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Abstract 26 
 27 
Single cell CRISPR screens such as Perturb-seq enable transcriptomic profiling of genetic 28 
perturbations at scale. However, the data produced by these screens are often noisy due to cost 29 
and technical constraints, limiting power to detect true effects with conventional differential 30 
expression analyses. Here, we introduce TRanscriptome-wide Analysis of Differential 31 
Expression (TRADE), a statistical framework which estimates the transcriptome-wide 32 
distribution of true differential expression effects from noisy gene-level measurements. Within 33 
TRADE, we derive multiple novel, interpretable statistical metrics, including the “transcriptome-34 
wide impact”, an estimator of the overall transcriptional effect of a perturbation which is stable 35 
across sampling depths. We analyze new and published large-scale Perturb-seq datasets to 36 
show that many true transcriptional effects are not statistically significant, but detectable in 37 
aggregate with TRADE. In a genome-scale Perturb-seq screen, we find that a typical gene 38 
perturbation affects an estimated 45 genes, whereas a typical essential gene perturbation 39 
affects over 500 genes. An advantage of our approach is its ability to compare the 40 
transcriptomic effects of genetic perturbations across contexts and dosages despite differences 41 
in power. We use this ability to identify perturbations with cell-type dependent effects and to find 42 
examples of perturbations where transcriptional responses are not only larger in magnitude, but 43 
also qualitatively different, as a function of dosage. Lastly, we expand our analysis to 44 
case/control comparison of gene expression for neuropsychiatric conditions, finding that 45 
transcriptomic effect correlations are greater than genetic correlations for these 46 
diagnoses.  TRADE lays an analytic foundation for the systematic comparison of genetic 47 
perturbation atlases, as well as differential expression experiments more broadly.  48 
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Introduction 49 
A foundational approach in modern biology involves measuring the phenotypic effect of 50 

genetic variation, naturally occurring or experimentally induced, on cells. One of the most 51 
informative and scalable strategies for measuring cellular responses is differential expression, 52 
which quantifies RNA abundance for all genes by gene expression microarray or RNA 53 
sequencing. Recent technological advances have combined single-cell RNA sequencing with 54 
CRISPR screening to enable massively scalable transcriptomic profiling of genetic 55 
perturbations, in an approach called Perturb-Seq (Dixit et al. 2016; Adamson et al. 2016; Jaitin 56 
et al. 2016). Despite their promise, Perturb-seq screens produce data with variable amounts of 57 
estimation error across perturbations, and thus pose a challenge for conventional analytic 58 
methods, including differential expression and correlation, which generate variable results 59 
depending on statistical power. The extent to which this limitation has confounded 60 
understanding and comparison of perturbation experiments is unclear. 61 

The field of human genetics has contended with a similar issue in genetic association 62 
studies - where power is typically limited due to finite sample sizes and small effect sizes - by 63 
estimating population parameters directly, without the use of significance thresholds. This 64 
approach is widely used to infer the total genetic effect (“SNP-heritability”; Yang et al. 2010), to 65 
identify disease-relevant cell types and pathways (“heritability enrichment”; Finucane et al. 66 
2018), and to understand the shared genetic basis of different traits (“genetic correlation”; Bulik-67 
Sullivan et al. 2015). A strength of this approach is that it distinguishes properties of a study or 68 
experiment from those of a trait or population.  69 

In RNA-seq analysis, an analogous approach would be to estimate the distribution of 70 
differential expression effects, including those that are underpowered in a study, rather than 71 
testing for gene-wise differential expression. Some existing methods have attempted to go 72 
beyond significance thresholds to capture aspects of this distribution. The energy distance 73 
quantifies the strength of a perturbation as the difference between average between-condition 74 
vs. within-condition variability after normalization, filtering, and projection onto principal 75 
components (Replogle et al. 2022; Peidli et al. 2024).  Gene-set enrichment analysis uses a 76 
rank-based approach to test gene-set enrichments of differential expression effects 77 
(Subramanian et al. 2005). Rank-rank hypergeometric overlap uses a similar approach to test 78 
for a significant correlation between differential expression effects across experiments (Plaisier 79 
et al. 2010). iDEA uses a point-normal model for the distribution of differential expression effects 80 
to increase association power for the identification of individual differentially expressed genes 81 
(Ma et al. 2020). However, none of these approaches explicitly estimate and interpret the 82 
distribution of differential expression effects, and thus do not fully characterize of the 83 
transcriptome-wide consequences of perturbations.  84 

Here, we present TRADE (TRanscriptome-wide Analysis of Differential Expression), a 85 
suite of statistical tools for formally modeling distributions of differential expression effects from 86 
RNA-seq experiments, including Perturb-seq. TRADE fits a flexible mixture model to estimated 87 
effects and standard errors to estimate the distribution of true differential expression effects. 88 
From this estimated distribution, we derive several highly interpretable metrics, including the 89 
transcriptome-wide impact, the effective number of differentially expressed genes, gene set 90 
enrichments, and correlation. We use TRADE to estimate and interpret these features for tens 91 
of thousands of genetic perturbations across two new, and three existing massive Perturb-Seq 92 
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datasets (Replogle et al. 2022). Finally, we use TRADE to compare the effects of perturbations 93 
across cell types, to estimate dose-response curves for transcriptome-wide effects, and to 94 
estimate the bivariate transcriptomic relationships between neuropsychiatric conditions.  95 
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Results 96 

Overview of methods 97 
Consider an RNA-seq experiment comparing two conditions (e.g., perturbed and unperturbed). 98 
A conventional differential expression analysis fits a generalized linear model for each gene to 99 
estimate the difference in mean expression between conditions, producing a point estimate of 100 
the log2(Fold Change) and a standard error or p-value. The point estimate for gene g can be 101 
modeled as the sum of a true effect, 𝛽!, and a residual, 𝜖!: 102 
 103 

𝛽!# =	𝛽! +	𝜖! 104 
   105 
   106 

TRADE is a method to estimate the distribution of 𝛽 from that of 𝛽' accounting for 107 
sampling variation. This approach distinguishes properties of a cellular response from those of 108 
an experiment, such as sample size and sequencing depth.  109 

TRADE takes as input differential expression point estimates and standard errors, which 110 
we presently compute using DESeq2 (Methods; Love, Huber, and Anders 2014) applied to 111 
pseudo-bulk RNA-seq read count matrices (Figure 1A). TRADE then estimates the distribution  112 
of 𝛽 by fitting a mixture model to the distribution of effect size estimates, incorporating standard 113 
errors to account for sampling variation, using ash (Methods; Stephens 2016). While ash was 114 
initially designed to perform Empirical Bayes shrinkage using the estimated effect size 115 
distribution as a prior, we instead focus on interpreting that distribution itself.  116 

From this inferred effect distribution, TRADE computes several interpretable features 117 
that describe the transcriptome-wide landscape of differential effects. One key estimand is 118 
Var(𝛽), the variance of the effect size distribution, which we term the “transcriptome-wide 119 
impact” (TI) (Methods). The transcriptome-wide impact can be interpreted as a measure of the 120 
overall transcriptomic change in a differential expression experiment, where perturbations with 121 
large transcriptome-wide impact include those with large effects on a few genes as well as 122 
those with smaller effects on many genes. TRADE also derives other estimates from the effect-123 
size distribution, including gene-set enrichments, correlations between perturbations or cell 124 
types, and a novel measure of the effective number of differentially expressed genes, all of 125 
which are unbiased at finite sample size (Methods). 126 

We tested our approach in simulations of varying effect size distributions, ranging from 127 
very sparse point-normal to fully infinitesimal, with a sample size of 200 cells per condition 128 
(Methods; Figure 1B). The inferred distributions generally differed from the true distributions 129 
only in the density around zero, by slightly overestimating the density at zero. Estimates of the 130 
transcriptome-wide impact (Figure 1C) were robust, with slight downward bias. The downward 131 
bias results from inadequate power to detect very small effects at finite sample size, even 132 
aggregating power across genes; at increased sample size, the bias disappears 133 
(Supplementary Figure 1). 134 
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 135 
 136 
Figure 1: Transcriptome-wide Analysis of Differential Expression. (A) Schematic for 137 
TRADE analysis, starting from condition-wise gene expression counts and ending with 138 
estimated distribution of Log2FC. (B) Estimation of various simulated effect size distributions 139 
(Point-Normal with 95% Null, Point-Normal with 75% Null, Infinitesimal/normally distributed). 140 
Purple trace shows true effect size distribution; gray traces show estimated distributions across 141 
100 replicates. (C) Comparison of estimated and true transcriptome-wide impact in simulations.  142 
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Transcriptome-wide impact of 9,866 genetic perturbations 143 
We next sought to investigate the transcriptome-wide impact of a comprehensive set of 144 

genetic perturbations with TRADE. Recently, Repogle et al (2022) performed genome-scale 145 
Perturb-Seq with CRISPR interference (CRISPRi), which inhibits target gene transcription by 146 
recruitment of a dCas9-linked repressive KRAB domain, generating three datasets: K562-147 
GenomeWide (perturbations of all 9,866 expressed genes in the K562 chronic myelogenous 148 
leukemia cell line), K562-Essential (2,057 common essential gene perturbations in the same cell 149 
line), and RPE1-Essential (2,393 common essential gene perturbations in a retinal pigmented 150 
epithelium cell line). To enable a more thorough comparison across cell types, we performed 151 
two additional large-scale Perturb-seq experiments targeting common essential genes in Jurkat 152 
and HepG2 cell lines: Jurkat-Essential (2,393 essential gene perturbations in a T-cell leukemia 153 
cell line) and HepG2-Essential (2,393 essential gene perturbations in a hepatocellular 154 
carcinoma cell line) (Methods). Key features of these datasets are summarized in Table 1.  155 

In these datasets, statistical power varies widely between perturbations due to technical 156 
features of pooled screening, including biases in sgRNA synthesis and cloning, cellular 157 
sampling noise, and variable efficiency of reverse transcription and sequencing library 158 
preparation. We illustrate the ability of TRADE to disentangle these factors from true effects with 159 
two examples from the K562-Essential dataset: knockdown of GATA1 (Figure 2A) and EIF4A3 160 
(Figure 2B). These two perturbations produce very similar distributions of estimated 161 
log2FoldChange, from which it is tempting to infer that they cause similar magnitudes of 162 
transcriptome-wide changes. However, analysis with TRADE, which incorporates standard 163 
errors to estimate the variance of the true log2FoldChange, infers substantial true effect size 164 
variance for GATA1 knockdown (transcriptome-wide impact = 0.4, corresponding to an average 165 
log2FC magnitude of 0.63), but negligible true effect size variance for EIF4A3 knockdown 166 
(transcriptome-wide impact = 0.004, corresponding to an average log2FC magnitude of 0.06) 167 
(Figure 2A,B). Further examination reveals that the screen sequenced only 7 cells with EIF4A3 168 
knockdown (as opposed to 108 cells with GATA1 knockdown), likely leading to large sampling 169 
variance that inflated the observed effect size distribution. This example demonstrates how 170 
TRADE can help to identify perturbations with large true transcriptome-wide effect, such as 171 
knockdown of GATA1, a lineage-defining transcription factor, while appropriately identifying 172 
largely null perturbations such as knockdown of EIF4A3, in the setting of variable power. 173 

We computed the transcriptome-wide impact (see Overview of methods) of each 174 
perturbation and estimated the fraction of transcriptome-wide impact that was explained by 175 
FDR-significant effects (Supplementary Tables 2-6). In the K562-GenomeWide experiment, 176 
only 36% of transcriptome-wide impact was explained by FDR-significant effects (Figure 2C).  177 
In the four essential gene perturbation screens, we observed a similar bias where significant 178 
genes explained only a fraction of the overall transcriptome-wide impact(K562-Essential: 18%, 179 
RPE1-Essential: 35%, Jurkat-Essential: 13%, HepG2-Essential: 14%). Across all cell types, we 180 
confirmed that the transcriptome-wide impact was minimal in a negative control analysis of non-181 
targeting guide RNAs (Supplementary Figure 2). 182 

We conducted a downsampling analysis, repeating our analysis of the K562-183 
GenomeWide experiment using only 50% of the 10x Genomics gemgroups. Whereas the signal 184 
in significant genes decreased substantially, our estimate of the total cumulative differential 185 
expression remained relatively consistent (Figure 2C). The small decrease in estimated 186 
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transcriptome wide impact with downsampling was caused by TRADE producing conservative 187 
estimates in the setting of non-significant point estimates (Supplementary Figure 3). Similarly, 188 
examining perturbations which are shared between the K562-GenomeWide and K562-Essential 189 
experiments, we found that estimates of transcriptome-wide impact were far more consistent 190 
across experiments than the number of significant differentially expressed genes 191 
(transcriptome-wide impact R2 = 59.7%; number of DEGs R2 = 28.4%; Supplementary Figure 192 
4). This analysis illustrates the advantages of our threshold-free approach. 193 

Our analyses suggest that significant genes do not capture the bulk of transcriptome 194 
wide impact. How many genes are required to do so? We defined the effective number of 195 
differentially expressed genes (𝜋"#$) as a function of the kurtosis of the effect size distribution, 196 
following the approach of O’Connor et al (2019). This quantity captures the evenness of 197 
differential expression across the transcriptome, without making an arbitrary distinction between 198 
zero and nearly-zero effects (Supplementary Figure 5). We validated our estimation procedure 199 
for 𝜋"#$ in simulations, finding that 𝜋"#$ estimates are well-calibrated, producing conservative 200 
estimates (Supplementary Figure 6). For the K562-GenomeWide experiment, the median 𝜋"#$ 201 
was 45, suggesting that typically, tens of genes are required to explain the bulk of the 202 
transcriptome-wide impact (Figure 2D). Some genetic perturbations had much larger 𝜋"#$; in 203 
particular, knockdown of essential gene perturbations in all four cell types analyzed had median 204 
𝜋"#$ greater than 500 (Figure 2D). In a simplified model where effects are either null or 205 
normally distributed with some variance 𝜎%, 𝜋"#$ equals the number of non-null effects. Under 206 
this model, 𝜎% is equal to the ratio between the scaled transcriptome-wide impact and 𝜋"#$, and 207 
can be used to compute a typical log2FoldChange 𝜎	(Supplementary Appendix 1). We find 208 
that 𝜎 is largely contained in the interval [0.1,1], with subtle variation across cell type, and 209 
smaller estimates for essential versus non-essential gene perturbations (Supplementary 210 
Appendix 1).  211 
  212 
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Dataset 
(Technology) 

Reference Cell 
type 

Perturbed 
Gene-Set 

Number of 
perturbations 

Median # 
cells per 
perturbation 

K562-GenomeWide 
(CRISPRi) 

Replogle et al, 
2022,  

K562 All expressed 
genes  

9866 genes 178 

K562-Essential 
(CRISPRi) 

Replogle et al, 
2022 

K562 Essential genes 2057 121 

RPE1-Essential 
(CRISPRi) 

Replogle et al, 
2022 

RPE1 Essential genes 2393 72 

Jurkat-Essential 
(CRISPRi) 

Novel Jurkat Essential genes 2393 83 

HepG2-Essential 
(CRISPRi) 

Novel HepG2 Essential genes 2393 45 

K562-Titration 
(CRISPRi) 

Jost et al, 2020 K562 Essential genes 25 genes,  
128 guides 

143 

Sox9-Titration 
(dTAG) 

Naqvi et al, 
2023 

iCNCC SOX9 5 dTAG degron 
concentrations 

7 bulk 
samples per 
concentration 

Polycomb-Titration 
(dTAG) 

Weber et al, 
2021 

mESC Ring1b, EED 
(Simultaneous) 

4 dTAG degron 
concentrations 

4 bulk 
samples per 
concentration 

 213 
Table 1. Characteristics of Perturb-Seq datasets analyzed. 214 
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 215 

Figure 2: Transcriptome-wide analysis of genome-wide Perturb-Seq. (A) Examples of 216 
empirical log2FoldChange distribution and TRADE inferred distribution for perturbation of 217 
GATA1 in K562 cell line. TI = transcriptome-wide impact. (B) Similar for perturbation of EIF4A3 218 
in K562. (C) Comparison of transcriptome-wide impact in significant and all genes in Perturb-219 
Seq experiments. Y axis values correspond to transcriptome-wide impact estimates scaled by 220 
the number of measured genes. (D) Effective number of differentially expressed genes (𝜋"#$) 221 
across Perturb-Seq datasets, for perturbations with nominally significant transcriptome-wide 222 
impact (Methods) 223 
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Two types of gene-set enrichment 225 
Some sets of genes may produce greater-than-average transcriptome-wide impact when 226 

perturbed, and others may be enriched for differential expression response to perturbations of 227 
other genes. We stratified genetic perturbations by features of the targeted genes including: 228 
level of expression, effect on cellular growth (I.e. essentiality) (Meyers et al. 2017), level of 229 
selective constraint in gnomAD (Karczewski et al. 2020), and subcellular localization of their 230 
protein product (Binder et al. 2014) (Methods). We quantified two types of enrichment: (1) the 231 
perturbation impact enrichment, which captures greater-than-expected and less-than-expected 232 
transcriptome-wide impact of perturbations, and (2) the perturbation response enrichment, 233 
which quantifies the effect of all other perturbations on genes in the selected set (Figure 3; 234 
Methods; Supplementary Table 7). We focused this analysis on the K562-GenomeWide 235 
dataset, as this comprehensive dataset uniquely empowers unbiased enrichment estimation. 236 
We validated our approach with two control gene sets, one known to be enriched for 237 
perturbation response (“DE Prior”; Crow et al. 2019), and one known to be depleted of 238 
perturbation response effects (stably expressed genes; Lin et al. 2019) (Supplementary Figure 239 
7). Additionally, we confirmed that genes with more efficient CRISPRi knockdown were not 240 
enriched for perturbation impact, suggesting that inter-gene variability in transcriptome-wide 241 
impact is not driven by technical factors related to CRISPRi knockdown (Supplementary 242 
Figure 8). 243 

We found that constrained genes, which are depleted of loss-of-function variation in the 244 
general population, are enriched for perturbation impact by ~1.57x, consistent with their 245 
functional importance. On the other hand, they are strongly depleted for perturbation response, 246 
by 0.40x, suggesting that across genes, population-level constraint is mirrored by regulatory 247 
robustness. Similarly, genes with a strong growth effect in K562 cells (roughly, those that are 248 
essential in culture) are strongly enriched for perturbation impact, by 4.22x, while being depleted 249 
for perturbation response by 0.71x. In contrast, genes that are highly expressed in K562 cells 250 
are strongly enriched for both perturbation impact (2.26x) and perturbation response (4.44x), 251 
supporting a correlation between absolute expression and functional importance. We observed 252 
only a modest perturbation impact enrichments for genes that were localized to the nucleus 253 
(1.27x), despite their direct role in transcriptional regulation; cytoskeleton-localizing genes were 254 
modestly depleted of perturbation impact (0.68x).   255 
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 256 
Figure 3: Transcriptome-wide analysis of genome-wide Perturb-Seq. TRADE-derived 257 
enrichment estimates for multiple gene sets. Blue bars represent perturbation response 258 
enrichment, the enrichment of differential expression in response to perturbations. Tan bars 259 
represent perturbation impact enrichment, the enrichment of effects on other genes when genes 260 
in that gene set are perturbed.  261 
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Consistency of transcriptome-wide effects across cell types 262 
 The effect of perturbing a gene may vary across cell types, particularly if it participates in 263 
cell-type dependent functions. These perturbation effects may vary both in magnitude and in 264 
which genes are affected. Using data from common essential gene perturbations in the four cell 265 
lines (Table 1), we (1) compared transcriptome-wide impact across cell lines and (2) estimated 266 
the correlation between differential expression effects from each experiment using a bivariate 267 
extension of TRADE. We refer to this quantity as the “transcriptome-wide impact correlation” 268 
(Methods).  269 
 As expected, transcriptome-wide impact was correlated across cell types (average 270 
correlation = 0.62; Supplementary Figure 8). On average, transcriptome-wide impact was 271 
larger in the RPE1 cell line than in the other three, indicating that this cell line is more sensitive 272 
to generic perturbations than the others. A few perturbations did have greater-than-expected 273 
effects in specific cell types (Figure 4A). Using a liberal threshold (Methods), we identified 241 274 
such perturbations (K562: 47; RPE1: 118; Jurkat: 10; HepG2: 66) (Supplementary Table 8). 275 
Some of these perturbations are known to be indispensable for their corresponding cell type, 276 
including GATA1 for erythroid cells such as K562 (Weiss, Keller, and Orkin 1994) and HMGCR 277 
for T-cells such as Jurkat (Lacher et al. 2017), but most had no previously documented 278 
explanation for their cell-type dependent effects. As this dataset targeted primarily common 279 
essential genes which are expected to be important for growth across most cell types, there are 280 
expected to be many more examples of cell-type-specific effects in a larger cellular perturbation 281 
atlas. 282 

Before computing correlations between different cell types, we first compared differential 283 
expression effects of the same genetic perturbations in repeated experiments (K562-284 
GenomeWide and K562-Essential) (Supplementary Table 9). The median correlation between 285 
log-fold-change point estimates - not using TRADE - was only 0.16, suggesting very low 286 
replicability (Figure 4B). However, the median transcriptome-wide impact correlation between 287 
replicates was 0.90, implying excellent replicability (Figure 4B). This difference underscores the 288 
value of modeling sampling variance when estimating effect-size correlations (as uncorrelated 289 
sampling variation causes downward bias in correlation estimates; Supplementary Appendix 290 
2). A few perturbations did have low between-experiment transcriptome-wide impact 291 
correlations; most of these had very low transcriptome-wide impact, and thus, their correlations 292 
are expected to be noisy (Supplementary Figure 9).   293 

We used TRADE to estimate the correlation of transcriptome wide effects for 294 
perturbations of 2,053 shared essential genes across K562, RPE1, Jurkat, and HepG2 295 
(Supplementary Table 10). Because these correlations are not defined in the setting of null 296 
transcriptome-wide impact, we restricted our analysis to 1660 perturbations with significant 297 
transcriptome-wide impact in all four cell types, using a very liberal threshold (Z > 0.5, 298 
corresponding to a p-value of roughly 0.3). The median transcriptome-wide impact correlation 299 
varied across pairs of cell types (Figure 4C). The highest median correlations were for 300 
K562/Jurkat (median correlation: 0.74) and HepG2/RPE1 (median correlation: 0.75). These 301 
functional results seem to correspond to known shared features of these cell lines: K562 and 302 
Jurkat are hematopoietic cell lines that are p53 mutant and grow in suspension, while HepG2 303 
and RPE1 are epithelial cell lines that are p53 wild-type and are adherent. Outside of these 304 
pairs, we observed slightly weaker correlations for K562/HepG2 (0.64) and Jurkat/HepG2 305 
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(0.69), and still weaker correlations for K562/RPE1 (0.40) and RPE1/Jurkat (0.56), suggesting 306 
that RPE1 cells tend to have especially unique responses to perturbations. We considered the 307 
effect of ascertaining shared essential genes on this analysis, and determined that inferred 308 
correlations did not vary strongly with essentiality (Supplementary Figure 10). 309 

Across perturbations, we observed two patterns of inter-cell-type correlations (Figure 310 
4D). Some perturbations, such as knockdown of DDX41, had high correlations across all four 311 
cell types (Figure 4E). Other perturbations, such as knockdown of NIFK, had much higher 312 
correlations within the pairs K562/Jurkat and RPE1/HepG2 than other cell type pairs (Figure 313 
4E). Clustering these perturbations with a Gaussian mixture model (Methods), we found that 314 
56% of the perturbations had high correlations across all cell types (mean correlation within 315 
similar cell type pairs: 0.75; outside similar pairs: 0.66); 44% had higher correlations across 316 
similar cell types (mean correlation within similar cell type pairs: 0.61; outside similar pairs: 317 
0.35).  318 
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Figure 4: Correlation of Differential Expression Across Cell Types. (A) Transcriptome-wide 354 
impact of gene perturbations in each cell type versus the median across cell types, with outliers 355 
(pink) defined as being more than 1.64 standard deviations away from the fit line (B) Correlation 356 
of differential expression effects across replicate perturbations in K562. Dotted line represents 357 
raw correlation, solid line represents correlation estimated with TRADE. (C) Median correlation 358 
of perturbation effects for common essential genes for each pair of cell types. (D) Comparison 359 
of effect size correlation strength within similar cell types and outside of similar cell type pairs. 360 
(E) Examples of inferred joint effect size distributions across all pairs of cell types for 361 
perturbations of DDX41 and NIFK.  362 
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Dosage sensitivity of transcriptome-wide impact 363 
 364 
 In the experiments analyzed above, CRISPRi guide RNAs were carefully engineered to 365 
maximize on-target knockdown. Another area of significant focus in cell biology and human 366 
genetics is in generating datasets with engineered or natural variation dosage (i.e. “allelic 367 
series”) to study dosage-response relationships, which can yield insight into gene regulation and 368 
guide therapeutic design (Collins et al. 2022; Domingo et al. 2024). Traditional analytic methods 369 
struggle to compare the effects of strong to weak perturbations in these datasets as genuine 370 
response differences may be conflated with difference in signal-to-noise ratio. We reasoned that 371 
TRADE could help contend with this challenge. We applied TRADE to data from experiments 372 
that interrogated dosage-dependent transcriptome effects of depleting essential genes in K562 373 
(Jost et al. 2020), Sox9 in induced human cranial neural crest cells (Naqvi et al. 2023), and two 374 
essential Polycomb subunits in mouse embryonic stem cells (Weber et al. 2021). Jost et al 375 
(2020) titrated gene expression with CRISPRi, which prevents transcription, and can be tuned 376 
by engineering attenuated guide RNAs containing mismatches to their target genes. Naqvi et al 377 
(2023) and Weber et al (2021) directly depleted protein levels with the dTag degron system, 378 
which can be tuned by titrating a small molecule (Nabet et al. 2018). We quantified (1) the 379 
magnitude of the transcriptome-wide impact as a function of dosage and (2) the correlation of 380 
these effects between each pair of dosages.  381 
 As expected, stronger perturbations had consistently larger transcriptome-wide impact 382 
(Figure 5A). For dTAG depletion of Sox9 (Supplementary Table 11) and Polycomb 383 
(Supplementary Table 13), the transcriptome-wide impact dosage-response curve was 384 
nonlinear. Weak-to-moderate perturbations of these proteins caused relatively small 385 
transcriptome-wide effects, whereas strong perturbations caused disproportionately large 386 
transcriptome-wide effects. These genes are haploinsufficient (pLI = 1; Karczewski et al, 2020), 387 
indicating that 50% depletion is deleterious; our results suggest that stronger depletions 388 
nonetheless produce progressively larger cellular effects. We generally observed similar dose-389 
response curves for CRISPRi knockdown of 25 essential genes in K562 cells, with varying 390 
degrees of non-linearity (Figure 5A, Supplementary Table 15, Supplementary Figure 11). 391 
 We next quantified the transcriptome-wide impact correlation between dosage levels for 392 
each perturbation (Figure 5B). For dTag depletion of Sox9 (Supplementary Table 12) and 393 
Polycomb (Supplementary Table 14), transcriptome-wide impact correlations decayed 394 
smoothly with the difference in dosage, and the smallest and largest perturbations were only 395 
moderately correlated (r=0.60, 0.48), implying that weak and strong perturbations have 396 
qualitatively different transcriptional consequences. The CRISPRi knockdown of essential genes 397 
produced a range of patterns (Supplementary Table 16). For example, the response to BCR 398 
knockdown was highly correlated across all dosage levels, despite substantial differences in the 399 
magnitude of responses (Figure 5B). In contrast, the response to GATA1 knockdown was 400 
highly correlated among all but the weakest perturbation, which was only moderately correlated 401 
with the strongest perturbation (Figure 5B). Across the other K562 essential gene titration 402 
experiments, we found a diversity of correlation patterns, including gradient-like patterns (e.g. 403 
ATP5E), highly-correlated patterns (e.g. POLR2H), and threshold patterns (e.g. RAN) 404 
(Supplementary Figure 12). 405 
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 We interpret these correlations as a readout of how the dose-response curve varies 406 
across target genes. If all downstream genes have identical response curves (up to 407 
multiplication by a constant), then the effect of a partial depletion is a fixed fraction of the effect 408 
of a full depletion, leading to a cross-dosage correlation of exactly one (Figure 5C; 409 
Supplementary Appendix 3). However, if the response curve varies between target genes, the 410 
correlation is less than 1, to an extent that depends on the variability of response curves (Figure 411 
5C; Supplementary Appendix 3). Indeed, Naqvi et al (2023) found that a subset of Sox9 412 
targets are sensitive at partial dosage depletions, whereas a much larger set of targets are 413 
affected only at full dosage depletions. The presence of a threshold, where the response curves 414 
change abruptly, leads to a large change in correlation magnitude across the dosage threshold. 415 
In simulations, we recapitulated the three correlation patterns described above with different 416 
sets of response curves (Figure 5C; Methods).  417 

In genetic experiments and genetic association studies, it is common to study the effect 418 
of a gene by estimating a single point on its dose-response curve, potentially missing 419 
qualitatively different dosage-dependent behavior. One classical example of this phenomenon is 420 
recessivity. More generally, even haploinsufficient genes (such as SOX9) can have qualitatively 421 
different effects as a function of dosage. These analyses highlight the value of studying allelic 422 
series in genetic association studies, and of designing knockdown experiments at clinically 423 
relevant dosages.  424 
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 425 
Figure 5: Dose-Response Relationships. (A) Relationship between gene dosage and 426 
transcriptome-wide impact across four experiments. (B) Correlations between differential 427 
expression effects at different dosages for each experiment (C) Observations from a toy model 428 
of perturbation effects, demonstrating relationship between response kinetics consistency and 429 
resulting pattern of cross-dosage correlations.  430 
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Greater transcriptomic than genetic correspondence across neuropsychiatric conditions 431 
Gandal et al (2018) conducted a large-scale differential expression analysis of post-432 

mortem brain tissue from individuals with neuropsychiatric conditions, comparing them with 433 
neurotypical controls. They found that differential expression effects were correlated between 434 
conditions, and that these correlations paralleled those between the genetic effects on those 435 
conditions (the genetic correlation). Because genetic effects are usually causal, this parallel was 436 
interpreted as evidence that transcriptomic overlap reflects upstream, disease-causing 437 
processes rather than confounding or downstream effects. A notable difference between the 438 
transcriptomic and genetic analyses in this study is that the genetic correlation was estimated 439 
with a REML approach that accounts for sampling variation (Lee et al. 2012), whereas the 440 
transcriptomic effect correlation was estimated as the sample Spearman correlation between 441 
differential expression point estimates, which is downwardly biased in a sample size dependent 442 
manner (Supplementary Appendix 2).  443 

We reanalyzed differential expression summary statistics from this study and estimated 444 
the transcriptome-wide impact correlation between several diagnoses (Supplementary Table 445 
17; Figure 5A and 5B). Integrating data from all diagnosis pairs and technologies, we found 446 
that transcriptome-wide impact correlations were substantially larger than sample Spearman 447 
correlations, with an increase for 9/9 psychiatric trait pairs. As a result, unlike the Spearman 448 
correlation estimates, the TRADE correlation estimates were larger than the between-condition 449 
genetic correlations (Figure 5A-B). In contrast, TRADE appropriately estimated lower 450 
transcriptome-wide impact correlations between psychiatric diagnoses and irritable bowel 451 
disease (IBD), a non-psychiatric control trait (Supplementary Table 17). One explanation for 452 
this difference is that transcriptomic effects are often downstream of condition liability, and these 453 
downstream effects are often shared between neuropsychiatric conditions. Another possibility is 454 
that there exist confounding factors associated with gene expression and neuropsychiatric 455 
diagnoses in general. 456 

One such axis of technical variation may be related to experimental assay. Studies such 457 
as PsychENCODE often integrate cohorts that profile gene expression with different 458 
technologies, such as DNA microarrays and RNA sequencing. For three conditions with 459 
independent microarray and RNA sequencing cohorts in PsychENCODE (autism, bipolar 460 
disorder, and schizophrenia), we used TRADE to estimate the correlation of transcriptomic 461 
effects between assays (Supplementary Table 18). The transcriptome-wide impact correlation 462 
was 0.96, 0.91, and 0.78 for autism, bipolar disorder, and schizophrenia respectively 463 
(Supplementary Figure 13). These estimates imply that at least in this study, most differential 464 
expression effects replicate between assays.  465 
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 466 
Figure 6: Transcriptomic Correspondence of Neuropsychiatric Conditions. Across several 467 
case/control datasets for neuropsychiatric diagnoses, estimated transcriptome-wide impact 468 
correlation (orange), compared with spearman correlations of point estimates (green). (A) 469 
Estimates for microarray datasets from PsychENCODE (B) Estimates for RNA-Seq datasets 470 
from PsychENCODE.  471 
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Discussion 472 
 473 

Transcriptomics is a cornerstone of modern biology. With it, questions surrounding 474 
differential expression have become ubiquitous. For many such questions, especially those that 475 
involve patterns across genes or experiments, a conventional significance-testing framework 476 
may produce misleading results. We show that these limitations can be addressed by modeling 477 
the distribution of differential expression effects explicitly via TRADE. We found that significant 478 
genes capture only a fraction of transcriptome-wide impact in large-scale Perturb-Seq 479 
experiments. Across cell types or even replicate experiments, the concordance between 480 
estimated effect sizes is attenuated due to sampling variation, but we showed that in many 481 
cases, the true effect sizes are highly concordant. In dose-response experiments, we found that 482 
dosage affects not only the magnitude of the transcriptome-wide effect, but also the genes that 483 
are affected. In a case-control as opposed to perturbational dataset, we found that the same 484 
advantages apply, and that our approach changes the interpretation of a key analysis of 485 
neuropsychiatric conditions.  486 

The ubiquity of small differential expression effects is connected to an existing division in 487 
the field, between approaches that test for differential expression of single genes (e.g. DESeq2; 488 
Love, Huber, and Anders 2014) and those that test for differential abundance of cellular states 489 
(e.g. covarying neighborhood analysis, CNA; Reshef et al. 2022). These methods approach 490 
differential expression with distinct priors: that changes in expression will be largely restricted to 491 
a small number of genes with large effect, or that changes in expression will be spread across 492 
many hundreds or thousands of genes, reflecting a change in cell state. Estimates from TRADE, 493 
in particular 𝜋"#$, can contextualize these approaches by quantifying the degree to which 494 
differential expression is concentrated in specific target genes, versus spread across the 495 
transcriptome. 496 

In addition to studying perturbations, an important application of differential expression 497 
analysis is to understand differences between cell types. Many analyses of cell-type variation 498 
require a distance metric, a scalar summary of the transcriptomic difference between groups of 499 
cells, and many such metrics have been proposed (Ji et al. 2023). Transcriptome-wide impact 500 
may be a suitable distance metric for such analyses, as it is unbiased at finite sample size 501 
(unlike the commonly used Euclidean distance, Supplementary Appendix 4), is easily 502 
interpretable, and can be computed from differential expression summary statistics. Indeed, we 503 
found that compared to Euclidean distance, transcriptome-wide impact produced a more 504 
coherent cell-type hierarchy of peripheral blood mononuclear cells in the OneK1K dataset 505 
(Yazar et al. 2022; Kang et al. 2023; Methods) (Supplementary Figure 14; Supplementary 506 
Table 19). However, a limitation of TRADE is that it relies upon predefined labels, and cannot 507 
be used to cluster cells into cell types. 508 

For genetic perturbations, parameters such as transcriptome-wide impact are likely 509 
driven by the pattern of causal regulatory connections between genes, i.e. the gene regulatory 510 
network (GRN). Inference of GRNs from single-cell measurements is a challenging, unsolved 511 
technical problem (Pratapa et al. 2020). We speculate that, just as inferring transcriptome-wide 512 
impact is easier than inferring gene-specific effect sizes, estimating global features of the GRN 513 
may be easier than identifying individual edges. This could be achieved by pairing TRADE with 514 
a model relating the distribution of differential expression effects to GRN features such as the 515 
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degree distribution or modularity. We speculate that the true GRN is densely interconnected 516 
with relatively low modularity, based on our observation that virtually all high transcriptome-wide 517 
impact perturbations also affect a large number of genes, approaching the number of genes that 518 
are expressed (Supplementary Appendix 1). 519 

A key limitation of TRADE is that it currently uses only a simple readout from single cell 520 
RNA-seq experiments, the pseudo-bulk mean RNA expression level. Average expression is a 521 
widely used and highly interpretable readout, but the transcriptional state of individual cells may 522 
vary in ways that are poorly captured in pseudo-bulk (for example, due to the presence of 523 
multiple cell types) and are better understood with modeling of cell type variability (Lopez et al. 524 
2018). In addition, some biological processes are better assayed using alternative modalities, 525 
including mRNA splicing, chromatin state, protein level, and imaging, all of which are now being 526 
studied at scale with single cell CRISPR screens  (Rubin et al. 2019; Feldman et al. 2019; Gu et 527 
al. 2023; Kudo et al. 2023; Binan et al. 2023; Xu et al. 2023) We predict that future methods 528 
building on our approach will have broad application to these other phenotypic readouts as well 529 
as to the study of non-genetic perturbations such as drugs and development. 530 

 An emerging goal of functional genomics is the generation of perturbational cell atlases 531 
across multiple cellular contexts (Rood et al. 2022; Morris et al. 2024). However, as with all 532 
screening methods, there is a tradeoff where the number of assayed perturbations is ultimately 533 
constrained by experimental cost. TRADE shifts the balance in this tradeoff by allowing stable 534 
quantification of highly informative metrics including transcriptome-wide impact, correlations 535 
between perturbations, and context-dependent effects at much shallower sampling depths. 536 
Combined with developments in screen compression (Yao et al. 2023) and cheaper sequencing 537 
technologies (Simmons et al. 2023) our method suggests a productive path toward massive 538 
scale perturbational atlases.  539 
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Methods 540 
Experimental Model and Subject Details: Perturb-Seq of essential genes in Jurkat and HepG2 541 
 542 
Cell line generation and maintenance  543 
All cell lines were grown at 37°C in the presence of 5% CO2 in standard tissue culture incubators. 544 
  545 
A CRISPRi Jurkat cell line expressing dCas9-BFP-KRAB (KOX1-derived) was obtained from the 546 
UC Berkeley Cell Culture Facility (cIGI1) and was used for growth screens. A second CRISPRi 547 
Jurkat cell line expressing the optimized UCOE-EF1α-Zim3-dCas9-P2A-mCherry CRISPRi 548 
construct was generated as previously described (Replogle et al., eLife 2022) and was used for 549 
Perturb-seq. Jurkat cells were grown in RPMI-1640 medium with 25 mM HEPES, 2.0 g/l NaHCO3, 550 
and 0.3 g/l L-glutamine (Gibco) supplemented with 10% (v/v) standard FBS, 2 mM glutamine, 100 551 
units/ml penicillin, and 100 µg/ml streptomycin (Gibco). 552 
  553 
A CRISPRi HepG2 cell line expressing UCOE-EF1α-dCas9-BFP-KRAB (KOX1-derived) was 554 
obtained from Torres et al. (Torres et al., eLife 2019), and was used for both growth screens and 555 
Perturb-seq. HepG2 cells were grown in EMEM with 1.5 g/L NaHCO3, 110 mg/L sodium pyruvate, 556 
292 mg/L l-glutamine (Corning) supplemented with 10% (v/v) standard FBS, 100 units/mL 557 
penicillin, and 100 µg/mL streptomycin (Gibco). 558 
  559 
HEK293T cells were used for generation of lentivirus. HEK293T cells were grown in DMEM with 560 
25 mM d-glucose, 3.7 g/L NaHCO3, 4 mM l-glutamine (Gibco) supplemented with 10% (v/v) 561 
standard FBS, 2 mM glutamine, 100 units/ml penicillin, and 100 µg/ml streptomycin (Gibco). 562 
 563 
Lentiviral production 564 
To produce lentivirus, HEK293T cells were co-transfected with transfer plasmids and standard 565 
packaging vectors expressing VSV-G, Gag/Pol, Rev, and Tat using TransIT-LTI Transfection 566 
Reagent (Mirus). Viral supernatant was harvested 2 days after transfection and frozen at -80°C 567 
prior to transduction. 568 
 569 
Library design and growth screens 570 
Dual-sgRNA CRISPRi lentiviral libraries were previously described (Replogle et al., Cell 2022). 571 
Briefly, a preliminary sgRNA library (dJR058, n=2291 dual-sgRNA elements) with even 572 
representation of all dual-sgRNA constructs was used for growth screens. This library contains a 573 
single dual-sgRNA construct targeting i) 20Q1 Cancer Dependency Map common essential genes 574 
(https://depmap.org/portal/download/) and (ii) 5% non-targeting control sgRNAs cloned into 575 
pJR101 (Addgene #187241). A second sgRNA library (dJR092, n=2688 dual-sgRNA elements, 576 
Supplementary Table 20) which adjusted the representation of sgRNAs to decrease dropout of 577 
essential genes was used for Perturb-seq experiments. The sgRNA abundance was corrected 578 
according to the effects observed in growth screens (described below); for example, a guide with 579 
roughly four-fold depletion in growth screens was four-fold overrepresented in dJR092. This 580 
library also included sgRNAs targeting a number of additional genes with interesting phenotypes 581 
in the K562 genome-wide Perturb-seq dataset. 582 
  583 
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Pooled growth screens in Jurkat cells were performed by transducing Jurkat cells expressing 584 
dCas9-BFP-KRAB (cIGI1) with the dual-sgRNA CRISPRi lentiviral library, dJR058. Screens were 585 
performed in biological replicate maintaining a coverage of >1000 cells per library element for the 586 
duration of the screen. Cells were transduced by spinfection (1000g) with polybrene (8 µg/mL, 587 
Sigma-Alrich) to obtain an infection rate of 10%-20%. On day 3 post-transduction, cells were 588 
sorted to near-purity by FACS (FACSAria2, BD Biosciences), using GFP as a marker for sgRNA 589 
vector transduction. On day 7 post-transduction, an aliquot of cells was harvested for sequencing 590 
to compare sgRNA abundances to the plasmid library. 591 
  592 
Pooled growth screens in HepG2 cells were performed by transducing HepG2 cells expressing 593 
dCas9-BFP-KRAB with the dual-sgRNA CRISPRi lentiviral library, dJR058. Screens were 594 
performed in biological replicate maintaining a coverage of >1000 cells per library element for the 595 
duration of the screen. Cells were transduced by plating in viral supernatant with polybrene (8 596 
µg/mL, Sigma-Alrich) to obtain an infection rate of 30%-40% based on GFP measurement by 597 
FACS (FACSAria2, BD Biosciences). On day 7 post-transduction, an aliquot of cells was 598 
harvested for sequencing to compare sgRNA abundances to the plasmid library. 599 
  600 
Library preparation and sequencing of growth screens followed the protocol previously described 601 
(Replogle et al., Cell 2022). 602 
 603 
 604 
Perturb-seq experiments, library preparation, and sequencing 605 
For the Jurkat Perturb-seq experiment, Jurkat cells expressing Zim3-dCas9-P2A-mCherry were 606 
transduced with dJR092 library lentivirus by spinfection (1000g) with polybrene (8 µg/mL, Sigma-607 
Alrich) with a targeted low infection rate of ~10%. This low rate was chosen to reduce the chances 608 
of a single cell being infected by multiple viruses. Cells were maintained at a coverage of >1000 609 
cells per library element for the duration of the screen. On day 3 post-transduction, an infection 610 
rate of 7% was measured based on GFP as a marker of transduction, and cells were sorted to 611 
near purity by FACS (FACSAria2, BD Biosciences). On day 7 post-transduction, cells were 612 
measured to be >90% GFP positive (Attune NxT, ThermoFisher) and were prepared for single-613 
cell RNA-sequencing by resuspension in 1X PBS with 0.04% BSA as detailed in the 10x 614 
Genomics Single Cell Protocols Cell Preparation Guide (10x Genomics, CG00053 Rev C). Cells 615 
were separated into droplet emulsions using the Chromium Controller (10x Genomics) with 616 
Chromium Single-Cell 3′ Gel Beads v3 (10x Genomics, PN-1000075 and PN-1000153) across 56 617 
GEM groups following the 10x Genomics Chromium Single Cell 3ʹ Reagent Kits v3 User Guide 618 
with Feature Barcode technology for CRISPR Screening (CG000184 Rev C) with the goal of 619 
recovering ~15,000 cells per GEM group before filtering. 620 
  621 
For the HepG2 Perturb-seq experiment, HepG2 cells expressing dCas9-BFP-KRAB were 622 
transduced with dJR092 library lentiviral supernatant with polybrene (8 µg/mL, Sigma-Alrich) with 623 
a targeted low infection rate of ~10%. Cells were maintained at a coverage of >1000 cells per 624 
library element for the duration of the screen. On day 3 post-transduction, an infection rate of 7% 625 
was measured based on GFP as a marker of transduction, and cells were sorted to near purity 626 
by FACS (FACSAria2, BD Biosciences). On day 7 post-transduction, cells were dissociated using 627 
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Accutase (StemCell Technologies) for 30 minutes and resuspended in 5 mM EDTA-PBS. In order 628 
to decrease cell doublets in the single-cell RNA-sequencing, GFP positive singlets were isolated 629 
by FACS (FACSAria2, BD Biosciences) with a final cell population measured to be ~90% GFP 630 
positive. Cells were then prepared for single-cell RNA-sequencing by resuspension in 1X PBS 631 
with 0.04% BSA as detailed in the 10x Genomics Single Cell Protocols Cell Preparation Guide 632 
(10x Genomics, CG00053 Rev C). Cells were separated into droplet emulsions using the 633 
Chromium Controller (10x Genomics) with Chromium Single-Cell 3′ Gel Beads v3 (10x Genomics, 634 
PN-1000075 and PN-1000153) across 56 GEM groups following the 10x Genomics Chromium 635 
Single Cell 3ʹ Reagent Kits v3 User Guide with Feature Barcode technology for CRISPR 636 
Screening (CG000184 Rev C) with the goal of recovering ~15,000 cells per GEM group before 637 
filtering. 638 
  639 
For library preparation, samples were processed according to 10x Genomics Chromium Single 640 
Cell 3ʹ Reagent Kits v3 User Guide with Feature Barcode technology for CRISPR Screening 641 
(CG000184 Rev C) with magnetic selections conducted on an Alpaqua Catalyst 96 plate 642 
(#A000550). For sequencing, mRNA and sgRNA libraries were pooled to avoid index collisions 643 
and sequenced on a NovaSeq 6000 (Illumina) according to the 10x Genomics User Guide. 644 
 645 
Quantification and Statistical Analysis 646 
Perturb-seq in Jurkat and HepG2: alignment, cell calling, sgRNA assignment, and cell filtering 647 
  648 
As previously described (Replogle et al., Cell 2022), Cell Ranger 4.0.0 software (10x Genomics) 649 
was used for scRNA-seq and sgRNA alignment, collapsing reads to UMI counts, and cell calling. 650 
The 10x Genomics GRCh38 version 2020-A genome build was used as a reference 651 
transcriptome. For sgRNA assignment, reads were first downsampled by GEM group to produce 652 
a more even distribution of the number of reads per cell, with an upper threshold of 3000 mean 653 
mapped reads per cell in the Jurkat experiment and 2500 mean mapped reads per cell in the 654 
HepG2 experiment. Guide calling was performed with a Poisson-Gaussian mixture model as 655 
previously described (Replogle et al., Nature Biotech 2020), with only cells bearing two sgRNAs 656 
targeting the same gene or a single sgRNA used for downstream analysis. Cells were filtered for 657 
quality to remove cells with low UMI content (Jurkat: < 14%, HepG2: <18%) and high 658 
mitochondrial RNA content (Jurkat: > 1750 UMIs, HepG2: > 3000 UMIs). These filters removed 659 
7408 cells from the Jurkat-Essential experiment (262956 cells retained), and 15952 cells from the 660 
HepG2-Essential experiment (145473 cells retained). 661 
 662 
A similar procedure was performed as previously described for the K562-GenomeWide, K562-663 
Essential, and RPE1-Essential datasets (Replogle et al, Cell, 2022) 664 
 665 
Modeling transcriptome-wide responses 666 

In a differential expression experiment, read depth is quantified for each gene and each 667 
cell or sample. The resulting counts are typically modeled as following a distribution (e.g., 668 
negative binomial) whose mean may differ between two conditions, and the difference is 669 
quantified as a log-fold change, defined as the difference between the logarithm of population 670 
expression means between the two conditions. In a typical experiment, the log-fold change can 671 
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be interpreted as the effect size of a condition or perturbation on a gene, and many biological 672 
questions are related to the distribution of true effect sizes across genes. However, we only 673 
observe the distribution of estimated effect sizes. These estimates can be modeled as the sum 674 
of two distributions: the distribution of true effect sizes, and the sampling distribution in the 675 
experiment. TRADE is a method to disentangle these components. 676 
  677 

To do so, TRADE uses ash (Stephens 2016) to estimate the effect size distribution from 678 
differential expression summary statistics, which we compute with DESeq2 (Love et al. 2014). 679 
DESeq2 fits a regularized negative binomial generalized linear model, sharing information 680 
across genes to improve overdispersion estimates. It has been applied to many different 681 
contrasts, including genetic perturbations and different cell types. ash models an effect size 682 
distribution by learning the weights of a flexible mixture model using maximum likelihood. ash 683 
incorporates standard error estimates into the inference procedure, effectively down-weighting 684 
noisier log-fold change estimates, such as those for very lowly expressed genes. Whereas ash 685 
was initially designed to estimate effect size distributions as an intermediate step prior to 686 
shrinkage, TRADE uses it to estimate the effect size distribution itself.  687 

 688 
Features of the effect size distribution 689 

The transcriptome-wide impact is defined as the variance of the distribution of differential 690 
expression effect sizes, in units of log2-fold change. The transcriptome-wide impact captures 691 
the overall degree of transcriptomic change across a contrast of interest, e.g. a perturbation. 692 
Importantly, transcriptome-wide impact is in interpretable units of Log2FC2. For example, if a 693 
hypothetical perturbation affects all genes with normally distributed effect sizes, and the 694 
transcriptome-wide impact is 0.25, it means that a typical gene has an effect size of 0.5. 695 

Beyond this simplistic model, a large transcriptome-wide impact may arise either 696 
because a perturbation has a large effect on a few genes, or because it has smaller effects on 697 
many of them. To distinguish between these possibilities, we define the effective number of 698 
differentially expressed genes (𝜋"#$) as: 699 
 700 

𝜋"#$ =
3𝑀
𝜅
																			𝜅 =

𝐸[𝛽&]
𝐸[𝛽%]%

 701 

 702 
Where 𝑀	is the number of genes with measured expression, and 𝜅 is the kurtosis (normalized 703 
fourth moment) of the inferred effect size distribution. If a perturbation has a large effect on only 704 
a few genes, then 𝜅 is large, and 𝜋"#$ is small. Conversely, if a perturbation affects all genes 705 
with normally distributed effect sizes, then 𝜅 equals 3, and 𝜋"#$ is equal to the number of genes 706 
(Supplementary Figure 5).  707 
 708 
Different sets of genes may be enriched or depleted for differential expression. We define the 709 
perturbation response enrichment of a gene set as: 710 
 711 

Enrichment'()*+,)((gene	set) = 	
Var?β-(,(Agene ∈ gene	setC

Var?β-(,(C
. 712 

 713 
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We estimate the numerator by applying ash to genes in the gene set, and we estimate the 714 
denominator by applying it to all genes. This approach is expected to be approximately 715 
unbiased for most gene sets. However, we do also use it to estimate the fraction of signal in 716 
FDR-significant genes; we note that such estimates are expected to be upwardly biased by 717 
winner’s curse. In Figure 3, we report the mean perturbation response enrichment across 718 
perturbations.  719 
 720 
In addition to the perturbation response enrichment, we also estimate the perturbation impact 721 
enrichment. If 𝑇𝐼. is the transcriptome-wide impact of perturbation 𝑖, the perturbation impact 722 
enrichment is: 723 
 724 

Enrichment./*012(gene	set) = 	
n*('23'402.+,) ∗ ∑ TI.-(,(	)(2

n-(,()(2 ∗ ∑ TI.066	*('23'402.+,)
 725 

 726 
We estimate this quantity by substituting the estimated transcriptome-wide impact for the true 727 
transcriptome-wide impact. 728 
 729 
TRADE Implementation details (univariate) 730 
Briefly, to model the effect size distribution, we used ash to fit the following mixture model: 731 
 732 

𝑧!~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙([𝑘];	𝜋7, … , 𝜋8) 733 
𝛽!|𝑧! = 𝑖~𝑏9𝑈𝑛𝑖𝑓(0,1) 734 

𝛽!#	~	𝑁(𝛽!, 𝑠!a
%) 735 

 736 
Where 𝛽!# is the estimated log2FoldChange, 𝛽! is the true log2FoldChange, 𝑠!a  is the estimated 737 
standard error, 𝑧! matches gene 𝑔 to a mixture component uniform distribution 𝑖 with one 738 
extremum at 0 and the other at 𝑏9, and 𝜋9 are the weights for components of the mixture 739 
distribution. 740 
 741 
ash fits this model with interior point optimization methods (for details, see Stephens et al, 2016, 742 
Biostatistics). For mixture components, we used a fine grid of uniform distributions with one 743 
extremum at zero as mixture components (“half-uniform”) rather than zero-centered uniform 744 
mixture components, to allow for estimation of asymmetric effect size distributions; Stephens 745 
(2016) found that these this model is sufficiently flexible to model realistic effect size 746 
distributions.  747 
 748 
We largely used ash with default settings; we made two modifications 749 

1. We restricted the range of mixture components to the smallest and largest observed 750 
effect size, rather than the default behavior of c(-Inf, Inf), to improve computational 751 
efficiency 752 

2. We used a uniform rather than null-biased prior; using a null-biased prior is crucial for 753 
accurately computing the local false sign rate, but is less important for estimating the 754 
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effect size distribution itself. We removed the null-biased prior in order to prevent bias in 755 
our distribution estimate. 756 

Simulations 757 
 758 
To assess the performance of TRADE, we first simulated gene expression counts for two 759 
conditions. We first used DESeq2 to estimate the expression mean and dispersion for each of 760 
the first 10 batches of control cells (i.e. cells with a non-targeting guide RNA) of the K562-761 
GenomeWide dataset. We simulated “control” counts by sampling from negative binomial 762 
distributions with these empirical mean and dispersion estimates, for each batch. We then 763 
simulated “perturbed” counts by sampling from negative binomial distributions with “perturbed” 764 
means (i.e. multiplied by the fold change, see below) and the same dispersion, for each batch.  765 
In summary, this procedure produces a single cell expression dataset with realistic means, 766 
dispersions, and batch structure.  767 
 768 
We then analyzed this simulated data with DESeq2 and TRADE. We generated a pseudobulk 769 
dataset by summing counts for each gene, for each condition, for each batch, creating a dataset 770 
with the number of samples equal to twice the number of batches. We then used DESeq2 to fit 771 
the following model: 772 
 773 

𝑘!9~𝑁𝐵𝑖𝑛𝑜𝑚(𝜇 = 𝑠9exp	(𝛽:;<=><?𝑥 +	h𝛽?@=AB,D𝑏D
D

+	𝛽E), dispersion = α-) 774 

 775 
Where 𝑘!9 is the observed expression count for gene 𝑔 for pseudobulk observation 𝑖,𝑠9 is a per-776 
observation normalization factor computed with the default DESeq2 median-of-ratios approach,  777 
𝑥 is a binary variable denoting the presence of a perturbation, 𝑏D is a binary variable denoting 778 
whether the pseudobulk observation comes from batch 𝑗, and 𝛼! is the supra-Poisson 779 
overdispersion. 780 
 781 
For details on fitting this model, see Love et al (2014). 782 
 783 
To characterize estimation of transcriptome-wide impact, we generated effect sizes from 30 784 
distinct effect size distributions: 785 

● 3 levels of sparsity: A point-normal distribution with 95% of effects equal to zero and the 786 
other 5% drawn from a normal distribution, a point-normal distribution with 75% of 787 
effects equal to zero and the other 25% drawn from a normal distribution, and a fully 788 
infinitesimal model with 100% of effects drawn from a normal distribution 789 

● 10 values of transcriptome-wide impact: Values ranging from 0.05 to 0.5; 0.5 is roughly 790 
the estimated value for the largest perturbations from the Replogle et al (2022) dataset. 791 
For the point normal distributions, the variance of the normal component was scaled up 792 
to equalize transcriptome-wide impact with the infinitesimal simulation (i.e. multiplying by 793 
sqrt(20) for the 95% sparse distribution and 2 for the 75% sparse distribution 794 

 795 
To characterize estimation of 𝜋"#$, we generated effect sizes from 10 distinct effect size 796 
distributions, reflecting 10 levels of sparsity. Effect sizes were sampled from a point normal 797 
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distribution with sparsity ranging from 0.05 to 0.95, with the normal component having variance 798 
0.25 799 
 800 
We repeated these simulations at three different sample sizes: N = 20 cells per condition, N = 801 
200 cells per condition, and N = 2000 cells per condition. N = 200 is similar to the typical sample 802 
size regime for the Replogle et al (2022) dataset.  803 
 804 
For each combination of parameters, we ran 100 replicate simulations.  805 
 806 
Genome-wide Perturb Seq 807 
We analyzed data from five large-scale Perturb-Seq experiments, including three from Replogle 808 
et al. 2022 (K562-GenomeWide, K562-Essential, RPE1-Essential) and two that are new (Jurkat-809 
Essential, HepG2-Essential) (see Data Availability). We generated differential expression 810 
summary statistics (i.e. log2FoldChanges and standard errors) for each perturbation as follows: 811 
 812 

1. We generated a per-batch (“gem-group”) pseudobulk dataset, summing counts across 813 
control cells (i.e. cells carrying a non-targeting guide RNA) and perturbed cells (i.e. cells 814 
carrying a guide RNA against a particular gene) within each batch. 815 

2. We estimated differential expression effects from this pseudobulk dataset using 816 
DESeq2, with an identical model as in our simulations (see above) 817 

 818 
We computed p-values with the Likelihood Ratio Test as implemented in DESeq2. 819 
 820 
We modeled each batch as a fixed effect, and DESeq2 scales poorly with the number of 821 
covariates. This presented serious challenges only for the K562-GenomeWide dataset, which 822 
had 272 batches. To circumvent this issue, we analyzed the K562-GenomeWide dataset in four 823 
“mega-batches” of 68 batches each, and then meta-analyzed the resulting four sets of 824 
log2FoldChange estimates using inverse variance weighted meta-analysis.  825 
 826 
Gene annotations 827 
For our enrichment analyses in the K562-GenomeWide dataset, we used the following gene 828 
annotations (see Data Availability): 829 

● Expression level: Estimated from the K562-GenomeWide dataset itself as the mean 830 
expression level. 831 

● Growth effect: We downloaded growth effect estimates from the K562 CRISPR growth 832 
screen in the Cancer DepMap project 833 

● Loss of Function Observed over Expected Upper Fraction (LOEUF): We downloaded 834 
these estimates from the gnomad v2 resource (Karczewski et al. 2020) 835 

● Nuclear and cytoskeletal localization: We downloaded cellular localization annotations 836 
from the COMPARTMENTS database  (Binder et al. 2014) 837 

● DE Prior: We downloaded the DE Prior ranked list from the supplementary information of 838 
Crow et al (2019) 839 

● Stably expressed genes (SEG): We downloaded the list of human SEGs from Lin et al 840 
(2019) 841 
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● On-Target Knockdown: We estimated the log2FoldChange for the target gene in each 842 
experiment with DESeq2 843 

 844 
For the quantitative annotations, we generated two annotations, Top 10% and Bottom 50%, for 845 
enrichment analyses.  846 
 847 
Transcriptome-wide analysis of Differential Expression (Bivariate) 848 
Given two sets of differential expression summary statistics (e.g. log2FoldChanges and 849 
standard errors computed with DESeq2), we estimated the joint distribution of effect sizes using 850 
mash (Urbut et al, NG). mash fits a mixture of multivariate normal distributions to model the joint 851 
distribution of effect sizes across an arbitrary number of experiments, for example eQTLs from 852 
tens of tissues; we used mash to model bivariate effect size distributions, with a particular 853 
interest in estimating the correlation of effects between two perturbations.  854 
 855 
Briefly, mash finds the weights 𝜋 that maximize the following likelihood: 856 
 857 

𝑧!~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙([𝑘]; 𝜋7, … 𝜋8) 858 
𝛽!|𝑧! = 𝑖	~	𝑀𝑉𝑁(0, 𝑈9) 859 
𝛽!#	~𝑀𝑉𝑁(𝛽!, 𝑆!%) 860 

 861 
 862 
where 𝛽!# is a two-element vector of estimated effect sizes, 𝛽! is a two-element vector of true 863 
effect sizes, 𝑆!% is the sampling covariance matrix of the true effect sizes, 𝑧! matches gene 𝑔 to 864 
a mixture component multivariate normal distribution parameterized by fixed covariance matrix 865 
𝑈9, and 𝜋9 is the weight for the component 𝑖 of the mixture distribution 866 
 867 
We choose 𝑆! to be a diagonal matrix with diagonal entries equal to the variance of the 868 
individual estimated effects. This choice is appropriate when each estimate is derived from a 869 
different experiment, which is the case in our analyses. 870 
 871 
Selecting the covariance matrices 𝑈9 is a crucial step in this analysis. By default, mash 872 
recommends a combination of “canonical” (i.e. reflecting simple correlation patterns) and data-873 
derived (i.e. from factorization of the observed data matrix) covariance matrices, across a range 874 
of scaling factors. We used these mash default covariance matrices, and added several more 875 
matrices comprising an “adaptive grid”. We did so because while mash was designed primarily 876 
for multivariate experiments with several conditions, where specifying all possible covariance 877 
patterns is not feasible, we are interested in the bivariate case, where doing so is feasible. 878 
  879 
We obtain this adaptive grid of covariance matrices by first running univariate ash in each 880 
condition, with half-normal mixture components. We then retain the component variances with 881 
non-zero weight for each distribution. Then, for each combination of variances, we create 882 
covariances matrices with several covariance values corresponding to a grid of correlations 883 
between -1 and 1 (in our experiments, 21 correlation values was a sufficiently dense grid). This 884 
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procedure produces a set of covariance matrices that attempt to tile all possible bivariate 885 
relationships between the two perturbations. 886 
 887 
Identification of genes with cell-type-specific perturbation effects 888 
To identify perturbations with exceptionally large transcriptome-wide impact in one cell type, we 889 
regressed log-transformed transcriptome-wide impact estimates from each cell type on the 890 
median log-transformed transcriptome-wide impact across all four cell types. This regression 891 
included 2050 perturbations, excluding three common essential genes that had zero 892 
transcriptome-wide impact in at least one cell type. We then defined perturbations with cell-type 893 
specific effects as perturbations with a standardized residual from this regression greater than 894 
1.64, i.e. corresponding to a p-value of 0.1. 895 
 896 
Notably, this regression included fitted parameters for both intercept and slope, meaning that 897 
cell-type-specific effects were not identified only because one cell type exhibits stronger effects 898 
overall. 899 
 900 
Clustering genetic perturbations across cell types 901 
Visualization of the relationship between transcriptome-wide impact correlation within and 902 
between each pair of more-similar cell types (Figure 4D) motivated us to cluster perturbations 903 
based on these values with a bivariate gaussian mixture model. We fit a bivariate gaussian 904 
mixture model using an expectation-maximization algorithm as implemented in the mclust 905 
package in R. The resulting mixture components reflected the visually apparent clusters from 906 
Figure 4D, i.e. including one component with relatively high correlations within and outside of 907 
similar cell types (mean correlation within = 0.75, mean correlation outside = 0.66) and one 908 
component with lower correlations outside of similar cell types (mean correlation within = 0.61, 909 
mean correlation outside = 0.35). We assigned each genetic perturbation to one of the two 910 
components based on the posterior probabilities from this model. 911 
 912 
Perturb-Seq with Attenuated Guide RNAs 913 
We downloaded publicly available processed scRNA-seq data from Jost et al (2020). Full details 914 
are available in the primary manuscript describing this dataset. This data is largely identical to 915 
those described above from Replogle et al (2022), with multiple guides (with several targeting 916 
each of 25 essential genes) arrayed across three batches. 917 
 918 
To analyze this dataset, we used an identical approach as the genome-wide and essential-wide 919 
experiments from Replogle et al (2022), performing a batch pseudobulk analysis with DESeq2. 920 
To harmonize this analysis with that of Replogle et al (2022), we limited the measured genes 921 
analyzed to those with an average expression level of 0.01 UMIs across cells. To estimate 922 
standard errors, we used a block-jackknife across cells with 100 blocks. 923 
 924 
We estimated the degree of on-target knockdown using the Log2FoldChange for the target 925 
gene from DESeq2.  926 
 927 
dTAG Depletion of SOX9 928 
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Gene-wise RNA counts were downloaded from the Zenodo archive accompanying Naqvi et al 929 
(2023), and differential expression analysis was conducted using the script from the same 930 
repository. Briefly, RNA was sequenced from bulk samples of human embryonic stem-cell 931 
derived human neural crest cells with varying concentrations of dTAG targeting Sox9. RNA-seq 932 
data was aligned with Salmon, and differential expression analysis was carried out with 933 
DESeq2, with differentiation batch as a covariate. Standard errors for the TRADE analysis were 934 
computed via a sample jackknife.  935 
 936 
dTAG Depletion of Polycomb Repressive Complex 937 
Gene-wise RNA counts were downloaded from the GEO repository accompanying Weber et al 938 
(2021). Briefly, RNA was sequenced from bulk samples of mouse embryonic stem cells with 939 
varying concentrations of dTag targeting Ring1b and Eed. RNA-seq data was aligned with 940 
kallisto, and differential expression analysis was carried out with DESeq2. Standard errors for 941 
the TRADE analysis were computed via a sample jackknife. 942 
 943 
Simulations of dose-response curves 944 
To simulate correlation of perturbation effects across dosage levels, we simulated 10000 target 945 
gene expression profiles downstream of a perturbed gene, The response function of each gene 946 
was simulated with a Hill Equation: 947 

𝑌 = (𝑌F@G𝐹𝑜𝑙𝑑𝐶ℎ𝑎𝑛𝑔𝑒E) + (𝑌F@G − 𝑌F@G𝐹𝑜𝑙𝑑𝐶ℎ𝑎𝑛𝑔𝑒E)
1

1 + w𝑎𝑥x
?	 948 

Where 𝑌 is the expression level of the target gene at dosage level 𝑥 of the perturbed gene, 𝑌F@G 949 
is the expression level of the target gene at full dosage of the perturbed gene, 𝐹𝑜𝑙𝑑𝐶ℎ𝑎𝑛𝑔𝑒E is 950 
the fold change of the target gene associated with full depletion of the perturbed gene, 𝑎 is the 951 
concentration associated with half-maximal response, and 𝑏 is the “Hill coefficient” or the degree 952 
of cooperativity. 953 
 954 
For all simulations, across genes, 𝑌F@G was drawn from the normal distribution 𝑁(100,5), and 955 
𝐹𝑜𝑙𝑑𝐶ℎ𝑎𝑛𝑔𝑒E was drawn from the normal distribution 𝑁(0,2) (i.e. infinitesimal architecture). 956 
 957 
For the “Constant” simulation, 𝑎 and 𝑏 were constant (50 and 0.5, respectively). For the 958 
“Variable” simulation, 𝑎 was drawn from the uniform distribution 𝑈𝑛𝑖𝑓(10,90) and 𝑏 was drawn 959 
from the uniform distribution 𝑈𝑛𝑖𝑓(0.1,5). For the threshold simulation, 𝑎 and 𝑏 were drawn from 960 
these uniform distributions two times independently, to compute curves before and after a 961 
threshold of 20. 962 
 963 
From the simulated response kinetic curves, log2FoldChanges were computed, and correlated 964 
across dosage levels. 965 
 966 
 967 
Case/control differential expression in neuropsychiatric disorders 968 
We downloaded case/control, RNA-Seq and microarray-based, differential expression summary 969 
statistics for the PsychENCODE dataset from Gandal et al (2018) for autism, schizophrenia, 970 
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bipolar disorder, major depressive disorder, and irritable bowel disease. Following Gandal et al 971 
(2018), we used the estimates of cross-disorder genetic correlation from Lee et al (2013) 972 
 973 
Estimating cell type hierarchies in the OneK1K dataset 974 
We downloaded count-based sequencing data from the OneK1K cohort (Yazar et al, 2022), 975 
using the post-publication quality control of this dataset by Rumker et al (2023). We excluded 976 
one individual who had cells present in multiple batches. We generated a pseudobulk dataset 977 
by summing the counts of each individual, for each of the 28 PBMC cell types (i.e. excluding 978 
erythrocytes, hematopoietic stem and progenitor cells, and platelets) identified by Rumker et al 979 
(2023). We generated a pseudobulk dataset by summing counts within each individual, for each 980 
cell type. We then used DESeq2 to estimate differential expression between each pair of cell 981 
types, with batch as a covariate. We then used TRADE to estimate the transcriptome-wide 982 
impact between pairs of cell types. 983 
 984 
For the Euclidean distance analysis, we took a similar to the above, but fit a DESeq2 model with 985 
only an intercept term to the pseudobulk data from each cell type, to estimate the mean 986 
expression of each gene. For each cell type, we then normalized these mean expression 987 
profiles by converting to “counts-per-10k” units (cp10k), adding 1, and log-transforming. We 988 
then computed the Euclidean distance between each pair of normalized mean cell type 989 
expression profiles. 990 
  991 
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Code Availability 992 
 993 
The TRADE method, with accompanying documentation, is publicly available as an R package 994 
at https://github.com/ajaynadig/TRADE.  995 
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Data Availability 996 
 997 
Raw sequencing data are deposited on SRA under BioProject PRJNA1100571. Aligned 998 
sequencing data and processed single-cell populations are available on GEO at GSE264667.  999 
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