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Abstract 69 

Background: 70 

The recently launched DNA methylation profiling platform, Illumina MethylationEPIC 71 

BeadChip Infinium microarray v2.0 (EPICv2), is highly correlated with measurements obtained 72 

from its predecessor MethylationEPIC BeadChip Infinium microarray v1.0 (EPICv1). However, 73 

the concordance between the two versions in the context of DNA methylation-based tools, 74 

including cell type deconvolution algorithms, epigenetic clocks, and inflammation and lifestyle 75 

biomarkers has not yet been investigated. To address this, we profiled DNA methylation on both 76 

EPIC versions using matched venous blood samples from individuals spanning early to late 77 

adulthood across four cohorts. 78 

Findings: 79 

Within each cohort, samples primarily clustered by the EPIC version they were measured on. 80 

High concordance between EPIC versions at the array level, but variable concordance at the 81 

individual probe level was noted. Significant differences between versions in estimates from 82 

DNA methylation-based tools were observed, irrespective of the normalization method, with 83 

some nuanced differences across cohorts and tools. Adjusting for EPIC version or calculating 84 

estimates separately for each version largely mitigated these version-specific discordances. 85 

Conclusions: 86 

Our work illustrates the importance of accounting for EPIC version differences in research 87 

scenarios, especially in meta-analyses and longitudinal studies, when samples profiled across 88 
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different versions are harmonized. Alongside DNA methylation-based tools, our observations 89 

also have implications in interpretation of epigenome-wide association studies (EWAS) findings, 90 

when results obtained from one version are compared to another, particularly for probes that are 91 

poorly concordant between versions. 92 

 93 

 94 
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Background 112 

Infinium Methylation BeadChip microarrays have been widely used to cost-effectively measure 113 

the human DNA methylome in large scale and population-wide studies[1–3]. The recently 114 

developed Illumina MethylationEPIC BeadChip Infinium microarray v2.0 (900K, EPICv2) 115 

features a total of 936,866 probes, encompassing ~77% of the probes in the previous version, the 116 

MethylationEPIC BeadChip Infinium microarray v1.0 B5 (850K, EPICv1), and over 200,000 117 

new probes designed for increased coverage of enhancers, open chromatin regions, and CTCF-118 

binding domains[4]. EPICv2 also differs from its predecessor in the overall probe content and 119 

utility, with annotation to the most recent GRCh38/h38 human genome build, differences in 120 

probe design type and strand switches, and incorporation of new “nv” probes targeting recurrent 121 

somatic cancer mutations. Unlike EPICv1 where each probe is unique, EPICv2 includes ~5100 122 

probes that each have between 2-10 replicates, differentiated based on their probe names and 123 

sequences[5]. Approximately 143,000 poorly performing probes on the EPICv1 have been 124 

removed from the EPICv2, ~73% of which are likely to be influenced by underlying sequence 125 

polymorphisms[6,7]. Overall, these modifications in EPICv2 intend to provide wider coverage of 126 

the DNA methylome, with optimized performance across primary tissues and cancer cell lines, 127 

and extended reliability across diverse human populations[6,7]. 128 

 129 

Previous iterations of Illumina Infinium microarrays (27K, 450K and EPICv1) have been widely 130 

used to develop DNA methylation-based bioinformatic tools including cell type deconvolution 131 

algorithms[8–10], a rapidly increasing and diverse set of epigenetic clocks[11–18], interleukin 6 132 

(IL-6) and C-reactive protein (CRP) inflammation markers[19,20], and lifestyle biomarker 133 

predictors such as smoking and alcohol use[21]. Simplistically speaking, these tools are based on 134 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 28, 2024. ; https://doi.org/10.1101/2024.07.02.600461doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.02.600461
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

7 

the strong correlations of DNA methylation levels at specific cytosine-guanine dinucleotides 135 

(CpGs) with measured cell types, chronological age, and biomarker measures, respectively. The 136 

currently available tools have been exclusively trained on one or more of the previous generation 137 

of microarrays[11–14,16,17], and many, but not all, of predictive CpGs employed by these tools 138 

are retained on EPICv2[6]. Illustrating the relevance of array iteration, estimates from some of 139 

these DNA methylation-based tools, while highly correlated, are significantly different between 140 

450K and EPICv1[22–24]. At a more basic level, DNA methylation profiles derived from a 141 

limited set of human cell lines suggest a high agreement between EPICv1 and EPICv2. Given the 142 

extensive use of Illumina DNA methylation arrays in primary human samples, and importantly, 143 

across large population studies, it is imperative to determine the concordance of EPICv1 and 144 

EPICv2 in these more complex yet highly relevant research settings.  145 

 146 

Here, we used an unprecedented set of 67 primary human population samples and five technical 147 

replicates to systematically assess the concordance of inferred estimates derived from a broad set 148 

of DNA methylation-based tools between EPICv1 and EPICv2. We also tested whether EPIC 149 

version differences might affect meta-analyses, which harness statistical power that comes from 150 

combining multiple cohorts, and longitudinal studies, which often include samples profiled on 151 

different arrays/versions. Specifically, we created sets of matched venous blood samples from 67 152 

individuals across a diverse collection of four populations spanning early to late adulthood, and 153 

profiled the DNA methylome using the EPICv1 and EPICv2 arrays. Using this unique dataset, 154 

we tested the concordance of the two EPIC versions at both array and probe levels and illustrated 155 

the potential contribution of EPIC version to overall DNA methylation variation. To explore if 156 

these version differences are reflected in DNA methylation-based tools, including immune cell 157 
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type deconvolution algorithms, epigenetic clocks, inflammation and lifestyle biomarkers, we 158 

compared their estimates between the two EPIC versions, and confirmed that these differences 159 

persisted irrespective of data preprocessing methods. We also demonstrated different 160 

remediation methods to account for these EPIC version discrepancies in epigenetic 161 

investigations. Collectively, this work encourages careful consideration while harmonizing data 162 

profiled on the two EPIC versions and comparing epigenome-wide association studies’ (EWAS) 163 

findings from one version to another. 164 

Results  165 

Unsupervised clustering analyses of samples was primarily determined by EPIC version 166 

To compare the two most recent generations of Illumina MethylationEPIC BeadChip Infinium 167 

microarrays, we measured the DNA methylomes of a subset of venous whole blood samples on 168 

both EPICv1 and EPICv2 across three cohorts in the Kobor Lab, Vancouver, Canada (in-house 169 

facility): (i) Vietnam Health and Aging Study (VHAS)[25], (ii) Cebu Longitudinal Health and 170 

Nutrition Survey (CLHNS)[26], and (iii) Comprehensive Assessment of Long-term Effects of 171 

Reducing Intake of Energy (CALERIE)[27], and an external cohort processed in a different 172 

facility (Max Planck Institute of Psychiatry in Munich, Germany): Biological Classification of 173 

Mental Disorders study (BeCOME)[28] (Table 1, Figure 1). These four cohorts represented 174 

distinct demographic and biological characteristics such as sex and age range. Using 175 

unsupervised hierarchical clustering in a cohort-wise manner across the 721,378 probes shared 176 

between EPICv1 and EPICv2, we noted that samples exclusively clustered by EPIC version 177 

(Figure 2B and 2C). Consistently, when smaller subsets of predictive CpGs employed by DNA 178 

methylation-based tools were used for clustering, we still noted some separation of samples by 179 
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EPIC version, although not to the same extent as the clustering on shared probes (Supplementary 180 

Figure 1). When clustering was performed on all the three cohorts processed by the in-house 181 

facility, we similarly observed a clear demarcation of samples first by EPIC version, followed by 182 

cohort despite their distinct characteristics (Figure 2A). Perhaps not surprisingly, when samples 183 

from BeCOME were combined with the other three cohorts, we observed samples clustering by 184 

the facility they were processed in, while still separating by EPIC version within the two 185 

facilities (Supplementary Figure 2). Our findings remained consistent when we performed 186 

unsupervised clustering using principal component analysis (PCA). The top three PC loadings, 187 

corresponding to >98% of DNA methylation variation, were significantly associated with EPIC 188 

version (Supplementary Figure 3). Overall, EPIC version was the primary contributor to 189 

clustering of samples and explained a large proportion of DNA methylation variation.  190 

 191 

EPICv1 and EPICv2 probes shared consistently high correlation at array level but not at 192 

the individual probe level  193 

Within three cohorts, technical replicate samples derived from the same individual after bisulfite 194 

conversion were quantified on both EPIC versions at least twice, allowing us to examine the 195 

technical variation within each version. Given that all samples were matched on both versions, 196 

we were also able to compare these technical replicate samples between versions. We first used 197 

Spearman correlation to assess array level concordance in technical replicates, calculated by 198 

averaging DNA methylation (β) values across shared probes on per sample basis. We showed 199 

high concordance between both between-versions and within-version technical replicates, though 200 

the latter was relatively more correlated (between-versions correlations: 0.9737-0.9774; within-201 

version: 0.9858-0.9916). Next, we determined the reliability of technical replicates both 202 
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between- and within-version using intra-class correlation coefficients (ICC), and found slightly 203 

lower agreement in between-versions technical replicates (0.9947-0.9958) than within-version 204 

(0.9972-0.9983) (Supplementary Table 1). Finally, we assessed the error in technical replicates 205 

between and within EPIC versions using root mean square root error (RMSE). As expected, the 206 

mean RMSE between-versions (0.0367-0.0416) was slightly higher than the within-version 207 

(0.0214-0.0264) (Supplementary Table 1).  208 

 209 

Extending beyond the technical replicates to all the matched samples profiled on each version, 210 

we noted high array level Spearman correlation ranging from 0.968 to 0.981 between EPICv1 211 

and EPICv2, though this was at the array level (Supplementary Table 2). In contrast to the strong 212 

array level concordance, Spearman correlations at the probe level, calculated as the concordance 213 

of β values of individual probes across samples between versions, were not as congruent. 214 

Specifically, only ~25% the probes per cohort had Spearman correlations greater than 0.70 while 215 

the remaining ~75% probes showed a low mean correlation of <0.30 (Supplementary Table 3). 216 

One plausible explanation for low probe level correlations of the majority of probes may be low 217 

inter-sample variability. It has been previously reported that probes with a narrow range of DNA 218 

methylation β values across samples tend to have poor correlations[22]. To test this, we 219 

calculated pooled standard deviation (SD) across samples on a cohort basis, and defined the first 220 

lower quartile (≈ 0.01 for each cohort) as the pooled SD threshold to denote low variability 221 

(Supplementary Table 2). Supporting our hypothesis, we found that probes with Spearman 222 

correlations ≤ 0.70 had significantly lower pooled SD or low variability compared to probes with 223 

higher correlations (Supplementary Table 3). Specifically, of the probes with Spearman 224 

correlation ≤ 0.70, ~30% exhibited low inter-sample variability; in contrast, of probes with 225 
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Spearman correlation > 0.70, only 0.069-5.577% exhibited low variability (Supplementary Table 226 

6). We also cross-referenced these poorly-concordant probes, which we defined as probes with 227 

low correlation despite their high variability, with low quality and unreliable probes identified in 228 

previous annotations of the Illumina arrays[5,29–31]. Specifically, 0.11-2.39% of these poorly-229 

concordant probes overlapped with previously identified as cross hybridizing to multiple 230 

genomic locations or mapped to genetic variant sites across all cohorts [5,29–31] 231 

(Supplementary Table 4). Of the 82 probes that have undergone design type switches in 232 

EPICv2[6], 27-40 probes also overlapped with our poorly-concordant probes in the four cohorts. 233 

Overall, only a small fraction (~10%) of these poorly-concordant probes overlapped with probes 234 

of bad quality, design type switch[6], and cross hybridization to the genome[5,29–31] 235 

(Supplementary Table 5), while the rest still remained unexplained. In contrast, of the highly 236 

correlated or low variability probes, ~80% overlapped with platform-bias free and high-237 

confidence mapping probes recently identified in cell lines[32], confirming the agreement of the 238 

readouts at these probes (Supplementary Table 5). 239 

 240 

We used the first lower quartile as the pooled SD threshold and Spearman correlation ≤ 0.70 to 241 

denote probes with low concordance and high variability, however we acknowledge that there is 242 

a continuum in the relationship between variability and correlation (Figure 2). To examine if a 243 

more lenient threshold of variability and correlation would result in fewer unreliable probes 244 

shared between versions, we additionally employed a pooled SD threshold of 0.05 and Spearman 245 

correlation threshold of 0.50. When we relaxed the pooled SD threshold to 0.05, while 246 

maintaining the Spearman correlation threshold of 0.70, the percentage of unreliable probes 247 

reduced to 1.7-6.5% of the probes shared between versions; a further decrease to less than 0.6% 248 
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of shared probes was noted when the Spearman correlation threshold was reduced to 0.50 249 

(Supplementary Table 6). In summary, we observed high concordance at the array level between 250 

versions; however, on the probe level, there were a subset of probes with low concordance 251 

between versions regardless of high inter-sample variability. 252 

Immune cell type proportions inferred by IDOL and auto probe selection methods were 253 

significantly different between EPIC versions 254 

Cellular composition is a key contributor to whole blood DNA methylation variation and has 255 

been associated with disease phenotypes and often included as a covariate in statistical models to 256 

account for cell type heterogeneity[33–35]. Most studies do not measure actual cell counts and 257 

rely on predicted values from DNA methylation-based algorithms. Given that these algorithms 258 

use references profiled on previous arrays/versions, we tested whether there were differences in 259 

cell type proportions estimated from the two EPIC versions using one of the most commonly 260 

used cell type deconvolution methods for whole blood[10]. We compared the proportions of 261 

twelve immune cell types using the FlowSorted.Blood.EPIC R package with two commonly used 262 

probe selection methods: IDOL and auto. The IDOL method includes 1200 pre-selected probes, 263 

which has over 99% coverage in EPICv2 (Table 2 and Supplementary material), and the auto 264 

method includes 1200 probes independently selected for each EPIC version as described in 265 

Methods. On comparing the probes selected for each EPIC version using the auto method, we 266 

identified a large overlap of over 90% probes between the two EPIC versions, with only 10% 267 

these auto-selected probes overlapping with the pre-selected IDOL probes (Supplementary 268 

Figure 4).  269 

 270 
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We found high Spearman correlations between cell type proportions inferred on EPICv1 and 271 

EPICv2, with an average correlation of 0.883 by the IDOL method and 0.890 by the auto method 272 

(Supplementary Tables 7-8). Despite their high correlation, we identified significant differences 273 

in estimated proportions of five and nine cell types between EPICv1 and EPICv2 using the IDOL 274 

and auto methods, respectively, across the three in-house cohorts, with four cell types (Bas, 275 

CD8mem, Mono, NK) commonly identified in both methods. Consistent findings were observed 276 

in BeCOME with the auto method; two additional cell types (CD8mem and NK) showed 277 

significant proportional differences between versions when the IDOL method was used 278 

(Supplementary Figure 5, Supplementary Tables 7-8). Overall, estimated proportions were 279 

significantly different between the EPIC versions across multiple cell types, and these findings 280 

remained consistent irrespective of the probe selection method, albeit with varying effect sizes 281 

depending on cell type and cohort (Figure 3, Supplementary Figure 5-6, and Supplementary 282 

Tables 7-8). 283 

Epigenetic ages and EAAs were significantly different between EPIC versions depending 284 

on analysis method 285 

Epigenetic clocks are based on the property that DNA methylation levels at specific CpGs highly 286 

correlate with chronological age or age-related outcomes[11–14,16,17]. In order to evaluate the 287 

concordance between EPICv1 and EPICv2 in the context of these DNA methylation-based tools, 288 

we compared estimates from seven widely used first- and second- generation epigenetic clocks 289 

in VHAS, CLHNS, and CALERIE (see Methods). Across these seven epigenetic clocks, ~77-290 

96% of predictive CpGs were retained on EPICv2 (Table 2 and Supplementary material). We 291 

identified high Pearson correlations of 0.807-0.996 between chronological age and epigenetic 292 

age obtained from both EPICv1 and EPICv2 (Supplementary Table 9). EPICv2 epigenetic ages 293 
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for all clocks were highly correlated with EPICv1 epigenetic ages (0.879-0.996), with 294 

differences in epigenetic ages between technical replicates being 0.151-4.206 (Supplementary 295 

Table 10), although we noted significant differences in epigenetic ages between EPICv2 and 296 

EPICv1 in Hannum, Horvath skin and blood, and PhenoAge, with these differences ranging in 297 

effect size from 0.267-4.137 (Supplementary Table 10, Supplementary Figure 7A). Consistent 298 

with these results, in the external validation cohort BeCOME, EPICv1 and EPICv2 epigenetic 299 

ages were highly correlated with chronological age and yet there were significant epigenetic age 300 

differences between versions in all epigenetic clocks except again Horvath pan-tissue 301 

(Supplementary Tables 9-10, Supplementary Figure 8A). 302 

 303 

We also estimated epigenetic age acceleration (EAA), a measure of rate of aging which has been 304 

associated with health outcomes, by considering samples profiled on each EPIC version 305 

separately and in a combined manner (see Methods). Irrespective of how matched samples on the 306 

two EPIC versions were considered for EAA calculation, we noted modest to high correlation 307 

(0.574-0.960) of EAA between the EPIC versions. When EAA was calculated separately by 308 

versions, we noted no significant differences between EPICv1 and EPICv2 (Supplementary 309 

Table 11, Figure 4B, Supplementary Figures 9B and 10B). When clock estimates from the EPIC 310 

versions were combined prior to EAA calculation, there were significant differences between 311 

EPICv1 and EPICv2 for all clock EAAs except Horvath pan-tissue (Supplementary Table 11, 312 

Figure 4C, Supplementary Figures 9C and 10C). To next test whether the different EPIC 313 

versions contribute to observed EAA differences, we combined epigenetic ages in both EPIC 314 

versions and then calculated EAAs by including version as a covariate in the linear regression. In 315 

doing so, we noted that there were no significant EAA differences between the two EPIC 316 
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versions, akin to when EAA was calculated separately by version (Supplementary Table 11, 317 

Figure 4D, Supplementary Figures 9D and 10D). We repeated the same analyses using 318 

epigenetic clocks estimated based on principal components (PC clocks) rather than individual 319 

predictive CpGs, as they have been shown to overcome unreliability in clock estimates due to 320 

technical noise[36]. Once again, we noted that there were no significant EAA differences when 321 

EAA was calculated for each EPIC version separately. When EAAs were calculated on 322 

combined sets of matched samples, we noted significant differences in PCHorvath skin and 323 

blood and PCPhenoAge, and these differences were no longer significant with EPIC version 324 

adjustment (Supplementary Figures 11-13). Consistent with other cohorts, in BeCOME, we 325 

noted similar findings in epigenetic ages, EAAs, and PC clocks estimates (Supplementary Table 326 

11, Supplementary Figure 8 and 14). 327 

 328 

On next evaluating the DunedinPACE, DNAmTL, and epiTOC clocks, we observed a high 329 

correlation (0.699-0.983) of clock estimates between EPICv1 and EPICv2 (Supplementary Table 330 

12). Unlike the epigenetic clocks above, when we examined the EPIC versions separately, we 331 

noted that DNAmTL estimates were significantly different between versions in all four cohorts, 332 

while DunedinPACE and epiTOC estimates were significantly different in three out of the four 333 

cohorts (Supplementary Tables 11-12, Figure 5, and Supplementary Figures 8-10).  334 

Estimated CRP and smoking scores were significantly different between EPIC versions 335 

DNA methylation-based estimates of IL-6, CRP, smoking, and alcohol use are widely used as 336 

reliable proxies of actual measurements in epigenetic studies[37]. Similar to other tools, 337 

approximately 90% predictive CpGs were retained on EPICv2 (Table 2 and Supplementary 338 
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material) and estimates between EPICv1 and EPICv2 were modestly to highly correlated (0.788-339 

0.993) (Supplementary Table 13). When estimates were calculated separately by versions (EPIC 340 

versions separate), we identified significantly different IL-6, CRP, alcohol, and smoking scores 341 

between EPICv1 and EPICv2 in at least one of the four cohorts. When estimates from the EPIC 342 

versions were first combined and then adjusted for version, as expected, we noted no significant 343 

differences between EPICv1 and EPICv2 in any of these four predictors (Supplementary Table 344 

13, Supplementary Figure 15).  345 

 346 

EPIC version differences remained significant irrespective of the choice of normalization 347 

method, while upstream batch correction eliminated such differences  348 

Given the effect of data normalization on epigenetic clock estimations[23,38], we examined 349 

whether normalization methods affect the observed differences between EPIC versions, obtained 350 

after applying functional normalization (funnorm). To test this, we combined the shared probes 351 

on the two EPIC versions and applied Beta-MIxture Quantile (BMIQ) normalization, and 352 

subsequently calculated epigenetic ages, EAAs, and inflammation and lifestyle biomarker 353 

estimates. Overall, the differences in estimates of these DNA methylation-based tools between 354 

EPIC versions when BMIQ normalization was applied were consistent with those obtained in 355 

functional normalized data, specifically in Horvath skin and blood and PhenoAge which were 356 

consistent across the three in-house cohorts (Supplementary Figures 7, 16-21). 357 

 358 

Next, we also examined if applying EPIC version correction using batch correction algorithms 359 

can circumvent version-specific effects and eliminate the observed differences in DNA 360 

methylation-based estimates between EPICv1 and EPICv2, given the observed contribution of 361 
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EPIC version in explaining DNA methylation variation. We tested this by combining common 362 

probes on EPICv1 and EPICv2 after functional normalization or BMIQ normalization, and 363 

sequentially adjusted for EPIC version, chip and sample position on chip (row) effects as 364 

applicable using the ComBat function implemented in the sva R package[39]. As expected, when 365 

epigenetic clocks, inflammation and lifestyle biomarkers were calculated using version-corrected 366 

input β values, there were no significant differences in estimates between the EPIC versions 367 

(Supplementary Figures 7, 22-24). 368 

 369 

Discussion 370 

Various generations of DNA methylation arrays, largely manufactured by Illumina, have had 371 

tremendous impact on the field of epigenetics, enabling large population studies of human health 372 

and disease. The most recently released Illumina EPICv2 microarray provides wider coverage of 373 

the DNA methylome compared to its predecessor EPICv1, yet at the same time eliminates 374 

approximately one-fifth of the previous probes. This then might create challenges for the utility 375 

and transferability of the myriad bioinformatic tools developed for the EPICv1, especially if 376 

some of the missing probes were included in a particular tool. Here, using matched venous blood 377 

samples from 67 adults across four geographically diverse populations, we comprehensively 378 

examined the concordance between EPIC versions in a wide range of commonly used DNA 379 

methylation-based tools. Overall, our study identified notable differences between the two EPIC 380 

versions at various levels, and provided some insights into possible remediation approaches. 381 

First, we observed overall high array level concordance but variable probe level concordance, 382 

with a subset of probes displaying poor agreement between versions despite high inter-sample 383 

variability. Second, EPIC version differences were identified across all cohorts in DNA 384 
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methylation-based tools, including epigenetic clocks, inflammation and lifestyle biomarkers, and 385 

cell type predictors. Third, discordance between EPIC versions was dampened by the manner of 386 

statistical accounting of EPIC version. Fourth, irrespective of the choice of normalization method 387 

EPIC version differences still persisted. Overall, our work emphasizes careful consideration of 388 

research settings when i) samples across both EPIC versions are harmonized, and ii) findings 389 

derived from one EPIC version are compared to those derived from the other version. 390 

 391 

Initial comparisons of EPIC versions that were confined to immortalized cell lines and a limited 392 

number of human primary samples reported generally good array level correlations between the 393 

two EPIC versions[5–7]. However, these studies were not powered to investigate concordance at 394 

the probe level nor did they compare DNA methylation-based tools such as epigenetic clocks, 395 

cell types, and biomarker predictors, particularly across geographically diverse settings, which 396 

are highly relevant for human population epigenetic studies. Using this population-based 397 

framework, unsupervised clustering on samples across the three in-house cohorts (VHAS, 398 

CLHNS, and CALERIE) using the shared probes between EPICv1 and EPICv2 showed that 399 

samples clustered based on the EPIC version on which they were measured, despite cohort-400 

specific characteristics. Perhaps not surprisingly, given the differences in sample handling and 401 

processing inherent to different experimental facilities, inclusion of the external validation cohort 402 

BeCOME showed that samples clustered by facility first. However, performing these analyses on 403 

each cohort separately, we again found that EPIC version was the principal driver of DNA 404 

methylation variation, irrespective of the facility in which these samples were processed in. This 405 

separation by EPIC version may be due to the variable concordance of individual probes between 406 

the two versions. This was in general agreement with previous work which showed low 407 
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reliability across shared probes measured on previous iterations of Illumina arrays, namely 450K 408 

and EPICv1[22,40,41]. While a small proportion of these poorly-concordant probes, skewed 409 

toward lower inter-sample variability, could be attributed to their non-specific probe 410 

hybridization to the genome, underlying genetic variation, or technical differences such as 411 

altered EPICv2 probe design[5,6,29–31], the majority remain unexplained by these factors. 412 

Further, these poorly-concordant probes will have implications in interpretation of EWAS 413 

results, where validation of findings from one EPIC version to another may be challenging. 414 

 415 

We observed significant systematic differences in measures derived from DNA methylation-416 

based tools. In the context of cell type prediction algorithms, there were significant differences in 417 

proportions of various cell types, when using either the IDOL or auto prediction methods. These 418 

differences may be reflective of version incompatibility between the reference library used, built 419 

on previous Illumina microarrays, and EPICv2[10]. Further, they may be compounded by the 420 

compositional nature of cell type estimates, meaning that any changes in the proportion of even 421 

one cell type will influence the proportions of other cell types. Similarly, in the epigenetic clock 422 

and biomarker predictors, we noted discordance in estimates obtained between EPICv1 and 423 

EPICv2, though these observations were generally consistent across cohorts and tools with some 424 

nuanced differences. It is reasonable to speculate that this discordance between versions may be 425 

due to the varying number and weights of predictive CpGs absent on either EPIC version, and 426 

the influence of subsequent imputation performed by the clock algorithms to account for this 427 

missingness. However, our analyses using BMIQ normalization which only used shared probes 428 

between the versions and thus had the same absent predictive CpGs in both versions, still showed 429 
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differences in estimates and EAAs, suggesting that absent CpGs are not the main contributor to 430 

the version differences. 431 

 432 

Although epigenetic clocks are often analyzed as direct comparisons of epigenetic ages as 433 

described above, it has been noted that a regression-based measure of epigenetic age, EAA, is 434 

more appropriate in most cases as it is robust to data preprocessing[11,23,37,38]. On calculating 435 

EAAs by taking the common approach of including all samples in a cohort irrespective of 436 

version, we noted that EAA estimates were different between versions, suggesting that this 437 

method of calculating EAA is still sensitive to inherent variation between EPICv1 and EPICv2. 438 

Using an alternate approach, when we calculated EAA estimates separately for samples profiled 439 

on each EPIC version, we found that these differences were no longer significant. This indicates 440 

that EAAs may be a suitable measure of epigenetic aging when version is taken into 441 

consideration while calculating EAA. Similarly, we noted consistent differences between 442 

versions in inflammation and lifestyle biomarker predictor scores, emphasizing again that it is 443 

important to account for systematic version differences when calculating DNA methylation-444 

based measures.  445 

 446 

Including EPIC version as a covariate in statistical models or employing version correction using 447 

ComBat may be options to handle version-specific discrepancies, however, these approaches are 448 

not appropriate in cases when EPIC version is fully or partially confounded with biological 449 

variables. Our matched and balanced study design allowed us to correct for version using 450 

ComBat, which expectedly dampened version differences. In cases of unbalanced study designs, 451 

any adjustment for EPIC version can incorrectly remove important biological variation as well as 452 
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introduce false biological signals[42–45]. This ideal - and perhaps even unrealistic - scenario 453 

starkly contrasts with a typical meta-analysis, where a researcher might wish to combine results 454 

from multiple distinct sample groups measured on different EPIC versions. Furthermore, another 455 

research setting that presents a similar challenge is a longitudinal study design, where the aim is 456 

to explore DNA methylation changes over time. In such cases, when samples from each 457 

timepoint are measured on different EPIC versions, it inevitably results in a confound between 458 

the variable of interest, i.e., timepoint and EPIC version, thereby not enabling any version 459 

correction. If samples from the previous timepoint are still available, one feasible approach is to 460 

include a small number of these samples profiled on the previous EPIC version alongside 461 

samples from the new timepoint to be profiled on EPICv2 such that any between version 462 

differences can be monitored. It is also known that DNA methylation-based tools are sensitive to 463 

normalization methods [23,37,38], and it is important to explore the contribution of such 464 

approaches to observed EPIC version differences noted in the present study. By employing two 465 

distinct normalization methods, namely funnorm and BMIQ, we found similar differences in 466 

DNA methylation-based estimates based on version, irrespective of normalization method used. 467 

 468 

On the strength of our matched sample design utilizing four different human cohorts, our study 469 

improves the current understanding of the applicability of DNA methylation-based tools for 470 

EPICv1 and EPICv2, however, there are several limitations. Our analyses may be limited by 471 

relatively modest sample sizes within each cohort, despite this, our study includes matched 472 

samples collected from adults with a wide age range and across diverse geographical regions. 473 

While the time between EPICv1 and EPICv2 measurement varied across the cohorts, it offers a 474 

more realistic representation of research settings where samples are collected and quantified 475 
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across multiple batches on different EPIC versions. Next, given that the training datasets of the 476 

investigated epigenetic clocks were predominantly composed of European populations, the 477 

suitability of investigated clocks may not be well established in our investigated Asian cohorts, 478 

VHAS and CLHNS respectively [46–48]. However, differences in these cohorts were similar to 479 

CALERIE and BeCOME, which are comprised primarily of individuals of European descent, 480 

indicating that our findings were not limited to specific populations. Further, we compared 481 

EPICv2 cell type proportions and biomarker scores to EPICv1, although we recognize that actual 482 

cell counts and biomarker measurements would be more appropriate as the ground truth and 483 

would be useful in validating our DNA methylation-based estimates. In spite of this, the primary 484 

aim of the current work is to investigate the concordance in estimates between versions, and not 485 

to evaluate the accuracy of biomarker prediction. Finally, although our study focused on venous 486 

blood, a commonly used tissue in epigenetics research, we speculate that these EPIC version 487 

differences will hold true in other tissue types as well. While multiple tissue types were not 488 

collected in all of these cohorts, we had access to matched capillary and venous blood samples in 489 

VHAS, which allowed us to at least test and confirm the consistency of our findings in another 490 

blood preparation.   491 

Conclusions 492 

With the rapid generation of DNA methylation data profiled on the newer iterations of the 493 

Illumina microarrays, integrating samples across these platforms poses a challenge, owing to 494 

discrepancies in probe content among arrays/versions. Our findings highlight differences in the 495 

new EPICv2 compared to EPICv1, demonstrate the influence of EPIC version on the majority of 496 

commonly used DNA methylation-based tools, and provide possible remediation approaches to 497 

minimize technical variation which may arise from inconsistencies between versions. We 498 
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therefore encourage careful consideration when harmonizing and interpreting DNA methylation 499 

data across multiple arrays/versions to ensure reliability and reproducibility in epigenetics 500 

analyses.  501 

Methods 502 

Description of cohorts 503 

To compare the performance of the two most recent generations of MethylationEPIC BeadChip 504 

Infinium microarrays in the context of DNA methylation-based clocks, biomarkers and cell type 505 

proportion estimates, we measured the DNA methylomes of a subset of venous whole blood 506 

samples on both EPICv1 and EPICv2 selected from the (i) Vietnam Health and Aging Study 507 

(VHAS)[25], (ii) Cebu Longitudinal Health and Nutrition Survey (CLHNS)[26], and (iii) 508 

Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE)[27] 509 

cohorts. The VHAS cohort additionally includes matched capillary blood samples, randomized 510 

using the same array design on both EPIC versions, such that the concordance between EPICv1 511 

and EPICv2 can be assessed in capillary blood as well (n = 24 × 2 blood collection methods × 2 512 

versions). Samples from VHAS, CLHNS and CALERIE were processed in the same facility 513 

(Kobor Lab, University of British Columbia and BC Children’s Hospital Research Institute, 514 

Vancouver, Canada). To compare our findings from the three cohorts processed in-house to 515 

those from an external facility, we used an independent validation cohort, BeCOME. In this 516 

dataset, DNA methylation was measured on EPICv1 and EPICv2 using matched samples at the 517 

Max Planck Institute of Psychiatry in Munich, Germany (Table 1). The time between EPICv1 518 

and EPICv2 array quantification was approximately one month and two years for VHAS and 519 

CLHNS respectively. EPICv1 and EPICv2 array quantification was carried out at the same time 520 
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for CALERIE and BeCOME. Given that the demographic characteristics across the cohorts are 521 

different (Table 1), we performed all analyses independently on the cohorts and reported the 522 

findings in a cohort-specific manner, excluding the unsupervised clustering analyses as described 523 

below. 524 

 525 

DNA methylation profiling, sample and probe quality control  526 

Using similar protocols for all three cohorts, DNA was extracted from samples, bisulfite 527 

converted using EZ-96 DNA Methylation kits (Zymo Research, Irvine, CA), hybridized to the 528 

MethylationEPIC BeadChip Infinium microarray v1.0 B5 (EPICv1) and Infinium 529 

MethylationEPIC v2.0 (EPICv2) arrays, and scanned with the Illumina iScan 2000 to obtain 530 

IDAT files that capture raw DNA methylation intensities. IDATs were read using minfi R 531 

package to obtain β values that represent DNA methylation intensities for each CpG site ranging 532 

from 0 (fully unmethylated) to 1 (fully methylated). Technical replicates derived from the same 533 

sample after bisulfite conversation were quantified to monitor technical variation within each 534 

EPIC version, independently for each cohort. Both VHAS and CALERIE included two technical 535 

replicates each on EPICv1 and EPICv2, and CLHNS included one technical replicate on EPICv2 536 

and no technical replicate on EPICv1. The external validation cohort BeCOME did not include 537 

any technical replicates on either EPIC version. Sample quality control checks were performed 538 

as described in previous publications[33,49]. Blood samples collected in the three cohorts and 539 

the external validation cohort passed all 17 Illumina quality control metrics in the ewastools R 540 

package[50,51], and detection p-value, beadcount, average methylated and unmethylated 541 

intensity metrics in the minfi R package (Supplementary Table 14). We also performed sample 542 

identity checks using unsupervised hierarchical clustering analysis on the 57 single nucleotide 543 
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polymorphism (SNP) probes that are common to both EPIC versions, and noted that matched 544 

samples from the same individual assessed on EPICv1 and EPICv2 grouped together.  545 

 546 

In order to identify EPICv1 and EPICv2 probes of poor quality, we performed quality control 547 

checks using the detectionP and beadcount functions in the minfi and wateRmelon R packages, 548 

respectively. Probes with detection p-value > 0.01 or beadcount < 3 in greater than 1% of the 549 

samples were flagged (VHAS- EPICv1: 59,233, EPICv2: 46,735, common to both versions: 550 

4,826; CLHNS-EPICv1: 23,793, EPICv2: 17,587, common to both versions: 991; CALERIE-551 

EPICv1: 29,608, EPICv2: 24,872, common to both versions: 1,292; BeCOME-EPICv1: 12,511, 552 

EPICv2: 20411, common to both versions: 2,714), but all probes in EPICv1 and EPICv2 were 553 

retained for subsequent analyses.  554 

 555 

Unsupervised clustering analyses on DNA methylation data 556 

To perform unsupervised hierarchical clustering on samples, we calculated array level Spearman 557 

correlations using the 721,378 probes shared between EPICv1 and EPICv2 in pair-wise manner 558 

for all the samples in the four cohorts. Array level Spearman correlations were then clustered by 559 

the complete linkage method with Euclidean distance using the hclust function implemented in 560 

the stats R package[52] and visualized by pheatmap in the pheatmap R package[53]. We first 561 

performed clustering on each of the four cohorts separately, then by combining the three cohorts 562 

processed in the in-house facility (VHAS, CLHNS and CALERIE), and finally by combining all 563 

four cohorts regardless of processing facility. Grouping cohorts once again in a similar manner, 564 

we performed principal component analyses (PCA) using the shared probes between the EPIC 565 
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versions. We tested the association between each of the top five PC loadings and EPIC version, 566 

cohort, and sex by employing one-way analysis of variance (ANOVA) or t-tests and applying a 567 

Bonferroni multiple test correction. The percentage of DNA methylation variation explained by 568 

each variable (EPIC version, cohort, and sex) was calculated as the ANOVA or t-test R-squared 569 

value. It should be noted that while performing the PCA on each cohort independently, we did 570 

not test the association between PC loadings and sex in the CLHNS cohort since this cohort 571 

comprises of only females; for the other three cohorts, associations with EPIC version, cohort, 572 

and sex were tested. 573 

DNA methylation data preprocessing and replicate probe analyses 574 

To account for color and probe-type bias, we performed functional normalization (funnorm) with 575 

background correction and dye-bias normalization (noob) in the minfi R package[54,55] 576 

independently on EPICv1 and EPICv2 samples for each cohort. Cohort-specific technical 577 

replicate sample correlations were used to monitor preprocessing (technical replicates were not 578 

available in the BeCOME external validation cohort). Between technical replicate samples on the 579 

same EPIC version, improved Spearman correlations of whole array β values and reduced root 580 

mean square error (RMSE) were observed as processing progressed from raw (VHAS: Spearman 581 

rho = 0.9832, RMSE = 0.0306; CLHNS: Spearman rho = 0.9890, RMSE = 0.0235; CALERIE: 582 

Spearman rho = 0.9859, RMSE = 0.0349) to funnorm normalized data (VHAS: Spearman rho = 583 

0.9851, RMSE=0.0288; CLHNS: Spearman rho = 0.9917, RMSE = 0.0231, CALERIE: 584 

Spearman rho = 0.9887, RMSE = 0.0223). Array level reliability of within- and between-EPIC 585 

version technical replicates were assessed by intra-class correlation coefficients (ICC) with the 586 

two-way random-effects model as previously described[40,56]. Specifically, array level ICC was 587 

calculated using the technical replicates as the repeated measures (“raters”) and each probe 588 
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represented a “target” or “subject”. Within-EPIC version ICCs were calculated based on the 589 

technical replicates within the same EPIC version, while between-EPIC version ICC were based 590 

on the matched technical replicates on EPICv1 and EPICv2.  591 

 592 

To calculate estimates of DNA methylation-based tools, noob corrected data was used as input 593 

for cell type deconvolution, and funnorm normalized data was used as input for epigenetic clocks 594 

and biomarkers. In addition, to test whether normalization methods influence DNA methylation-595 

based tools, we compared estimates calculated by combining the common probes on EPICv1 and 596 

EPICv2 after noob correction in a cohort-wise manner for VHAS, CLHNS, CALERIE, and 597 

BeCOME, and subsequently applying Beta-MIxture Quantile (BMIQ) normalization 598 

implemented in the wateRmelon R package[57]. Due to their type I and type II design switch 599 

between EPICv1 and EPICv2[6], 82 probes were removed prior to BMIQ normalization. To 600 

account for any systematic bias in DNA methylation measurements[39] and subsequently test 601 

whether there are differences in DNA methylation-based estimates between EPIC versions, we 602 

applied batch correction for EPIC version, chip and row on funnorm normalized data using the 603 

ComBat function implemented in the sva R package[39]. We applied Pearson correlation to 604 

evaluate linear relationships to age in the epigenetic clock analyses, while in all analyses we 605 

applied Spearman correlation. Absolute β value differences of within EPIC version technical 606 

replicates on each of the common probes were used to determine technical noise of β value per 607 

probe. Absolute differences of within EPIC version technical replicates in DNA methylation-608 

based tool estimates (cell type deconvolution algorithms, epigenetic clocks, and inflammation 609 

and lifestyle biomarkers) were used to indicate within EPIC version technical error. Technical 610 
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replicates were removed prior to calculating correlations and preforming statistical tests 611 

comparing EPICv1 and EPICv2. 612 

 613 

Given that there are certain probes on EPICv2 having two or more replicates (replicate probes), 614 

we characterized their distribution across the genome, and compared three strategies to collapse 615 

them into a single β value (based on detection p-value, mean and median). Our analyses 616 

identified that collapsed β values of EPICv2 replicate probes obtained using all three methods 617 

were highly correlated to corresponding EPICv1 probes, therefore EPICv2 replicate probes with 618 

lowest detection p-value were chosen as the representative probe based on previous 619 

recommendation[6] (Supplementary Material), and this approach was used for all the reported 620 

subsequent analyses. 621 

 622 

Estimation of immune cell type proportions using DNA methylation-based cell type 623 

deconvolution 624 

Cellular composition in heterogeneous tissue such as whole blood is one of the key contributors 625 

to the variation in DNA methylation profiles of bulk tissue[58,59]. In the absence of complete 626 

cell count data for the study samples, we estimated proportions of twelve immune cell types, 627 

basophils (Bas), naïve and memory B cells (Bnv, Bmem), naïve and memory CD4+ T cells 628 

(CD4nv, CD4mem), naïve and memory CD8+�T cells (CD8nv, CD8mem), eosinophils (Eos), 629 

monocytes (Mono), neutrophils (Neu), natural killer (NK), and T regulatory cells (Treg) from 630 

matched venous blood samples measured on the two EPIC versions. We used two methods of 631 

probe selection to estimate these cell type proportions: (i) the extended Identifying Optimal DNA 632 
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methylation Libraries reference (IDOL), with probes not represented on EPICv2 removed from 633 

the reference before cell type proportions estimation in EPICv2 samples, and (ii) the auto method 634 

which selects the top 100 probes with F-stat p-value < 1E-8 for each cell type with the greatest 635 

magnitude of methylation difference, both implemented in the FlowSorted.Blood.EPIC R 636 

package with noob corrected values as recommended[10]. 637 

Estimation of epigenetic age and epigenetic age acceleration  638 

We compared the performance of eight commonly used epigenetic clocks between EPICv1 and 639 

EPICv2 in VHAS, CLHNS, CALERIE, and the external validation cohort BeCOME. Epigenetic 640 

clocks analyses on capillary blood samples in the VHAS cohort were also performed 641 

(Supplementary material, Supplementary Figures 25-28). Epigenetic age of first generation 642 

clocks including Horvath pan-tissue[11], Hannum[12], and Horvath skin and blood clocks[13], 643 

and second generation clocks including PhenoAge[14], and GrimAge[15] were obtained from 644 

the online DNA Methylation Age Calculator (https://dnamage.genetics.ucla.edu/new). Missing 645 

clock CpG β value imputation was performed by the clock algorithms. For these clocks, we 646 

calculated epigenetic age acceleration (EAA), a measure of rate of aging commonly used in 647 

epigenetic clock investigations, by employing three approaches independently for each cohort. 648 

1. EPIC version separate: we separated epigenetic ages of EPICv1 and EPICv2 samples 649 

and then calculated EAA independently on EPICv1 and EPICv2 samples by extracting 650 

residuals from the linear regression model: Epigenetic age ~ chronological age. 651 

2. EPIC versions combined: we first combined epigenetic ages of EPICv1 and EPICv2 652 

samples and then calculated EAA by extracting residuals from the linear regression 653 

model: Epigenetic age ~ chronological age. 654 
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3. EPIC versions combined and version adjusted: we first combined epigenetic ages of 655 

EPICv1 and EPICv2 samples and calculated EAA by extracting residuals from the linear 656 

regression model: Epigenetic age ~ chronological age + EPIC version.  657 

To evaluate if there are significant differences in principal components (PC) clock[36] estimates, 658 

which are more robust to technical noise, by EPIC version, we first estimated epigenetic ages by 659 

the R script provided (https://github.com/MorganLevineLab/PC-Clocks) and then calculated 660 

EAAs using the approaches mentioned above.  661 

 662 

DunedinPACE, a rate-based clock, was calculated using the DunedinPACE R package[17], and 663 

the two other clocks, epiTOC and DNA methylation-based estimator of telomere length 664 

(DNAmTL)[16] were obtained using the getEpiTOC function in the cgageR R package[18] and 665 

the online DNA Methylation Age Calculator (https://dnamage.genetics.ucla.edu/new), 666 

respectively. Missing clock CpG β value imputation was performed by the clock algorithms. 667 

Unlike EAA calculation, there were no secondary measures calculated from these three clock 668 

estimates in our analyses. Estimates remained the same when calculated by the EPIC versions 669 

separate or combined approach, therefore, we employed only two approaches for each cohort:  670 

1. EPIC version separate: rate-based and other clock estimates were calculated for 671 

EPICv1 and EPICv2 samples without EPIC version adjustment.  672 

2. EPIC versions combined and version adjusted: rate-based and other clock estimates 673 

were first calculated for EPICv1 and EPICv2 samples, and were subsequently adjusted 674 

for EPIC versions by regressing out EPIC versions using linear regression model: Rate 675 

estimate ~ EPIC version. 676 
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Using paired t-tests and applying a Bonferroni multiple test correction, we evaluated differences 677 

in epigenetic clock estimations and EAAs (as well as biomarker predictor scores and cell type 678 

proportions described below) between matched samples assessed on EPICv1 and EPICv2 in a 679 

cohort-specific manner. Statistical significance was defined as Bonferroni adjusted p-value < 680 

0.05. Effect sizes were measured by Cohen’s d, and classified as “small” (d = 0.2-0.49), 681 

“medium” (d = 0.5-0.79), and “large” (d ≥ 0.8) based on recommended benchmarks[60]. 682 

Estimation of DNA methylation-based inflammation, smoking, and alcohol scores 683 

Among other DNA methylation-based tools are inflammation, smoking and alcohol score 684 

predictors, which provide biomarker measures that correlate with levels of inflammatory markers 685 

(IL-6, CRP), smoking and alcohol use, respectively. DNA methylation-derived scores of IL-6, 686 

CRP, smoking and alcohol use were calculated as a weighted sum of coefficients derived from 687 

published lists of predictive CpGs[19–21]. Being that these biomarkers were trained on previous 688 

Illumina arrays, we sought out to determine the correlation of derived DNA methylation-based 689 

scores between EPICv1 and EPICv2, and compare these scores without version adjustment 690 

(EPIC version separate) and with version adjustment (EPIC versions combined and adjusted) 691 

using approaches similar to the rate-based and other epigenetic clocks.  692 
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907 

Figure 1. Overview of study design and analyses.   908 

*Array level correlations and hierarchical clustering were also performed by combining cohorts.  909 
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913 
Figure 2. (A) Unsupervised hierarchical clustering of array level Spearman correlations between914 
matched VHAS, CLHNS, and CALERIE samples on EPICv1 and EPICv2 across 721,378 shared915 
probes; blue to red color range denotes Spearman correlation from 0.94-1.00. (B) Top: Cohort-916 
wise hierarchical clustering of sample-to-sample Spearman correlations across 721,378 probes917 
common between EPICv1 and EPICv2; Bottom: Cohort-wise Spearman correlation and pooled918 
standard deviation (SD) of common probes. The X-axis represents the Spearman correlation and919 
Y-axis represents the pooled SD of probes common to both arrays. Dashed horizontal line920 
indicates the pooled SD threshold set at lower quartile pooled SD for each cohort, and the921 
vertical dashed line indicates the correlation threshold set at 0.70. The colors indicate the density922 
of points, such that pink is low density and yellow is high density. Probes unique to either array923 
are not shown. (C) Hierarchical clustering of Spearman correlations between matched BeCOME924 
(external validation cohort) samples on EPICv1 and EPICv2 across 721,378 shared probes and925 
Spearman correlation and pooled SD of common probes.  926 
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 927 

Figure 3. Differences in DNA methylation-based immune cell type proportions estimated using 928 
the IDOL reference on matched samples assessed on EPICv1 and EPICv2 in VHAS, CLHNS, 929 
and CALERIE. Statistical significance was defined as Bonferroni adjusted p-value <0.05. ** 930 
denotes Bonferroni p <0.05, *** denotes Bonferroni p <0.001, “ns” denotes “not significant”, 931 
and “d” denotes effect size measured using Cohen’s d. A positive Cohen’s d indicates higher 932 
estimates in EPICv2 compared to EPICv1.  933 
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936 

Figure 4. Epigenetic ages on matched samples assessed on EPICv1 and EPICv2 in VHAS. (A)937 
Scatter plot of Horvath pan-tissue, Hannum, Horvath skin and blood, PhenoAge, and GrimAge938 
clock ages (Y axis) and chronological age (X axis) with dotted line indicating x=y, coloured by939 
EPIC version. (B-D) Boxplots comparing EPICv1 and EPICv2 EAAs calculated by considering940 
(B) EPIC versions separately, (C) combined, and (D) combined and EPIC version adjusted.941 
Statistical significance was defined as Bonferroni adjusted p-value <0.05. ** denotes Bonferroni942 
p <0.05, *** denotes Bonferroni p <0.001, “ns” denotes “not significant”, and “d” denotes effect943 
size measured using Cohen’s d. A positive Cohen’s d indicates higher estimates in EPICv2944 
compared to EPICv1.  945 
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 947 

 948 

Figure 5. Rate-based and other clock estimates on matched samples assessed on EPICv1 and949 
EPICv2 in VHAS. Boxplots comparing DunedinPACE, DNAmTL and epiTOC estimates950 
calculated by considering EPIC versions separately (A) and combined and EPIC version adjusted951 
(B), between EPICv1 and EPICv2. Statistical significance was defined as Bonferroni adjusted p-952 
value <0.05. ** denotes Bonferroni p <0.05, *** denotes Bonferroni p <0.001, “ns” denotes “not953 
significant”, and “d” denotes effect size measured using Cohen’s d. A positive Cohen’s d954 
indicates estimates in EPICv2 compared to EPICv1.  955 
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Table 1. Demographics of the three in-house cohorts and external validation cohort. 964 

 965 

 VHAS CLHNS CALERIE External 
validation cohort: 
BeCOME 

Samples (n) 48 (24 matched 
venous and 
capillary 
samples) 

16 24 8 

Country of origin Vietnam Philippines United States of 
America 

Germany 

Biological sex  
(% Female) 

 36.4% 100% 54.2% 62.5% 

Average age in 
years ± standard 
deviation 

 74.6 ± 6.7  48.4 ± 6.1 36.7 ± 8.1 40.0 ± 16.9 

 966 
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Table 2. Summary of predictive CpGs of DNA methylation-based clocks, biomarker predictors, 985 
and cell type deconvolution in EPICv1, EPICv2, Infinium Methylation Screening Array (MSA), 986 
and 450K. 987 

Tools CpGs 

EPICv1 
absent 
CpGs 

EPICv2 
absent 
CpGs 

EPICv2 
replicate 
probes 

MSA 
absent 
CpGs 

450K 
absent 
CpGs 

Training arrays  
(sample size, age in 
years) 

Horvath 
pan-tissue* 353 

19 
(5.38%) 

13 
(3.68%) 4 (1.13%) 6 (1.7%) 0 

27K, 450K 
(n=7844, 0-100) 

Hannum* 71 
6 
(8.45%) 7 (9.86%) 5 (7.04%) 3 (4.23%) 0 

450K 
(n=656, 9-101) 

Horvath  
Skin and Blood 391 0 

17 
(4.35%) 9 (2.3%) 3 (0.77%) 0 

450K, EPICv1 
(n=896, 0-94) 

PhenoAge 513 0 
18 
(3.51%) 7 (1.36%) 3 (0.58%) 0 

27K, 450K, EPICv1 
(n=9926, 18-100) 

GrimAge** 1030 NA NA NA NA NA 
450K, EPICv1 
(n=1731, mean 66) 

PC Clocks*** 78464 0 
5801 
(7.39%) 

650 
(0.83%) 

51108 
(65.14%) 0 

450K, EPICv1 
(n=NA, 0-101) 

DunedinPACE 173 0 
29 
(16.76%) 2 (1.16%) 2 (1.16%) 0 

EPICv1 
(n=1037, 38 and 45) 

DNAmTL 140 0 
31 
(22.14%) 3 (2.14%) 2 (1.43%) 0 

450K, EPICv1 
(n=2256, 22-93) 

epiTOC* 385 
31 
(8.05%) 

26 
(6.75%) 0 13 (3.38%) 0 

450K 
(n=656, 19-101) 

IL-6 score 35 0 3 (8.57%) 1 (2.86%) 12 (34.29%) 0 
450K, EPICv1 
(n=875, 67-78) 

CRP score* 1765 
104 
(5.89%) 

96 
(5.44%) 

41 
(2.32%) 

357 
(20.23%) 0 

27K, 450K, EPICv1 
(n=22774, 16-75) 

Smoking score 233 0 
23 
(9.87%) 2 (0.86%) 27 (11.59%) 0 

EPICv1 
(n=5087, 18-99) 

Alcohol score 450 0 
49 
(10.89%) 6 (1.33%) 47 (10.44%) 0 

EPICv1 
(n=5087, 18-99) 

IDOL 1200 0 8 (0.67%) 48 (4%) 20 (1.67%) 
741 
(61.75%) 

EPICv1 
(n=56, 19-58) 

* There are CpGs commonly absent in both EPICv1 and EPICv2 in these clocks: Horvath pan-988 
tissue: 3 CpGs; Hannum: 2 CpGs; epiTOC: 6 CpGs; CRP score: 20 CpGs. There are probes 989 
absent in EPICv1 and are reintroduced in EPICv2 in these clocks: Horvath pan-tissue: 14 CpGs; 990 
Hannum: 4 CpGs; epiTOC: 25 CpGs; CRP score: 83 CpGs. 991 
** Clock CpGs for GrimAge are not publicly available.  992 
*** PC Clocks CpGs include the total CpGs required to calculate PC versions of Horvath pan-993 
tissue, Hannum, Horvath SkinBlood, PhenoAge, and GrimAge. 994 
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