f). g. The 

heatmap shows 99 tissue specimens (ranked in order by age) and the corresponding 108 age-associated features.  

Principal component analysis shows the first 29 principal components contain 95% of the total variance. A scatter 

plot shows the distribution of the sample along the first two principal components (PCs) and readily shows the 

chronological age of samples is associated with PC1 and PC2. h, Implementation of multivariate models with first 

29 PCs for aging prediction. A violin plot shows the MAE of each sample from leave-one-out validation using GLM, 

Lasso, and SVM. A scatter plot shows predicted age (leave-one-out validation) vs chronological age using SVM in 

each sample. SVM achieved the lowest MAE of 7.7 years.
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a

Fig. 4: Skin aging features are not strongly associated with biological sex. a. A scatter plot of predicted 

ages and chronological ages in males and females. Predicted age is derived from leave-one-out using the 

multivariate SVM. MAE is 7.3 years among female samples compared to 8.1 years among male samples. b. A 

scatter plot illustrating the association between gender and 108 aging features with relative differences in 

mean and p-value (two-way t-test) between genders. Seven features have a relative difference of 10%+ with a 

p-value less than 0.1. c. Summary of the gender-associated features and their corresponding accuracy in 

classifying gender. d. A scatter plot shows the relation between stromal cell density and the age of donors in 

both genders. Violin plots comparing stromal cell density between genders in both young (30 years old or 

younger) and old (60 years old or older) show that stromal cell density is significantly higher in females than in 

males in both age ranges. e. The accuracy of gender classification is based on an increasing number of 

principal components derived from gender-associated features. The highest accuracy, reaching 68%, is 

attained using the first 4 principal components (PCs). f. Incorporating gender information into the aging 

prediction using the multivariate SVM model as depicted in Fig. 3h, a scatter plot illustrates the predicted age 

versus chronological age for donors of both genders. The Mean Absolute Error (MAE) is 7.8 years when 

gender information is considered in the prediction model. The scatter plot further depicts the difference in 

prediction errors for each sample, comparing models with and without considering gender. On average, there 

is a +0.8 years change in males and a -0.5 years change in females. The overall MAE increases by 0.1 year 

with the inclusion of gender information when compared to the MAEs obtained without considering sample 

gender information.
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2 Smooth muscle Distance to corneum C.V. 65.7 0.0165 -10.0

3 Sweat gland Distance to smooth muscle Mean 59.6 0.0622 15.9

4 Interstitial space Ratios_6 Mean 58.6 0.0623 -13.6

5 Interstitial space Ratios_5 Mean 57.6 0.0869 -11.3
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Fig. 5: the effect of aging on the 

microanatomy of human skin a. illustration of 

distinct macroscopic differences between young 

(age 10~30) and old (age 60~90) human skin, 

labeled with the corresponding number in the 

following list: 1 and 2. flatter and thinner 

epidermis, 3. thinner dermis, 4. fewer 

pilosebaceous units (a unit includes hair shaft, 

hair follicle, sebaceous gland, and arrector pili 

muscle), 5. smaller pilosebaceous units, 6. 

narrower blood vessels, 7. blood vessel distant 

from epidermis, 8. ECM more aligned with 

epidermis, 9. thicker ECM bundles, 10. wider 

interstitial space 
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Rank
Feature 

ID

Tissue 

component
Feature name

Feature 

type

Core 

process

MAE 

[years]

1 218  Blood vessel Mean bounding box height 4 6 13.1

2 116  Hair follicle Content per length scale 4 5 13.5

3 4  Hair follicle Composition 1 5 13.5

4 76  S. Spinosum Content per length scale 4 6 14.0

5 121  Hair follicle Occurrence per length scale 4 5 14.0

6 27  ECM Anisotropy_B 3 1 14.0

7 29  ECM Anisotropy_B_masked 3 1 14.0

8 160  Sebaceous gland Bounding box height st.dev. 4 5 14.1

9 153  Sebaceous gland Size st.dev. 4 5 14.1

10 163  Sebaceous gland Major axis length st.dev. 4 5 14.2

Rank
Feature 

ID

Tissue 

component
Feature name

Feature 

type

Core 

process

MAE 

[years]

4  Hair follicle Composition 1 5
29  ECM Anisotropy_B_masked 3 1

4  Hair follicle Content per length scale 1 5
27  ECM Anisotropy_B 3 1

160  Sebaceous gland std bounding box height 4 5
218  Blood vessel mean bounding box height 4 6

29  ECM anisotropy_B_masked 3 1
116  Hair follicle content per length scale 4 5

29  ECM anisotropy_B_masked 3 1
218  Blood vessel mean bounding box height 4 6

171  Sebaceous gland std perimeter 4 5
218  Blood vessel mean bounding box height 4 6

27  ECM anisotropy_B 3 1
116  Hair follicle content per length scale 4 5

153  Sebaceous gland std size 4 5
218  Blood vessel mean bounding box height 4 6

27  ECM anisotropy_B 3 1
218  Blood vessel mean bounding box height 4 6

153  ECM anisotropy_A 3 1
218  Blood vessel mean bounding box height 4 6
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Table 1: Top 10 univariate features

Table 2: Top 10 bivariate features
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