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 18 

Abstract 19 

Interaction between sleep and feeding behaviors are critical for adaptive fitness. Diverse species 20 
suppress sleep when food is scarce to increase the time spent foraging.  Post-prandial sleep, an 21 

increase in sleep time following a feeding event, has been documented in vertebrate and 22 

invertebrate animals.  While interactions between sleep and feeding appear to be highly 23 
conserved, the evolution of postprandial sleep in response to changes in food availability remains 24 

poorly understood. Multiple populations of the Mexican cavefish, Astyanax mexicanus, have 25 

independently evolved sleep loss and increased food consumption compared to surface-dwelling 26 

fish of the same species, providing the opportunity to investigate the evolution of interactions 27 

between sleep and feeding.   Here, we investigate effects of feeding on sleep in larval and adult 28 
surface fish, and two parallelly evolved cave populations of A. mexicanus.  Larval surface and 29 

cave populations of A. mexicanus increase sleep immediately following a meal, providing the first 30 
evidence of postprandial sleep in a fish model.  The amount of sleep was not correlated to meal 31 
size and occurred independently of feeding time.  In contrast to larvae, postprandial sleep was 32 
not detected in adult surface or cavefish, that can survive for months without food.  Together, 33 

these findings reveal that postprandial sleep is present in multiple short-sleeping populations of 34 
cavefish, suggesting sleep-feeding interactions are retained despite the evolution of sleep loss.  35 
These findings raise the possibility that postprandial sleep is critical for energy conservation and 36 
survival in larvae that are highly sensitive to food deprivation. 37 

 38 
  39 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 5, 2024. ; https://doi.org/10.1101/2024.07.03.602003doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.03.602003
http://creativecommons.org/licenses/by-nd/4.0/


 3 

Introduction 40 

Sleep and metabolic regulation are highly variable throughout the animal kingdom (Lesku et al. 41 

2006; Joiner 2016; Keene and Duboue 2018; Seebacher 2018). This variability is reflected by the 42 

diversity of food availability and foraging strategy, which potently impact the duration and timing 43 

of sleep. There is an interaction between sleep and feeding, regardless of life history strategy, 44 

that is critical for organismal survival, and therefore, under selection (Capellini et al. 2008; Yurgel 45 

et al. 2014; Slocumb et al. 2015; Aulsebrook et al. 2016; Brown et al. 2019). While both of these 46 

behavioral processes have been studied in detail, much less is known about interactions between 47 

sleep and feeding, particularly in the context of evolution. 48 
 49 

In many species, sleep deprivation results in increased food intake, while prolonged periods of 50 

food deprivation lead to a reduction in metabolic rate and suppression of sleep (Keene et al. 2010; 51 

Arble et al. 2015; Stahl et al. 2017; Regalado et al. 2017; Goldstein et al. 2018). Conversely, 52 

animals ranging from the nematode, C. elegans, to humans, increase sleep immediately following 53 

a meal, revealing an acute effect of dietary nutrients on sleep regulation (Stahl et al. 1983; Murphy 54 

et al. 2016; Makino et al. 2021). Defining how evolution has shaped interactions between sleep, 55 

metabolic regulation, and feeding is critical to determine the functions of these traits. 56 
 57 
The rapidly increasing number of organisms used to study sleep provides new opportunities to 58 

study interactions between sleep and metabolism(McNamara et al. 2009; Anafi et al. 2019). Fish 59 

have become a model to study the biological basis of sleep regulation (Chiu and Prober 2013; 60 

Levitas-Djerbi and Appelbaum 2017; Keene and Appelbaum 2019). Growing evidence suggests 61 

the genetic and functional basis of sleep is conserved across multiple fish species (Chiu and 62 

Prober 2013; Levitas-Djerbi and Appelbaum 2017; Keene and Appelbaum 2019). Further, the 63 

small size and amenability to genetic manipulation of these fish allows for high-throughput genetic 64 

and pharmacological screens to identify novel regulators of sleep (Rihel et al. 2010; Chiu et al. 65 

2016; Kroll et al. 2021). Furthermore, at larval stages, many fish models are transparent, allowing 66 

for mapping of sleep and feeding circuits across the entire brain (Semmelhack et al. 2014; Leung 67 

et al. 2019; Wee et al. 2019; Förster et al. 2020). Therefore, zebrafish and other fish models are 68 

exceptionally well positioned to examine interactions between sleep and feeding.  69 

 70 
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The Mexican tetra, A. mexicanus exist as river-dwelling surface fish and at least 30 blind 71 

populations of cavefish, which have evolved in nutrient-limited environments, providing the 72 

opportunity to examine sleep after fasting and postprandial sleep in an evolutionary context 73 

(Jeffery 2009; Gross 2012; McGaugh et al. 2020). Multiple cavefish populations have evolved 74 

behavioral and physiological differences relative to surface fish including sleep loss, reduced 75 

metabolic rate, and increased feeding (Duboué et al. 2011; Moran et al. 2014; Aspiras et al. 2015; 76 

Yoshizawa 2015; Volkoff 2016). Long-term starvation has opposing effects on sleep between the 77 

surface and cave populations. Starved surface fish suppress sleep, while starved cavefish 78 

increase sleep, suggesting that the evolutionary factors shaping the sleep-feeding interaction 79 

differ between populations (Jaggard et al. 2018). However, sleep-feeding interactions are poorly 80 

understood, and postprandial sleep has to our knowledge not been identified in any fish model to 81 
date.  Examining the effects of feeding state on sleep in surface and cave populations of A. 82 

mexicanus has the potential to identify whether these behaviors evolved through shared genetic 83 
mechanisms and to provide insight into how sleep-feeding interactions are influenced by 84 
adaptation to a nutrient-poor cave environment. 85 
 86 

Larval A. mexicanus provide a particularly tractable model for examining the effects of feeding on 87 
sleep regulation. Multiple populations of cavefish larvae have converged on sleep loss similar to 88 

adults (Duboué et al. 2011; Yoshizawa et al. 2015).  However, while adult fish can live for months 89 

without food, larval fish live for only a matter of days(Salin et al. 2010; Medley et al. 2022; Pozo-90 

Morales et al. 2024). Therefore, interactions between feeding and other behaviors may be 91 

particularly important for the survival of larvae and young juvenile fish. Feeding larval fish Artemia 92 
is readily quantifiable and large numbers of larval fish can be tested without the need to grow fish 93 

to adulthood (Espinasa et al. 2014, 2017; Lloyd et al. 2018).  The experimental amenability of larval 94 

fish allows for efficient characterization of sleep-feeding interactions across different behavioral 95 
and genetic contexts, providing a model to investigate the evolutionary relationship between these 96 

processes.   97 

 98 

Here, we characterize the effects of starvation and acute feeding on sleep in surface fish and 99 
multiple A. mexicanus cavefish populations.  We identify multiple sleep-feeding interactions in A. 100 

mexicanus, including the presence of post-prandial sleep in multiple, parallelly evolved cavefish 101 

populations. Feeding promotes sleep, independent of time-of-day, revealing the presence of 102 
postprandial sleep in both surface and cavefish. Together, these findings reveal interactions 103 
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between feeding and sleep and provide a model system to examine how these interactions 104 

evolved. 105 

 106 
Results 107 

To investigate the effects of feeding on sleep, we compared sleep in different populations of 108 

cavefish immediately following a meal. Briefly, fish were fed a meal, and baseline sleep and 109 
activity were measured for 24 hours prior to sleep and feeding measurements.  At Zeitgeber Time 110 

(ZT) 0 on the second day, fish were fed 70 Artemia over two hours, followed by a four-hour 111 

recording of sleep (Fig 1A).  In agreement with previous findings, baseline sleep was lower in both 112 

Pachón and Tinaja cavefish compared to surface fish (Fig 1B; Duboué et al. 2011a; Jaggard et al. 113 

2020; O’Gorman et al. 2021a). When sleep was measured following a two-hour feeding period, 114 

surface fish slept significantly more than cavefish from both populations (Fig 1C). Consistent with 115 

previous findings, quantification of Artemia consumed during the two-hour feeding window 116 
revealed significantly greater consumption in Tinaja fish, but not Pachón cavefish, compared to 117 

surface fish (Aspiras et al. 2015; Alié et al. 2018)(Fig 1D). Taken together, these findings reveal 118 

difference in sleep and feeding behavior of larval A. mexicanus populations.  119 
 120 

It is possible that sleep is elevated across A. mexicanus populations from ZT2-ZT6 due to 121 
postprandial sleep or light-regulated rest-activity rhythms. To differentiate between these 122 

possibilities, we compared sleep following meals prior to ZT2, ZT6, and ZT10.  Feeding time was 123 
limited to half an hour to provide additional resolution for postprandial sleep (Fig 2A-C).  Across 124 
feeding time courses, surface fish slept more than cavefish populations (Fig 2D-F), supporting 125 
the notion that surface fish sleep more than cavefish independent of feeding treatment. To 126 

measure for postprandial sleep, we compared sleep duration during the four hours following 127 
feeding to the remaining hours of daytime (excluding the time for the feeding assay) to determine 128 

the percent change in sleep post feeding. Sleep was increased following the meal across all three 129 
timepoints, for surface fish and both cavefish populations (Fig 2G-I). Strikingly, for all timepoints 130 

tested, there was a significant increase in the amount of postprandial sleep, measured by the 131 
increase over the baseline sleep (Fig 2G-I). Variation in the degree of postprandial sleep increase 132 

across populations were dependent of feeding time. There were no differences in the percent 133 

increase in postprandial sleep between populations fed prior to ZT2, but Surface fish had a 134 
significantly greater increase in postprandial sleep than Tinaja cavefish fed prior to ZT6, and 135 

Pachón fish had a significantly greater increase in postprandial sleep than either surface and 136 

Tinaja cavefish fed prior to ZT10. Similarly, both surface and Pachón cavefish, but not Tinaja 137 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 5, 2024. ; https://doi.org/10.1101/2024.07.03.602003doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.03.602003
http://creativecommons.org/licenses/by-nd/4.0/


 6 

cavefish, experienced a significantly greater increase in postprandial sleep prior to ZT10 than for 138 

the timepoints earlier in the day. Therefore, while postprandial sleep occurs across A. mexicanus 139 

populations, the degree to which sleep is increased in each population is dependent on the time 140 
of day that feeding occurs. Taken together, these findings reveal the presence of postprandial 141 

sleep in surface and cave populations of A. mexicanus. 142 

 143 
It is possible that meal size, or its caloric value, contributes to the duration of postprandial sleep.    144 

To determine whether the amount of postprandial sleep is related to meal size, we examined the 145 

correlation between the number of Artemia consumed and the duration of sleep in the four hours 146 

following the meal. For surface fish fed prior to ZT2, there was a significant positive correlation 147 

between meal size and post prandial sleep, however there was no significant correlation for 148 
surface fish fed prior to ZT6 and ZT10 (Fig 3A-C). For both Pachón (Fig 3D-F) and Tinaja (Fig 149 

3G-H) cavefish, there was no correlation between Artemia consumed and postprandial sleep. 150 
Therefore, postprandial sleep is largely driven by the presence of a meal and does not appear to 151 
be directly linked to meal size.  152 
 153 

Postprandial sleep may provide a mechanism for conserving energy immediately following 154 
successful foraging.  Conversely, many animals suppress sleep under food-deprived conditions, 155 

presumably to forage for food (Macfadyen et al. 1973; Danguir and Nicolaidis 1979; Keene et al. 156 

2010; Goldstein et al. 2018). Larval A. mexicanus survive for only a few days without food, raising 157 

the possibility that sleep will be acutely impacted by feeding state. To directly examine the effects 158 
of feeding state on sleep, we compared sleep in 20 days post fertilization (dpf) fish that were fed 159 
from ZT0-ZT2 to unfed fish that had been starved for the previous 24 hours (Fig 4A-C).  Surface 160 

fish and both populations of cavefish slept significantly more during the four hours following 161 
feeding than unfed controls (Fig 4D-F).   To further examine the effects of feeding on sleep, we 162 
analyzed the activity patterns of fed and unfed fish using a Markov model that predicts the sleep 163 

and wake propensity, both indicators of sleep drive (Wiggin et al. 2020). Across all three 164 

populations, fed fish had a significantly greater sleep propensity P(Doze) and a significantly lower 165 
waking propensity P(Wake) than unfed fish, suggesting that sleep drive is increased following 166 

feeding (Fig 4G-I). Together, these findings reveal that both surface and cavefish suppress sleep 167 

when starved, and that starvation-induced sleep suppression is intact in short-sleeping cavefish. 168 
 169 

Adult A. mexicanus live months without food and are thought to be highly adapted to survive 170 

periods of starvation(Cobham and Rohner 2024). Previously, we have shown that surface fish 171 
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suppress sleep during periods of prolonged starvation, while cavefish increase sleep (Jaggard et 172 

al. 2018).  To determine whether differences in sleep response extend to acute behavior following 173 

meals, we examined postprandial sleep in adult surface and cavefish.  Fish were starved for five 174 
days prior to recording to synchronize meal patterns and then fed a blood-worm meal at ZT6. In 175 

agreement with previous findings(Jaggard et al. 2018), control surface fish that were not fed slept 176 

significantly more than Pachón and Tinaja cavefish (Fig 5 A, I). Similarly, in fish fed at ZT6, surface 177 
fish slept significantly more than Tinaja and Pachòn cavefish (Fig 5B, J). To examine whether 178 

postprandial sleep is present in adult A. mexicanus, we compared sleep during the four hours 179 

following feeding to unfed counterparts (Fig 5C-E). Within this four-hour duration, there were no 180 
significant differences in sleep duration (Fig 5F-H) or sleep propensity (Fig 5K-M) between fed 181 

and unfed fish across the three A. mexicanus populations. Therefore, there is no evident 182 
postprandial sleep for adults under the conditions tested, supporting the notion that post prandial 183 
sleep is less robust at a life stage when fish are more starvation resistant. 184 

 185 
Discussion 186 
To date, five populations of A. mexicanus cavefish have been studied under laboratory conditions, 187 
all of which have significantly reduced sleep compared to surface fish populations (Yoshizawa et 188 

al. 2015). These findings have led to the speculation that reduced sleep is adaptive in the food-189 

poor cave environment because it provides more time to forage(Keene et al. 2015; Keene and 190 

Duboue 2018).  However, nearly all studies to date have examined sleep in fed animals, using 191 

daily averages.  Therefore, little is known about how sleep differs between populations under 192 
natural conditions and in response to feeding. Here, we describe interactions between sleep and 193 
feeding behavior in surface fish and two different populations of cavefish.  All three populations 194 

sleep more following feeding than under food-deprived conditions, revealing that feeding is 195 
required for baseline sleep. Furthermore, all three populations sleep more in the period following 196 

a meal as larvae, but not as adults. These findings suggest that despite robust sleep loss across 197 
cavefish populations, sleep-feeding interactions have remained intact.    198 

 199 
Numerous neural mechanisms associated with sleep loss in cavefish have been identified 200 

including elevated levels of the wake-promoting neuropeptide Hypocretin (HCRT), changes in 201 

wake-promoting catecholamine systems (Duboué et al. 2012; Bilandzija et al. 2013; Gallman et 202 

al. 2019) providing candidate regulators of postprandial sleep. Similarly, feeding is increased in 203 

multiple populations of adult A. mexicanus (Aspiras et al. 2015). In agreement with previous 204 
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findings, we find that feeding is elevated in 20 days post fertilization juvenile cavefish from the 205 

Tinaja, but not Pachón population (O’Gorman et al. 2021). In adults, differences in feeding are at 206 

least partially attributable to polymorphisms in the GPCR Melanocortin 4 receptor (Mc4r) which is 207 

associated with obesity in humans and animal models (Aspiras et al. 2015).  While there is little 208 

evidence that MC4R directly regulates sleep, it is thought to contribute to obesity-induced sleep 209 

apnea that in turn regulates sleep (Larkin et al. 2010; Pillai et al. 2014).  Our findings that post-210 

prandial sleep is intact in Tinaja cavefish suggests that Mc4r, and other genes involved in feeding, 211 

are likely dispensable for sleep feeding interactions. There are also numerous genes that have 212 

been identified to regulate sleep or feeding in fish models that are potential regulators of sleep-213 
metabolism interactions. For example, the orexigenic neuropeptides Neuropetide Y (Npy) and 214 

Hcrt both induce wakefulness, providing a potential molecular mechanism for feeding-dependent 215 

modulation of sleep (Appelbaum et al. 2009; Penney and Volkoff 2014; Singh et al. 2015, 2017; 216 

Jaggard et al. 2018). Future functional analysis is required to define whether these candidate 217 

genes regulate interactions between sleep and feeding. 218 
 219 
In A. mexicanus, rhythmic transcription is significantly diminished under dark-dark conditions, and 220 

cavefish have elevated levels of light-inducible genes(Beale et al. 2013). The circadian clock plays 221 

a critical role in the timing of both sleep and feeding, raising the possibility that the circadian clock 222 
may be critical for sleep-feeding interactions. Transcriptome-wide analysis in larvae, reveals a 223 

loss of rhythmic gene expression across all cave populations tested (Mack et al. 2021)  Therefore, 224 

because identified postprandial sleep in all of the populations tested across three different 225 
timepoints during the day, postprandial sleep may be independent of time-of-day and may not 226 
require a functioning circadian clock. 227 

 228 

A. mexicanus larvae, like zebrafish, can subsist on a variety of foods including paramecium, 229 
rotifers, and fish feed that differ in micronutrients.  In this study, A. mexicanus larvae were fed a 230 

standard diet of Artemia. Artemia is comprised of macronutrients that include diverse fatty acids, 231 

proteins, and carbohydrates. Analysis suggests that Artemia is ~40-60% protein, raising the 232 

possibility that consumption of dietary protein may impact sleep (de Clercq et al. 2005). In 233 

Drosophila, dietary protein promotes post-prandial sleep, while a loss of dietary protein disrupts 234 

sleep depth (Murphy et al. 2016; Brown et al. 2020; Titos et al., 2023).  Therefore, it is possible 235 
that changes in protein detection, or its downstream targets, regulate the physiology of sleep 236 

circuits that are responsible for the different effects of feeding on sleep between Pachón and 237 
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Tinaja cavefish. Understanding the effects of different diets on sleep, and how individual 238 

macronutrients regulate sleep across populations could reveal evolved differences in sleep-239 

feeding interactions across different A. mexicanus populations. 240 
 241 

The identification of postprandial sleep in cavefish provides an avenue for future studies 242 

examining the genetic basis of this behavior. Mapping genetic loci associated with trait variation 243 
has been used to identify candidate regulators of many morphological and behavioral traits, 244 

including regulators of sleep, activity, feeding posture, and metabolism (Kowalko et al. 2013; 245 

Yoshizawa et al. 2015; Carlson et al. 2018; Riddle et al. 2021). Further, population genetic 246 

approaches have identified genome-wide markers of selection across multiple cave populations, 247 

and this genetic variation may provide insight into genes impacting sleep-feeding interactions 248 
(Herman et al. 2018; Warren et al. 2021; Moran et al. 2022).  Genes with signatures of selection 249 

that have previously been implicated in sleep or feeding could provide candidate regulators of 250 
postprandial sleep.  In A. mexicanus, like zebrafish, CRISPR-based gene editing has been used 251 
to functionally validate genes identified through genomics approaches and could be applied to 252 

the investigation of postprandial sleep (Klaassen et al. 2018; Kroll et al. 2021).  Genetic studies 253 

will require the use of CRISPR for forward genetic screens, or the identification of A. mexicanus 254 

with diminished or highly variable post-prandial sleep that can be used for genetic mapping 255 
studies. 256 

 257 
In conclusion, these studies identify postprandial sleep in A. mexicanus and suggest it is under 258 
independent genetic regulation from total sleep duration and meal size in surface fish and two 259 
parallely evolved populations of cavefish.  These studies lay the groundwork for future analysis 260 

that apply currently available population genetics, neural anatomical, and genetic screening 261 
toolsets in A. mexicanus to examine the integration of feeding and sleep regulation  262 

 263 
  264 
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Materials and Methods 265 

Methods 266 

Husbandry 267 
Throughout this study, we followed previously described standard animal husbandry and breeding 268 

for A. mexicanus (Borowsky 2008a). All fish were housed under standard temperature (23°C for 269 

adults, 25°C for embryos and larvae) and lighting conditions (14:10 hr light:dark cycle). Adult fish 270 
were bred by increasing water temperature to 27±1°C and feeding a high-calorie diet that includes 271 

thawed frozen bloodworms three times per day (Elipot et al. 2014) . Larvae were fed brine shrimp 272 

(Artemia nauplii) ad libitum from 6 – 20 days post-fertilization (dpf; Borowsky 2008b). Embryos 273 
and larvae were held in small glass bowls until behavioral testing. All procedures in this study 274 

were approved under the Florida Atlantic University and Texas A&M University IACUC. 275 
 276 
Sleep behavior 277 

These experiments focused on three distinct A. mexicanus morphotypes: the sighted, surface-278 
dwelling Río Choy, and two blind, cave-dwelling populations, Pachón and Tinaja. We quantified 279 

sleep behavior in these fish using previously described methods (Jaggard et al. 2019a) and 280 

baseline sleep data (O’Gorman et al. 2021). Briefly, we used Ethovision XT 17.0 software (Noldus 281 

Information Technology, Wageningen, the Netherlands) to track locomotor behavior. Raw 282 
locomotor behavior was used to calculate sleep behavior parameters using a custom Perl 283 

script(Jaggard et al. 2019b). We operationally define sleep as 60 seconds or more of immobility 284 

given that previous studies show both surface and Pachón cavefish exhibit increased arousal 285 

thresholds after this period(Jaggard et al. 2019b). We defined immobility as a velocity below 6 286 

mm/sec for larval fish and a velocity below 4 cm/sec for adult fish. All recordings were performed 287 

at 23 °C under a 14:10 hour light/dark cycle. 288 
 289 

Larval behavior recordings 290 
  291 
All larval used to quantify sleep behavior were 20 dpf. Fish were fed and then acclimated 292 
individually in 24-well plates for at least 15 hours prior to behavior recordings. Recordings began 293 

at ZT0 and lasted for 24 hours, with interruptions for feeding at specific time points. The 24-well 294 

plates were placed on light boxes made from white acrylic housing infrared (IR) lights (Figure 1A). 295 

Basler ace acA1300-200um Monochrome USB 3.0 Cameras with mounted IR filters were 296 

mounted above the well plates and recordings were taken using Pylon Viewer software.  297 
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The effects of feeding on sleep were tested throughout the light cycle at time points prior to ZT0, 298 

ZT2, ZT6, and ZT10. Each 24-well plate was either not fed as a control or fed at a single time 299 

point. We conducted two separate feeding experiments. In the first experiment, larvae were fed 300 
for 10 mins immediately before a 24-hour recording beginning at ZT0. This 24-hour recording was 301 

followed by a 2-hour feeding behavior assay (described below) and then another behavior 302 

recording for 4 hours from ZT2-ZT6 (Fig 1). In the second experiment, we recorded behavior for 303 
24 hours around a 45-minute window for feeding prior to either ZT2, ZT6, or ZT10.  304 

  305 
Larval feeding behavior assay 306 
 307 
To quantify the relationship between the amount of food consumption and post-prandial sleep 308 

duration, we performed feeding assays that allowed us to count the number of Artemia over a 309 
given time. The duration of the feeding assay was 2 hours for the first experiment, starting at ZT0 310 

following 24 hours of recording. The duration of the feeding assay was 30 minutes for the second 311 
experiment, starting prior to ZT2, ZT6, or ZT10. For the 2-hour feeding assay, fish were given 312 
exactly 70 Artemia, for the 30 minute feeding assay, Artemia were provided ad libitum. We filled 313 
a new 24-well plate with Artemia hatched within 24 hours and recorded for at least one minute 314 

prior to transferring the larval fish from the recording well plate to this new feeding well plate. At 315 
the end of the recording duration, fish were removed from the feeding assay, placed back into the 316 
original 24-well recording plate with clean water and returned to the behavior recording. We used 317 

FIJI (Schindelin et al. 2012) to count the number of Artemia both before the fish were added to 318 

the wells and at the end of the feeding assay. Subtraction of the former from the latter allowed us 319 
to determine the amount of Artemia eaten over the duration of the feeding assay.  320 
 321 
Adult behavior recordings 322 
 323 
Adult fish used for behavior recordings were approximately 1 year old with an equal number of 324 

males and females per treatment. Food was withheld for 5 days prior to recording. Fish were 325 

placed in individual glass tanks of approximately 30 x 17 cm in a 2 x 2 grid in front of an IR light 326 
board and left to acclimate for at least 24 hours. Recordings began at ZT0 and lasted 24 hours. 327 

In the top two tanks, 4 oz of thawed, frozen blood worms were added at ZT5.5 and any uneaten 328 

worms were removed after 30 minutes at ZT6. The fish in the bottom two tanks were not fed as a 329 

control.  330 

 331 

Analysis 332 
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Statistical analyses were performed in GraphPad Prism (version # 9.5.0) and R (version 4.0.4). 333 

When assumptions of normality and equal variances were met, we used parametric t-tests, 334 

ANOVA, and Pearson’s r tests, otherwise we used non-parametric Mann-Whitney U, Kruskal-335 
Wallis, and Spearman’s ρ tests. Following a significant ANOVA or Kruskal-Wallis test, pairwise 336 

comparisons were made using Tukey’s HSD or Dunn’s test, respectively.  337 

 338 
To quantify the percent change in sleep duration during the 4 hours following feeding, we 339 

determined the proportion of total daylight sleep to total daylight recording time as well as the 340 

proportion of sleep to the 4 hour post prandial recording period. We then calculated percent 341 

change as the proportion of post prandial sleep minus the proportion of total daylight sleep divided 342 

by the proportion of total daylight sleep. Finally, to test whether the amount of Artemia consumed 343 
was related to post-prandial sleep duration, we analyzed the goodness of fit from a linear 344 

regression. 345 
 346 
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Figure 1. Sleep, feeding, and post-prandial sleep behaviors across three populations of wild-544 
type Astyanax mexicanus. A) 20 dpf fish were briefly fed prior to 24 h behavioral sleep 545 
recordings. At ZT0 the following day, fish were assayed for feeding behavior until ZT2, 546 
immediately after which we recorded sleep behaviors between ZT2 and 6. B) Sleep profiles of 547 
wild type surface, Pachón, and Tinaja fish taken over the experiment. Lines and error bars 548 
represent the mean ± SD. C) Cross-population comparison of total sleep duration immediately 549 
following the feeding experiment. Cavefish slept significantly less than surface fish (ANOVA: F2, 550 
34 = 8.123, p = 0.0013; Tukey’s HSD for surface-Pachón, p = 0.0202, p = 0.0024; Tukey’s HSD for 551 
surface-Tinaja, p = 0.0024). D) Cross-population comparison of the number of Artemia eaten 552 
during the two-h feeding experiment. Tinaja ate significantly more than surface fish (ANOVA: F2,  553 
76 = 3.91, p = 0.0242; Tukey’s HSD for surface-Tinaja, p = 0.0178). 554 
 555 
  556 
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 557 

 558 
 559 
Figure 2: Post feeding increase in larval A. mexicanus sleep duration is not dependent on daily 560 
feeding time. 20 dpf larvae were fed over a 45-minute window before ZT2 (A, D, G), ZT6 (B, E, 561 
H), or ZT10 (C, F, I). A-C) Sleep profiles of Surface, Pachón, and Tinaja larvae, in minutes per 562 
hour, averaged across the daylight cycle. Lines and error bars represent the mean ± SD. D, E, F) 563 
Cross-population comparison of total sleep duration in hours over the 14-hour light cycle. 564 
Letters represent significant differences. D) Total sleep duration around a ZT2 feeding window 565 
was significantly different between populations of A. mexicanus (ANOVA: F2, 113 = 20.81, p < 566 
0.0001). E) Total sleep duration around a ZT6 feeding window was significantly different 567 
between surface and cave populations of A. mexicanus (ANOVA: F2, 113 = 8.48, p = 0.0004; 568 
Tukey’s HSD for Surface-Pachón, p = 0.001 and Surface-Tinaja, p = 0.0069). F) Total sleep 569 
duration around a ZT10 feeding window significantly different between surface and cave 570 
populations of A. mexicanus (ANOVA: F2, 81 = 11.64, p < 0.001; Surface-Pachón, p = 0.0003; 571 
Tukey’s HSD for surface-Tinaja, p = 0.0002). G-I) Percentage change in sleep duration for the 572 
four-hour period following feeding from total day time sleep calculated as (proportion of post 573 
prandial sleep - proportion of total sleep)/proportion of total sleep. Asterisks indicate 574 
significant differences from zero percent change. Letters indicate cross population comparison. 575 
G) Percent change of postprandial sleep after ZT2 feeding window. Surface: t = 5.333, df = 45, p 576 
< 0.0001; Pachón: t = 3.192, df = 31, p = 0.0032; Tinaja: t = 5.239, df = 28, p < 0.0001. There was 577 
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no significant difference across populations in the percentage of increase in postprandial sleep 578 
(Anova: F2,  104 = 3.36, p = 0.0417). H) Percent change of postprandial sleep after ZT6 feeding 579 
window. Surface: t = 13.65, df = 47, p < 0.0001; Pachón: t = 2.67, df = 23, p = 0.0137; Tinaja: t = 580 
2.480, df = 26, p = 0.0200. There was no significant different in the percentage of increase in 581 
postprandial sleep between surface and Pachón cavefish, but surface fish had a significantly 582 
greater increase in sleep than Tinaja cavefish (ANOVA: F2,  96 = 5.758, p = 0.0072; Tukey’s HSD 583 
for surface-Tinaja, p = 0.0101). I) Percent change of postprandial sleep after ZT10 feeding 584 
window. Surface: t = 8.619, df = 52, p < 0.0001; Pachón: t = 10.27, df = 43, p < 0.0001; Tinaja: t = 585 
3.636, df = 16, p = 0.0022. Pachón cavefish had a significantly greater percent increase in 586 
postprandial sleep than both surface and Tinaja cavefish (ANOVA: F2,  111 = 4.727, p = 0.0107; 587 
Tukey’s HSD for surface-Pachón, p = 0.0298; Tukey’s HSD for Pachón-Tinaja, p = 0.0275). For 588 
surface fish and Pachón cavefish, the percentage of increase in postprandial sleep was 589 
significantly greater after a ZT10 feeding window than at any other timepoint (Surface Anova: 590 
F2, 144 = 13.84, p < 0.0001; Pachón Anova: F2, 197 = 19.56, p < 0.0001). There were no other 591 
significant differences in the percent increase for postprandial sleep between timepoints or for 592 
Tinaja cavefish (Tinaja Anova: F2, 70 = 3.978, p = 0.0231). 593 
 594 
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 596 
 597 

 598 
Figure 3: Postprandial sleep in larval Astyanax is not dependent on the amount of food 599 
consumed, regardless of the time of day that feeding occurs. Correlation of amount of Artemia 600 
nauplii consumed with sleep duration in the four hours following feeding with a simple linear 601 
regression for surface (A-C), Pachón (D-F), and Tinaja (G-I). A, D, G) Larvae were fed prior to 602 
ZT2. B, E, H) Larvae were fed prior to ZT6. C, F, I) Larvae were fed prior to ZT10. 603 
 604 
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 605 

 606 
 607 
Figure 4. Feeding results in robust increases in sleep duration in larval surface, Pachón, and 608 
Tinaja populations of A. mexicanus. A-C) Four-hour sleep profiles comparing the sleep of fed 609 
(orange) and unfed (black) individuals in each population. Lines and error bars represent the 610 
mean ± SEM. D-F) Fed fish sleep significantly more during the four hours following feeding than 611 
unfed fish, regardless of the population. D) Surface: Mann-Whitney U = 524, nfed = 77, nunfed = 612 
55, p < 0.0001. E) Pachón: Mann-Whitney U = 310.5, nfed = 52, nunfed = 47, p < 0.0001. F) Tinaja: 613 
Mann-Whitney U = 546.5, nfed = 45, nunfed = 49, p < 0.0001. G- I) Fed fish are less likely to wake 614 
while asleep, and more likely to fall asleep while awake, than unfed fish. G) Surface: P(Wake) 615 
Mann-Whitney U = 1317, nfed = 77, nunfed = 76, p < 0.0001; P(Doze) Mann-Whitney U = 1347, nfed 616 
= 77, nunfed = 75, p < 0.0001. H) Pachon: P(Wake) Mann-Whitney U = 663, nfed = 66, nunfed = 52, p 617 
< 0.0001; P(Doze) Mann-Whitney U = 802, nfed = 69, nunfed = 52, p < 0.0001. I) Tinaja: P(Wake)  618 
Mann-Whitney U = 369, nfed = 40, nunfed = 38, p < 0.0001; P(Doze) Mann-Whitney U = 229, n nfed 619 
= 40, nunfed = 34, p < 0.0001. Thin lines represent quartiles. 620 
 621 
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Figure 5: Adult Astyanax do not display post prandial sleep behavior. A, B) Sleep profiles of 624 
adult Surface, Pachón, and Tinaja, in minutes per hour. Lines and error bars represent the mean 625 
± SD. A, I) Fish were not fed over the course of the day. B, J) Fish were provided food from ZT5.5 626 
(indicated by the arrow and dotted black line in B) to ZT6. I, J) Cross-population comparison of 627 
total sleep duration in hours over the 24-hour day. Letters represent significant differences. I) 628 
Total sleep duration in 24 hours was significantly different between unfed surface and cave 629 
populations of A. mexicanus ((ANOVA: F2, 28 = 15.5, p < 0.0001; Tukey’s HSD for Surface-Pachón, 630 
p < 0.0001 and Surface-Tinaja, p = 0.0015). J) Total sleep duration in was significantly different 631 
between fed surface and cave populations of A. mexicanus ((ANOVA: F2, 25 = 15.04, p < 0.0001; 632 
Tukey’s HSD for Surface-Pachón, p < 0.0001 and Surface-Tinaja, p = 0.0008). C-E) Four-hour sleep 633 
profiles comparing the sleep of fed (orange) and unfed (black) individuals in each population. 634 
Lines and error bars represent the mean ± SEM. F-H) There are no significant differences in sleep 635 
during the four hours following feeding, regardless of the population. F) Surface: Mann-Whitney 636 
U = 88, nfed = 12, nunfed = 15, p = 0.9317. G) Pachon: Mann-Whitney U = 31.5, nfed = 8, nunfed = 8, p 637 
> 0.9999. H) Tinaja: Mann-Whitney U = 22.5, nfed = 8, nunfed = 8, p > 0.2.  K-M) There are no 638 
significant differences in activity state transitions between fed and unfed fish. K) Surface: 639 
P(Wake) t = 0.271, df = 22, p = 0.7888; P(Doze) t = 2.041, df = 22, p = 0.054. L) Pachon: Mann-640 
Whitney U = 24, nfed = 8, nunfed = 8; P(Wake) p = 0.4667; P(Doze) p = 0.4667. M) Tinaja: Mann-641 
Whitney U = 23, nfed = 8, nunfed = 8; P(Wake) p = 0.5714; P(Doze) p = 0.1319). Horizontal lines 642 
represent quartiles.  643 
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