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Abstract  

Background: Alzheimer's disease (AD), a progressive neurodegenerative disorder, continues to 

increase in prevalence without any effective treatments to date. In this context, knowledge 

graphs (KGs) have emerged as a pivotal tool in biomedical research, offering new perspectives 

on drug repurposing and biomarker discovery by analyzing intricate network structures. Our 

study seeks to build an AD-specific knowledge graph, highlighting interactions among AD, 

genes, variants, chemicals, drugs, and other diseases. The goal is to shed light on existing 

treatments, potential targets, and diagnostic methods for AD, thereby aiding in drug repurposing 

and the identification of biomarkers.  

Results: We annotated 800 PubMed abstracts and leveraged GPT-4 for text augmentation to 

enrich our training data for named entity recognition (NER) and relation classification. A 

comprehensive data mining model, integrating NER and relationship classification, was trained 

on the annotated corpus. This model was subsequently applied to extract relation triplets from 

unannotated abstracts. To enhance entity linking, we utilized a suite of reference biomedical 

databases and refine the linking accuracy through abbreviation resolution. As a result, we 

successfully identified 3,199,276 entity mentions and 633,733 triplets, elucidating connections 

between 5,000 unique entities. These connections were pivotal in constructing a comprehensive 

Alzheimer's Disease Knowledge Graph (ADKG). We also integrated the ADKG constructed 

after entity linking with other biomedical databases. The ADKG served as a training ground for 

Knowledge Graph Embedding models with the high-ranking predicted triplets supported by 

evidence, underscoring the utility of ADKG in generating testable scientific hypotheses. Further 

application of ADKG in predictive modeling using the UK Biobank data revealed models based 

on ADKG outperforming others, as evidenced by higher values in the areas under the receiver 

operating characteristic (ROC) curves.   

Conclusion: The ADKG is a valuable resource for generating hypotheses and enhancing 

predictive models, highlighting its potential to advance AD’s disease research and treatment 

strategies. 
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Background 

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive 

decline, memory impairment, and functional disability [1]. With an aging population, the 

prevalence of AD has been steadily rising, posing significant challenges to healthcare systems 

worldwide [2]. Alzheimer's disease (AD) research has evolved significantly, expanding beyond 

the amyloid hypothesis to encompass tau pathology, neuroinflammation, and vascular factors [3–

5]. Diagnostic advances include promising blood-based biomarkers and advanced neuroimaging 

techniques, while artificial intelligence enhances early detection [6–8]. Treatment approaches 

have expanded, including the controversial FDA approval of Aducanumab in 2021, alongside 

continued development of various anti-amyloid and tau-targeting therapies in clinical trials 

[9,10]. Prevention efforts focus on lifestyle interventions and vascular health, with a shift 

towards personalized medicine and recognition of AD subtypes [11–14]. Clinical trials also 

target earlier disease stages with novel designs to increase efficiency [15,16], while improved 

patient care through digital technologies and better management of behavioral symptoms 

complement biomedical research [17,18]. 

As the field of AD research rapidly evolves, it becomes increasingly crucial to synthesize and 

summarize information from the multitude of studies and published papers. This comprehensive 

approach allows researchers, clinicians, and policymakers to gain a holistic understanding of the 

current state of AD research and treatment. By consolidating findings from diverse areas such as 

disease mechanisms, diagnostic tools, treatment strategies, and care approaches, we can identify 

emerging trends, highlight promising avenues for future research, and inform evidence-based 

practices in AD management. Furthermore, regular summaries of the expanding body of 

knowledge facilitate the translation of research findings into clinical practice and policy 

decisions, ultimately advancing our collective efforts to combat this devastating disease. 

One promising data mining method involves creating interaction triplets, consisting of three 

components: head entity, tail entity, and their relationship [19]. For example, let’s consider a 

sentence "PPARgamma may be a potential target for AD", we can obtain a triplet whose head 

entity is PPARgamma, the tail entity is AD, and their relationship is "potential target for". These 

triplets efficiently organize and make accessible the extensive knowledge embedded in the AD-
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related literature. By aggregating and examining these triplets, researchers can achieve a holistic 

view of AD research progress, paving the way for the construction of knowledge graphs that 

further illuminate the disease's complexities.   

In the biomedical domain, knowledge graphs are constructed through meticulous manual 

curation, seamless integration of existing databases, and innovative data-driven approaches. 

Many knowledge graphs, like Gene Ontology [20], Drug Bank [21], and UMLS [22], have been 

built through intense expert-led curation efforts. In addition, some knowledge graphs 

amalgamate various established databases, including DisGeNet [23], Hetionet [24], BioGrakn 

[25], and DemKG [26], to create comprehensive resources.  

Specific to AD, there has been ongoing effort to develop AD-specific knowledge graphs. 

AlzPathway [27,28] is a notable example, offering a detailed pathway map of AD-related 

signaling pathways, curated from over a hundred review articles. The Alzheimer's Disease 

Ontology (ADO) [29] stands out as the pioneering structured framework to systematize AD-

related information, developed in line with the ontology building life cycle. Further contributing 

to the structured representation AD knowledge are the Alzheimer’s Disease Map Ontology 

(ADMO) [30], derived from AlzPathway, and the Alzheimer's Disease Integrated Ontology 

(ADIO) [31], which merges ADO and ADMO. In addition to ontology development, efforts have 

been made to integrate multi-omics and heterogeneous biological networks for Alzheimer's drug 

discovery. For instance, the Alzheimer's Cell Atlas (TACA) [32] compiles transcriptomic data 

from over 1.1 million cells/nuclei across major brain regions and cell types, and integrates 

differential expression comparisons, protein-protein interaction modules, functional enrichment 

analyses, drug screening profiles, and cell-cell interaction analyses into an interactive web portal. 

AlzGPS [33] integrates multi-omics data and clinical databases for AD, offering curated multi-

omics datasets, endophenotype disease modules, treatment information from FDA-approved 

drugs, literature references, clinical trial data, and interactive visualization tools to accelerate 

therapeutic development. 

In recent years, there's been a shift towards leveraging data mining techniques to extract AD 

insights from academic literature. Zhu [34]'s work exemplifies this trend by creating disease-

specific knowledge graphs, including for AD, from PubMed abstracts, employing advanced 
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models like Att-BiLSTM-CRF [35] for named entity recognition and a combination of BiLSTM 

[36] and ResNet [37] for relation extraction. Similarly, Nian [38]'s research utilizes literature-

derived knowledge graphs, extracting AD-related triplets from SemMedDB [39,40] to explore 

connections between AD and various entities, showcasing the growing emphasis on data-driven 

methodologies in constructing knowledge graphs for AD research. 

The AD knowledge graph holds significant promise for advancing biomedical discoveries. Zhu's 

creation of SDKG-11 [34], which encompasses knowledge graphs for five cancers and six non-

cancer diseases including AD, showcases the application of diverse data processing methods. 

This work not only enhances existing models with multimodal reasoning but also proves its 

efficacy and broad applicability in uncovering new biomedical insights, especially in the realms 

of drug-gene, gene-disease, and disease-drug connections. Furthermore, Bang's introduction of 

the DREAMwalk [41] framework marks a significant stride towards computational drug 

repurposing. By mapping drugs and diseases within a unified embedding space, DREAMwalk 

boosts the prediction of drug-disease associations, showing considerable promise for Alzheimer's 

disease repurposing efforts. 

Extracting information from text [42] is a pivotal step in knowledge acquisition, achievable 

through either open or supervised extraction methods. Open information extraction [43] 

autonomously discerns patterns in sentences without pre-supplied training data, employing tools 

like  ReVerb [44], OLLIE [45], Stanford OpenIE [46], ClausIE [47], and SemRep [40]. In 

contrast, supervised information extraction [48] hinges on annotated datasets to derive semantic 

triplets, detailing entities and their interrelations. This approach typically involves named entity 

recognition (NER) and relation classification, executed either in stages or via integrated models 

to reduce inaccuracies. Recent advancements with models like SCIIE[49] and SpERT[50]  have 

notably enhanced the accuracy and efficiency of supervised information extraction, further 

fueling the development and refinement of AD knowledge graphs. 

Biomedical knowledge bases and the process of entity linking play crucial roles in structuring the 

vast amount of information extracted into coherent formats such as knowledge graphs. In these 

graphs, entities derived from triplets are connected to specific databases to clarify and resolve 

any ambiguities. Entity linking, also known as named entity disambiguation, can be conducted 
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through supervised learning methods that utilize labeled identifiers, or through unsupervised 

techniques like string matching that associate textual mentions with unique database entities. 

Tools like TaggerOne [51] and Wikipedia2vec [52] leverage training data or embedding vectors 

to facilitate this linking process, harnessing the power of machine learning to enhance accuracy 

and relevance. Meanwhile, solutions such as QuickUMLS [53] and SciSpaCy [54]  employ 

string matching algorithms, offering a direct approach to associate text with entities in UMLS or 

other biomedical databases. This method does not require training data, making it an accessible 

option for linking entities in a straightforward and efficient manner. 

The goal of this paper is to develop a novel data mining method to extract information on AD 

from literature, primarily biomedical entities related to AD, and their relationships, to construct 

an AD knowledge graph. We employ a supervised strategy, harnessing crowdsourced 

annotations and GPT-4 [55] for textual enrichment to curate a training set for the SpERT[50] 

model training. We further delve into the knowledge graph’s attributes and its utility in 

hypothesis generation and disease prediction.  

The key contributions of our paper are as follows: 

1. Provide a brand-new human-annotated benchmark dataset for named entity recognition and 

relation classification specified in AD literature.   

2. Propose a pipeline to construct a domain-specific ADKG with entities linked to reference 

databases. 

3. Demonstrate the ADKG’s potential in predicting novel relationships and in forecasting AD’s 

disease prediction.  

Construction and content 

We will first introduce the primary steps to construct the Alzheimer's Disease Entity Relation 

Corpus (ADERC). Then, we will discuss on how we utilize the dataset to train an information 

extraction model for triplets’ extraction. Finally, we describe the approaches utilized to construct 

ADKG. The overall procedure of constructing ADKG is illustrated in Figure 1. 
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Figure 1. General Pipeline: corpus generation, model building, entity linking, ADKG 

construction, and applications  

Corpus Generation 

A new dataset for AD-related information extraction, ADERC, is constructed from 800 PubMed 

abstracts related to AD.  The overall procedure for generating the dataset is shown in Figure 1. 

Three steps are taken: abstract retrieval, pre-labeling using BERN[56], and annotation using 

BRAT[57]. 

We extracted 169,630 abstracts from PubMed (https://pubmed.ncbi.nlm.nih.gov/) utilizing the 

keyword 'Alzheimer' through the Entrez function of the Bio package (as of 5/2/2021). The BERN  

tool [56], known for its prowess in biomedical entity recognition and normalization, was 

employed to initially tag named entities, assigning categories such as Gene/Protein, Disease, 

Drug/Chemical, Species, and Mutation, before the commencement of manual annotation. 
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Beyond the five entity types identified by BERN, annotators introduced an additional 'method' 

category to classify methodological entities, exemplified by '18F-FDG-PET'. An 'other' category 

was also designated to encapsulate entities falling outside the predefined types. For the extraction 

of relationships, our focus was pinned on eight types: treatment_for, treatment_target_for, 

help_diagnose, risk_factor_of, characteristic_for, hyponym_of, associated_with, and 

abbreviation_for, which were selected to align with AD-related research inquiries. A meticulous 

manual review of 800 abstracts was conducted, leading to their comprehensive annotation via the 

BRAT tool [57]. This process resulted in a richly annotated corpus that encompassed both 

biomedical entities and their interrelations across 800 abstracts. 

To bolster the training dataset for named entity recognition and relation classification, we 

utilized GPT-4 [55] to create textual variations via synonym substitution and phrase rephrasing, 

particularly targeting sentences that encapsulate relationships (refer to the supplementary section 

for detailed prompts used in generating this augmented data). Following rigorous manual 

reviews to ensure accuracy and mitigate biases, this enhanced dataset significantly contributed to 

elevating the model's performance and minimizing the likelihood of overfitting. 

Information Triplet Extraction  

We developed a unified model for simultaneous named entity recognition and relation extraction 

on ADERC, leveraging the SpERT [50] framework with SciBERT [58] embeddings. To refine 

our negative sampling approach, we introduced manually crafted negative instances. Beyond the 

standard practice of using texts without named entities or unrelated entity pairs as negative 

examples, we enriched the dataset by modifying positive instances through the substitution of 

entities and relations. This method is designed to achieve a balanced dataset, offering a 

comprehensive assortment of both positive and negative samples to reduce model bias and 

improve precision in detecting pertinent entities and their connections. 

For model robustness, we partitioned the annotated corpus into training, validation, and testing 

sets. The model underwent training on the training set across a range of parameter configurations, 

including variations in relationship filtering thresholds, embedding dimensions, negative sample 

volumes, and dropout rates. The optimal parameter configuration was determined based on the 
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best performance on the validation set. Employing this optimal setting, the finalized model was 

then applied to the entire corpus of unannotated data to systematically identify named entities 

and extract relation triplets. 

Abbreviation Resolution 

In the development of knowledge graphs, handling abbreviations poses a notable challenge due 

to their potential for ambiguity, with the same abbreviation possibly representing different 

entities. For example, "ASD" could refer to "autism spectrum disorder" or "atrial septal defect." 

To mitigate such ambiguities, we've introduced a specific relationship type termed 

"abbreviation_for" in our annotation schema. This addition allows for the explicit representation 

of abbreviation relationships within the extracted triplets, significantly improving our ability to 

distinguish between entities. Our approach to resolving ambiguities involves first associating 

abbreviations with their full forms within the same abstract, thereby utilizing the broader textual 

context to aid in precise entity identification. The underlying principle is that the expanded form 

of an abbreviation offers a more comprehensive context crucial for accurate entity recognition 

and disambiguation. 

Entity Linking 

The issue of inconsistent entity representations, whether across various abstracts or within 

different sentences of the same text, can introduce ambiguity. To address this, we have 

established a thorough entity linking procedure that coherently associates references to identical 

entities. This process utilizes an array of biomedical databases, each catering to specific types of 

entities. Our extensive database ensemble encompasses genes from NCBI Gene [59], proteins as 

outlined in UniProt [60], small molecules listed in ChEBI [61], pharmaceuticals detailed in 

DrugBank [62], phenotypes described in HPO [63], diseases cataloged in the Disease Ontology 

[64], mutations recorded in ClinVar [65,66], and other medical entities classified under MeSH. 

In this framework, every entity is allocated a unique identifier (ID) from its respective source 

database, enriched with detailed descriptions and additional information to support precise entity 

resolution and linkage. We employ simstring [67] for approximating string matching, comparing 
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entity mentions in our extracted triplets against standard names and their synonyms in the 

reference databases, with matching scores serving as a measure of confidence. 

Knowledge Graph construction and the Confidence 

A knowledge graph (KG), G��, ��  consists of nodes �X�, 	�, … , 	�� �   and edges, 

�E�, ��, … , ��� � � between nodes. In this study, to build a knowledge graph, G��, ��, for AD 

from the existing literature, we extract entities (nodes) and relationships (edges) from abstracts 

related to AD. 

The ADKG is developed from the triplets extracted across all abstracts using the trained model. 

The knowledge graph's construction involves two primary steps: creating nodes and establishing 

edges. In the node creation phase, abbreviations are resolved, and entities are identified through a 

process known as entity linking. Subsequently, for each identified triplet, edges are established, 

encapsulating the linked entities, the original PubMed ID, the spans of the entities within the text, 

and the matching scores. It's common for multiple edges to exist between a pair of nodes. In the 

finalized ADKG, the nature of the directed edge connecting two nodes is determined by the 

predominant relationship types observed in the edges connecting the head and tail entities. 

Knowledge Fusion 

Integrating external knowledge graphs with the Alzheimer's Disease Knowledge Graph (ADKG) 

is essential to enhance the comprehensiveness and accuracy of the information available to 

researchers and practitioners [68]. This integration enriches the ADKG with diverse datasets, 

enabling more robust analyses and insights into Alzheimer's disease. To preserve the integrity of 

the integrated knowledge graph, we included the sources of each entity and relationship. 

Additionally, we have developed a comprehensive mapping schema to facilitate the alignment of 

entities and relationships across different knowledge graphs. We integrated representative 

external databases like DisGeNET [23], The Human Phenotype Ontology (HPO) [63], DrugBank 

[62], PharmGKB (Pharmacogenomics Knowledgebase) [69], OMIM (Online Mendelian 

Inheritance in Man) [70], and STRING [71]. The full details of how we processed the external 

databases in the integration process is available in the supplementary materials. 
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Initially, a comprehensive manual examination of the external database's schema and content is 

conducted to identify pertinent relationships for each of the external knowledge graph. 

Subsequently, entity linking techniques are utilized to map entities from the external database to 

their corresponding entities within the ADKG. Once entities are accurately linked, attention 

shifts to the selection of relationships. Specifically, relationships from the external database are 

selected if either the head entity (the origin of the relationship) or the tail entity (the destination 

of the relationship) exists within the ADKG. This selective approach ensures that only relevant 

relationships are integrated, thereby maintaining the integrity and relevance of the ADKG. 

Knowledge Graph Embedding 

In developing the knowledge graph embedding model, we utilized various embedding techniques 

on the training set and determined the optimal parameters based on performance in the test set to 

create the final model for discovering new knowledge. The ADKG was divided into training 

(approximately 80%), validation (around 10%), and testing (near 10%) subsets. We began 

with a balanced distribution of relationships across these subsets, followed by manual 

adjustments to ensure all entities were represented in the training portion. 

We evaluated several knowledge graph embedding (KGE) methods, including distance-

based models like TransE [72], TransH [73], and TransR [74], the semantic matching-based 

ComplEx model [75], and the ConvKB model [76], which incorporates convolutional neural 

networks. Each model offers a unique approach to representing relationships and entities: 

(i) TransE treats relationships as translations in the embedding space, where the 

plausibility of a fact is the L1 or L2 distance between the sum of the head entity and relation 

vectors and the tail entity vector, embodying the concept of the relation 'translating' the head to 

the tail entity. (ii) TransH projects entity embeddings onto relation-specific hyperplanes, 

accommodating entities' differing roles across multiple relations. Its scoring function assesses 

fact plausibility based on the L1 or L2 norm after this projection, reflecting the translation 

principle on these hyperplanes. (iii) TransR separates entity and relation embeddings into 

distinct spaces, projecting entity embeddings into a relation-specific space before translation. 

The fact's plausibility is measured by the L1 or L2 distance between the translated head entity 

and the tail entity within this relation space. (iv) ComplEx uses complex-valued embeddings to 
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represent both symmetric and asymmetric relationships, with its scoring function being the real 

part of the dot product of complex embeddings, facilitating the modeling of diverse relation 

types, including hierarchical and reciprocal relations. (v) ConvKB employs a convolutional 

neural network over concatenated embeddings of head entities, relations, and tail entities to 

identify global interaction patterns. Its scoring involves convolution, a non-linear feature map, 

and a linear scoring layer, capturing intricate interaction patterns to predict new facts. By 

comparing the performances of these models, we selected the most effective one for facilitating 

knowledge discovery within the ADKG.   

For all models, we conducted a comprehensive search for the optimal hyper-parameters, 

including choices for embedding dimensions (32, 64, 128, 256), learning rates (0.05, 0.005, 

0.0005), batch sizes (128, 256, 512, 1024), and specific parameters for each loss function. For 

ConvKB, we additionally selected the number of filters from options 128, 256, and 512. We 

adopted the margin-based ranking loss function and implemented Bernoulli negative sampling 

[73] for training. The training process was capped at a maximum of 1000 epochs. During 

evaluation, we utilized a rank-based metric, specifically focusing on the mean rank of correct 

predictions, and applied a filtered setting [72] to account for known triples when ranking 

candidate triples. The primary criterion for model selection was the arithmetic mean rank, 

although we also reported Hits@10 as an additional measure to gauge model performance. 

Arithmetic Mean Rank is a measure used to evaluate the performance of models by calculating 

the average rank assigned by a model to a set of triplets. A lower arithmetic mean rank indicates 

better performance, as it suggests that the model is more accurately ranking items according to 

their relevance or importance. Hits@10 is a metric commonly used in information retrieval and 

recommendation systems to measure the proportion of relevant items that appear within the top-

K results recommended by a model. In this case, Hits@10 specifically measures the percentage 

of relevant items that are included in the top 10 recommendations provided by the model. A 

higher Hits@10 score indicates better performance, as it suggests that more relevant items are 

being recommended within the top results. 

Results 

Statistics for ADERC and Model  
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The constructed dataset (ADERC) includes annotations for biomedical entities and their relations 

for 800 abstracts. These abstracts are retrieved from PubMed through query of "Alzheimer's 

disease". The ADERC contains 20, 886 annotated mentions and 4, 935 relationships between 

these mentions. The original predictions on all the abstracts contains in total 3,199,276 entity 

mentions and 633,733 triplets, among which we identified 45,277 unique triplets between 

mapped entities after entity linking. Details of the types of entity and relationships are shown in 

Figure 2. 

 

Figure 2 Comparative Visualization of Biomedical Entity and Relationship Distribution for ADERC (A and B) and 

ADKG (C and D). (Not all the tail entities are Alzheimer’s disease.) 

NER&RE Model Performances  

We present a detailed comparison of the precision, recall, and F1 score metrics for three different 

models: Entity Recognition, Relation Extraction, and a Joint model that combines the two tasks. 

Precision and recall are reported in both micro and macro averages, offering insights into the 

models' performance across individual instances (micro) as well as across different classes 

(macro). For Entity Recognition, the model demonstrates strong performance with a micro F1 

score of 87.2% and a macro F1 score of 86.1%, indicating consistent accuracy across various 
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entity types. Relation Extraction shows lower scores across all metrics, with a micro F1 score of 

67.1% and a macro F1 of 66.3%, reflecting the increased challenge of this task. The Joint model, 

which tackles both entity recognition and relation extraction simultaneously, understandably has 

lower scores than the individual tasks with a micro F1 of 61.4% and a macro F1 of 61.5%, 

suggesting that combining tasks may introduce additional complexity.  

Precision of ADKG 

Assessing the performance of a knowledge graph, such as the ADKG, necessitates a meticulous 

evaluation, particularly focusing on the precision of the predicted triplets to confirm the graph's 

effective encapsulation of the sourced information. This evaluation involves selecting a random 

sample of 100 sentences from the relevant literature and examining the triplets that the ADKG 

derives from these sentences. Each triplet's accuracy is scrutinized to verify its faithful 

representation of the sentence's content. Precision is quantified as the proportion of accurate 

triplets in relation to the total number of triplets extracted. This rigorous validation process 

initially employs GPT-4 and is subsequently cross-verified by domain specialists. In our analysis, 

we found that 94 out of 137 triplets (68.61%) were correctly represented in the ADKG, 

demonstrating its efficacy in capturing pertinent information. 

ADKG Featured Important Relationships for AD 

In leveraging the ADKG, we observe recurring patterns, such as the well-documented link 

between the APOE gene and AD as a significant risk factor. The ADKG facilitates the discovery 

of complex relationships between AD and various entities. For example, when investigating 

genetic factors associated with AD, a query for 'AD – genes' reveals 5,932 interactions 

connecting AD to 1,030 genes/proteins. This collection includes genes identified by the ADSP 

Gene Verification Committee as having a potential impact on AD risk or offering protective 

effects [77]. In terms of pharmacological connections, our analysis brought to light 5,665 

interactions between AD and 1,061 different drugs/chemicals. This comprehensive network 

highlights numerous avenues for potential therapeutic interventions and illustrates the value of 

the ADKG as a resource for generating and validating hypotheses within Alzheimer's disease 

research. 
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Furthermore, the analysis of disease comorbidity within the ADKG highlights notable

connections between AD and other medical conditions. We identified 5,130 interactions that

associate AD with 248 different diseases. Notably, Alzheimer's Disease (DOID: 10652) is

strongly linked to conditions such as Mild Cognitive Impairment (DOID: 0081292), Diabetes

Mellitus (DOID: 9351), and Obesity (DOID: 9970). These associations are crucial for

understanding the co-occurrence of these diseases and can provide essential insights for

developing clinical approaches to diagnose, treat, and manage AD alongside its comorbidities

effectively.
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Figure 3 Top 100 relationships related to Alzheimer’s Disease with the degree the number of 
sentences predicted to have the relationship 

Results of Knowledge Graph Embedding 

Utilizing a grid search across all potential parameters, we identified the optimal configurations 

for knowledge graph embedding, assessed via the mean rank metric for the selected KGE models 

on the test set. The experimental outcomes, as presented in Table 1, indicate that the ConvKB 

model outperforms others, achieving the most favorable mean rank results on the test set.  

Table 1 Knowledge Graph Embedding performance of the best setting on test set for different 

KGE models 

Model Mean Rank Hits@10 

TransE 387 0.1646 

TransH 373 0.1973 

TransR 377 0.1941 

ComplEx 340 0.2125 

ConvKB 312 0.2781 

Link prediction results reveal interesting findings 

To uncover potential triplets not currently represented in the ADKG, we utilized the entire 

ADKG as a training dataset. Selecting ConvKB as the optimal model, we applied it with the 

most effective parameter configuration to train a KGE model on all ADKG triplets. We sought to 

discover new connections by calculating scores for all conceivable head-tail-entity triplets, 

ranking them based on these scores. This ranking of potential triplets offers insights into 

prospective or previously unidentified relationships among ADKG entities. 

We compiled a list of new gene-disease relationships that emerged from link prediction, 

prioritizing top-ranking triplets that suggest associations between specific genes and diseases 

(Table 2). These diseases span a range of neurological and inflammatory conditions, including 

amyloidosis, neurodegeneration, and gastrointestinal inflammation, hinting at the implicated 

genes' involvement in these disorders. Notably, CHI3L1 is implicated in connections with 

neurodegeneration and hippocampal atrophy, a finding corroborated by recent publications not 

included in our initial PubMed dataset. This highlights the ADKG's utility in revealing novel 
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relationships and underscores the potential for advancing our understanding of complex diseases 

through knowledge graph analysis. 

 

Table 2 Top inferred triplets inferred from ADKG using ConvKB (red PubMed evidence 

indicates that the source is not included in our corpus) 

Type head tail rank score 
Pubmed 

Evidence 

gene-disease APOE amyloidosis 38 44.80191 Many 

 CHI3L1 Neurodegeneration 45 44.66664 35234337 

 MFN2 
Abnormality of mitochondrial 

metabolism 
46 44.66243 30649465 

 APOE tauopathy 59 44.33801 Many 

 CRP Gastrointestinal inflammation 64 44.21387 Many 

 HMOX1 progressive supranuclear palsy 74 43.9729 

 IL6 major depressive disorder 95 43.41697 Many 

 NEFL Neurodegeneration 99 43.35546 Many 

 UBB neurodegenerative disease 101 43.32749 Many 

 CHI3L1 Hippocampal atrophy 109 43.21873 35234337 

ADKG empowers Alzheimer’s Disease prediction using UK Biobank data 

In this study, we sought to evaluate the predictive power of ADKG in identifying AD using the 

extensive data resources of the UK Biobank [78]. The UK Biobank offers an extensive 

biomedical database that includes genetic and health information from nearly half a million UK 

residents. Our methodology involved retrieving relevant data from the UK Biobank as of March 

6, 2023, which included protein expression profiles at enrollment, lifestyle information, and 

detailed medical histories crucial for AD prediction. Our analysis focused on predictors such as 

protein abundance, environmental factors, and lifestyle variables, to predict the diagnosis of AD 

indicated by the case group and control group. The predictive variables encompass 1463 proteins, 

APOE4 variant, race, education level, social demographics, smoking status, physical activity 

level, diet, alcohol usage, sleep, and memory. 

We identified UK Biobank participants diagnosed with AD as the case group based on hospital 

admission electronic health records (EHRs), using ICD-9 and ICD-10 codes from linked records 

or data from death registers. For our control group, we selected individuals without any 

dementia-related symptoms according to ICD-10 codes, specifically excluding codes with F00 
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(Dementia in Alzheimer's disease), F01 (Vascular dementia), F02 (Dementia in other diseases 

classified elsewhere), F03 (Unspecified dementia), F05 (Delirium, not induced by alcohol and 

other psychoactive substances), G30 (Alzheimer's disease), G31 (Other degenerative diseases of 

nervous system, not elsewhere classified), and G32 (Other degenerative disorders of nervous 

system in diseases classified elsewhere), and excluding individuals with any form of dementia 

reported by the UK Biobank. The complete dataset of 52164 cases and 541 controls was then 

randomly divided into training and validation (90%), and testing (10%) subsets for analysis. 

We conducted a comparative evaluation of phenotypes associated with AD as indicated in 

ADKG versus those identified through conventional screening, particularly in their ability to 

predict AD. For phenotypes referenced from ADKG, we selected AD-related genes/proteins in 

ADKG and manually reviewed other entity types linked to AD (such as lifestyle variables and 

environmental factors) in the UK Biobank health records.  

In developing the predictive model for AD, we utilized both logistic regression and XGBoost 

algorithms [79]. To prepare for model training, we tackled the issue of missing data in the 

normalized protein expression profiles by employing mean substitution [80], ensuring the 

completeness and reliability of the data essential for the logistic regression model, given the 

complexity of missing data patterns. The relatively low occurrence of AD in the population, 

leading to an imbalanced case-control ratio in our dataset, prompted us to use the ROSE package  

[81] for oversampling, achieving a more equitable distribution of cases and controls in the 

training dataset. 

For the selection of variables without relying on domain-specific knowledge, we set p-value 

thresholds at various levels (0.05, 0.005, 0.0005, 0.00005, 0.000005, 0.0000005), each yielding a 

different set of predictors. Leveraging information from ADKG, we incorporated a subset of 

AD-associated genes and other pertinent variables such as age, the presence of the APOE ε4 

allele, and cognitive memory scores, resulting in a comprehensive dataset comprising 214 

variables for the analysis. 

The integration of domain-specific knowledge from the ADKG substantially improved the 

model's predictive accuracy, as demonstrated by an increase in the Area under the Receiver 

Operating Characteristic (ROC) curve from 0.9025 to 0.9137 for the ADKG-enhanced model. 
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Moreover, the application of the XGBoost algorithm with ADKG-derived predictors achieved an 

even higher AUC of 0.928, underscoring the potency of sophisticated machine learning 

techniques in refining AD predictive models. These results highlight the pivotal role of domain-

specific knowledge in augmenting model performance. This comprehensive evaluation process is 

depicted in Figure 4. 

 

Figure 4 Efficacy of ADKG in AD prediction with UK Biobank Data 

Discussion 

 In this study, we unveil a cutting-edge data mining approach for developing the ADKG, derived 

from triplets extracted from academic abstracts. This knowledge graph serves as a pivotal tool 

for drug repurposing and identifying biomarkers pertinent to AD. Additionally, we introduce the 

ADERC, a uniquely human-annotated dataset tailored for research in AD knowledge graphs. Our 

methodology delves into the ADKG's attributes, employing it for data retrieval and showcasing 

its utility in discovering new connections through link prediction techniques enabled by 

knowledge graph embedding methods. A cornerstone of our research is the practical use of the 

ADKG in the predictive modeling of AD, capitalizing on the comprehensive data available 

within the UK Biobank. 
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While our framework demonstrates considerable promise, there are avenues for enhancement. 

Beyond technical refinements, a critical area for expansion involves broadening the data sources 

beyond abstracts to include full-text articles, as well as data from supplementary materials like 

tables and notes, to enrich the depth of information extracted. Further granularity in classifying 

entity and relationship types could also provide deeper insights. For example, differentiating the 

'gene' category into more specific types such as gene, protein, and RNA could offer more precise 

understanding. Recognizing negative relationships is equally important, as it can help identify 

erroneous conclusions in AD research. Such advancements would necessitate increased 

annotation efforts to generate enough annotated training samples for each detailed category, 

ensuring the model's ability to accurately discern these patterns.  

Regarding the application of the ADKG, we have outlined various potential uses and presented 

case studies to illustrate how the ADKG can enhance traditional tasks. It's important to note, 

however, that the scope for improving traditional tasks with knowledge graph insights extends 

beyond the examples provided in our manuscript. The emergence of large language models 

opens up even more possibilities. One notable application could involve integrating ADKG data 

into a question-and-answer (Q&A) engine powered by large language models, thereby making 

Alzheimer's Disease information more readily accessible to the general public. 
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Key Points 

1. The study focuses on developing an Alzheimer's Disease Knowledge Graph (ADKG) by 

extracting relationships between genes, variants, chemicals, drugs, and diseases related to 

Alzheimer's from 800 PubMed abstracts, using GPT-4 for text augmentation. 

2. A joint model that integrates named entity recognition (NER) and relationship classification 

was trained and used to parse unannotated abstracts.  Reference biomedical databases were 

used for entity linking, enhanced by abbreviation resolution techniques. 

3. The ADKG enabled Knowledge Graph Embedding models to generate high-quality, 

evidence-supported hypotheses. The predictive models using ADKG, when tested on the UK 

Biobank data, showed superior performance with higher areas under the ROC curves 

compared to other models. 
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The datasets generated during and/or analyzed during the current study are available in the 
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accessible via our developed website https://biomedkg.com/ for easy query and visualization. 
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