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Abstract 

Emerging immunotherapies such as immune checkpoint blockade (ICB) and chimeric antigen 

receptor T-cell (CAR-T) therapy have revolutionized cancer treatment and have improved the 

survival of patients with multiple cancer types. Despite this success many patients are 

unresponsive to these treatments or relapse following treatment. CRISPR activation and knockout 

(KO) screens have been used to identify novel single gene targets that can enhance effector T cell 

function and promote immune cell targeting and eradication of tumors. However, cancer cells often 

employ multiple genes to promote an immunosuppressive pathway and thus modulating individual 

genes often has a limited effect. Paralogs are genes that originate from common ancestors and 

retain similar functions. They often have complex effects on a particular phenotype depending on 

factors like gene family similarity, each individual gene’s expression and the physiological or 

pathological context. Some paralogs exhibit synthetic lethal interactions in cancer cell survival; 

however, a thorough investigation of paralog pairs that could enhance the efficacy of cancer 

immunotherapy is lacking. Here we introduce a sensitive computational approach that uses sgRNA 

sets enrichment analysis to identify cancer-intrinsic paralog pairs which have the potential to 

synergistically enhance T cell-mediated tumor destruction. We have further developed an 

ensemble learning model that uses an XGBoost classifier and incorporates features such as gene 

characteristics, sequence and structural similarities, protein-protein interaction (PPI) networks, and 

gene coevolution data to predict paralog pairs that are likely to enhance immunotherapy efficacy. 

We experimentally validated the functional significance of these predicted paralog pairs using 

double knockout (DKO) of identified paralog gene pairs as compared to single gene knockouts 

(SKOs). These data and analyses collectively provide a sensitive approach to identify previously 

undetected paralog pairs that can enhance cancer immunotherapy even when individual genes 

within the pair has a limited effect.  
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Introduction 

Emerging immunotherapies, especially immune checkpoint blockade (ICB) and adoptive cell 

therapy, have revolutionized cancer treatment for multiple cancer types; however, a significant 

fraction of patients fail to respond to immunotherapies or relapse following treatment1. Recent 

efforts have focused on using CRISPR knockout or activation screening to identify targets that 

enhance T cell effector function and augment immune killing capability2. Nevertheless, 

overcoming resistance by manipulating a single gene remains challenging due to the compensatory 

effects of other genes. Combination therapies have been proposed as a promising  strategy to 

overcome tumor resistance to monotherapy when single agents are ineffective3. 

 

Paralogs, genes that originate from the same ancestors and share similar functions, often work in 

concert to promote cell survival. Numerous focused studies have utilized genomic data and pooled 

screening techniques to explore how targeting paralogous genes can impact cancer cell viability4-

6. Recent research has shown that targeting these genes simultaneously in cancer cells can enhance 

the effectiveness of immunotherapy by preventing the cells from evading T-cell-mediated 

destruction. For instance, Park et al. demonstrated that treating mice with both anti-PD-L1 and 

anti-PD-L2 antibodies significantly reduced tumor growth in specific mouse models7. Additionally, 

signals from both PARP-1 and PARP-2 are essential for initiating an effective T-cell response 

against breast cancer in mice8. While pooled CRISPR screening is popular for identifying single 

genes that modulate specific responses, including those relevant to immunotherapy, few efforts 

have focused on double-knockout screens. Double-knockout screens aim to identify novel 

combinations of genes that lead to synthetic lethality and boost T-cell function5,9,10. However, a 

comprehensive, high-throughput strategy to screen all potential paralog pairs related to 

immunotherapy is challenging because a very large screening library, that includes hundreds of 

thousands of gene combinations, would be required. To solve this problem we have developed a 

computational approach to identify the most promising paralog gene combinations, which can then 

be used to build a focused and manageable library for experimental validation. 

 

Here we used an sgRNA sets enrichment method to identify cancer-intrinsic paralog pairs that 

enhance T cell killing from prior pooled screening data. We show that our method identifies novel 

synergistic paralog pairs that are successfully validated experimentally. We have also constructed 
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an ensemble learning XGBoost classifier to predict true-positive paralog pairs enhancing 

immunotherapy by incorporating features such as gene characteristics, sequence and structural 

similarity, protein–protein interaction networks, and gene coevolution data. To enhance reliability 

of the XGBoost classifier predictions, we conducted further experimental validations on the 

highest-ranked paralog pairs identified. This study is expected to uncover novel therapeutic targets 

and inspire new combination immunotherapies to aid cancer treatment. 
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Results 

Identifying cancer-intrinsic paired paralogs that synergistically enhance T cell-mediated 

killing using CRISPR screen data. 

A large proportion of genes have paralogs that perform redundant functions. Inactivation of 

functionally important paralog pairs can lead to synthetic lethality as well as more efficient 

modulation of biological pathways9,11. Unfortunately the identification of these paralog pairs is 

limited in single-gene perturbation screens due to compensation between paralogous genes12 and 

dual gene screening is often unfeasible due to the large size of CRISPR libraries required to 

encompass all potential combinations of paralogous gene pairs (Fig. 1A). To overcome this 

limitation we proposed an unbiased computational approach to filter and predict functional gene 

pairs from prior published genome-wide CRISPR screen data. 

 

We initially attempted to search for immunotherapy-aiding paralog pairs using conventional 

MAGeCK results in Lawson's CRISPR screen dataset13, which was originally aimed at identifying 

genes involved in evading T cell-mediated cytotoxicity across six murine tumor cell lines. Based 

on a strict dual-hit genes criterion, we observed few or no suitable pairs identified (Fig. S1A); 

however, relaxing the criteria to include single hit genes leads to a significant increase in uncertain 

pairs. To overcome this we developed an enrichment-based methodology named Paralog sgRNA 

Set Enrichment Analysis (pSSEA), which integrates the sgRNAs of gene pairs to enhance the 

identification of high-potential paralog pairs. We provide a schematic of the pSSEA algorithm in 

Fig. 1B. Briefly, the process begins with the results of differential expression analysis (using 

DESeq2, MAGeCK, etc.) as input. The pSSEA evaluates the enrichment score employing a 

Kolmogorov-Smirnov (KS)-like random walk statistic, a method similar to those used in GSVA14 

and ASSESS15. The detailed steps include: 

 

𝜈(ℓ) = 	∑
ℓ
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   (Eq. 1) 

 

where 𝑟- is the rank-ordered sgRNAs, 𝛾 is the sgRNAs set that belongs to the paralog gene pair,  

𝛪(𝑔- ∈ 𝛾) is the indicator function on whether the i-th sgRNA is in paralog sgRNAs set 𝛾‚ |𝛾| is 
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the number of sgRNAs belonging to the gene pairs, and p is the number of total sgRNAs in the 

library. 

 

                𝐸𝑆 = 	𝜈 0𝑎𝑟𝑔 max
ℓ/0‚...‚+

	|𝜈(ℓ)|		5                      (Eq. 2) 

 

The enrichment scores for paralog pairs were calculated by identifying the maximum deviation 

from zero during a random walk analysis. 

 

To assess the significance of enrichment, we created an empirical null distribution by randomly 

selecting an equivalent number of non-targeting control (NTC) sgRNAs and repeating this process 

10,000 times to ensure robustness. The significance of enrichment for each gene pair was then 

determined by comparing their sgRNA distributions against both the positive and negative tails of 

the NTC null distribution. 

 

We re-analyzed Lawson's CRISPR screen dataset13 to identify cancer intrinsic paralog pairs that 

enhance T cell-mediated killing function using the pSSEA method. From the EnsemblCompara 

database (Ensembl, v102), we obtained a total of 139,654 protein-coding gene paralog pairs, 

covering 16,202 protein-coding genes, as shown in Fig. 1A. First, DESeq2 was used to quantify 

the selective depletion of sgRNAs within tumor populations under immune selection from co-

cultured OT-1 T cells. Subsequently, using the pSSEA framework, we identified paralogous gene 

pairs that potentially influence T cell-mediated cytotoxicity, based on the differential sgRNA 

results obtained from DESeq2. Our analysis identified 7,310 significant paralog pairs (5.2% of 

139,654) with p-values below 0.05 in B16 melanoma cell data. Among these, 5,632 pairs were 

positively enriched suggesting vulnerability to T-cell killing, and 1,678 pairs were negatively 

enriched suggesting resistance to T-cell killing (Fig. 1D). Using these same methods we identified 

paralog pairs associated with vulnerability and resistance to T cell killing for CT26, MC38, 4T1, 

EMT6 and Renca cell lines, as shown in Fig. 1C.  

 

To investigate the properties of paralog pairs identified as enriched through pSSEA analysis, we 

assessed individual gene enrichment using pSSEA in single-gene mode.  Among the 5,632 pairs 

associated with vulnerability to T-cell killing in B16 melanoma cell, 3,620 pairs (64.3%) were 
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single-hit, with only one gene showing significance; 520 pairs (9.2%) were dual-hits, with both 

genes significant; and the remaining 1,492 pairs (26.5%) showed no hits of either of the genes 

within the identified paralog pair (Fig. 1D and Table S1). Notably, we observed that over a quarter 

of the paralog pairs exhibited a synergistic effect despite no hits at the single-gene level, indicating 

a broad spectrum of potential targets that might be overlooked by obtaining gene pairs according 

to individual gene results (Fig. S1A).  

 

Validation of synergistic cancer-intrinsic paralog pairs that together boost T cell killing  

For the experimental validation of the synergistic effect of gene pairs in which neither individual 

gene reached significance, we selected the most promising paralog pairs using the following 

criteria: 1) the genes within the paralog pair must show significance in combination only (neither 

gene is individually significant) in B16 melanoma cells, due to the availability of murine cell lines,  

and 2) the paralog pairs must show significant enhancement of T cell killing, as assessed by pSSEA, 

in at least three out of the five screened cancer cell types, excluding B16 (Fig. 2A and Table S2). 

Ultimately, four paralog pairs, Rbm45+Rbms2, Ppp2r2a+Ppp2r2d, Elf2+Etv6, and 

Adam10+Adam15 were selected for further experimental assessment of their potential to enhance 

T cell killing efficiency (Fig. S1B-F). 

 

To perform the paired gene knockout, we utilized the same gRNAs from the original gRNA-library 

pool used in the CRISPR screen. For the first gene within the paralog pair, the targeting gRNA 

was cloned into a GFP-expressing construct, while for the second gene within the paralog pair, the 

targeting gRNA was inserted into a puromycin-expressing construct (Fig. 2B). To evaluate the 

synergistic function of each gene pair, we established four experimental groups with targeted 

knockouts : non-targeting control (NTC) paired with NTC (NTC-NTC), gene1 knockout (KO) 

paired with NTC (gene1KO-NTC), gene2 KO paired with NTC (gene2KO-NTC), and a double 

knockout (DKO) of both genes (gene1KO-gene2KO). To generate cells with these specific gene 

targets, we performed dual transduction of B16F10-Cas9-mCherry-OVA tumor cells, which 

express the OVA antigen, using lentiviruses carrying the gRNAs with GFP or puromycin markers. 

GFP-positive cells were sorted and then selected for puromycin-resistant cells to obtain either 

single or double knockout cells. Subsequently, gene editing was verified and knockout efficiency 

was evaluated using the T7E1 assay. To investigate the role of the paired genes in T cell-mediated 
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cytotoxicity, we co-cultured B16F10-Cas9-mCherry-OVA tumor cells from the four experimental 

groups described above with OT-I T cells, whose TCR recognizes the SIINFEKL peptide 

presented by Ova antigen-expressing tumor cells, and assessed tumor cell survival.  

 

In these co-culture experiments we found that simultaneous inactivation of Adam10 and Adam15 

significantly increased T-cell-mediated  tumor cell death, while single knockouts of Adam15 or 

Adam10 didn’t affect T-cell activity, (Fig. 2C and Fig. S1G). Similarly, Ppp2r2a+Ppp2r2d double 

knockouts displayed significantly greater vulnerability to T-cell cytotoxicity, whereas individual 

knockouts of Ppp2r2a or Ppp2r2d showed only modestly enhanced T-cell killing (Fig. 2D and 

Fig. S1H). The Elf2 and Etv6 combination showed significantly enhanced T cell kill compared to 

the NTC control, but not compared to the single gene Elf2 and Etv6 knockout cells (Fig. 2E and 

Fig. S1I). The Rbm45/Rbms2 pair showed no discernible impact on T-cell efficiency in both single 

and double knockout cells compared to the NTC group (Fig. 2F and Fig. S1J). In total, three out 

of four predicted paralog pairs were successfully confirmed to exhibit increased T cell 

vulnerability, highlighting previously overlooked synergistic gene pairs. These findings also 

provide fundamental experimental evidence for the accuracy of using pSSEA method to 

effectively identify paralog pairs that enhance T-cell killing efficacy. 

 

Building an ensemble XGBoost classifier to predict paralog pairs that enhance T cell-

mediated cytotoxic killing  

Using a CRISPR screen dataset we have demonstrated that paralog pairs could act synergistically 

to enhance T cell mediated cytotoxicity. However, this CRISPR screen dataset was derived from 

in-vitro co-culture of cancer cell lines with cytotoxic T cells, an assay with significant limitations 

and potential experimental biases. We therefore developed a system for deeper characterization of 

paralog pairs and prediction of their potential for enhancing cancer immunotherapy. Utilizing T 

cell enhancing paralog pairs identified in B16F10 melanoma data with pSSEA as true positives 

and those insignificant as false positives, we compiled 32 features representing various aspects of 

paralogous gene interactions. These features include sequence characterization, expression 

abundance and correlation, shared protein-protein interactions (PPI), complex membership, co-

evolution, tumor microenvironment (TME) associations, perturbation similarities, and combined 

survival associations in cancer patients (Fig. 3A and Table S3). Then, an ensemble classifier was 
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trained, utilizing the identified 32 features, to predict potential paralog pairs. To ensure the quality 

of model training and testing, the paralog pairs were filtered using several criteria: paralog pairs 

identified as T cell enhancing pairs or not significant pairs in B16 data; sequence BLAST identity 

larger than 30% with an e-value < 1e-5; with measurements in structural similarity, synthetic 

lethality and survival associations; and paralog pairs with family sizes of 20 or fewer to prevent 

overrepresentation of specific ortholog families. A total of 3,204 paralog pairs were selected from 

the initial set of 139,654 paralog pairs. Furthermore, 80% of these 3,204 pairs were randomly 

assigned to the training dataset (n = 2,547), which includes negative pairs (n = 2,274) and positive 

pairs (n= 273). The remaining 20% were saved for internal testing later (Fig. S2A-B). Prior to 

building the ensemble model, our analysis revealed that certain individual features exhibited a 

stronger predictive effect in the training data. The top influential feature was gene expression 

abundance with the highest ROC AUC (area under receiver operating characteristic curve) values, 

indicating that gene expression itself could be a critical indicator of a paralog pair(Fig. 3B). 

Notably, the features ranked second to fifth were four protein-protein-interaction (PPI) -network 

features (Fig. 3A), highlighting the crucial role of gene networks in determining whether two genes 

could interact in an immunotherapy context. Synthetic lethality was identified as a mid-level 

feature, suggesting that the collaborative roles of paralogs of cancer cells in response to immune 

context might differ from their roles in cell viability.  

 

Next, XGBoost classifier, an ensemble boosted tree learner, was trained, utilizing 5-fold cross-

validation for hyperparameter tuning. We then applied the optimal parameters to re-train the 

classifier using the entire training dataset (details in Methods). Variable importance analysis 

revealed that complex, colocalization and PPI features were the top-ranking features (Fig. S2C). 

We then evaluated the XGBoost classifier's performance using testing data. Notably, the XGBoost 

classifier significantly outperformed all single features used as a baseline for comparison (Fig. 3C). 

Specifically, the classifier achieved an AUC of 0.743, surpassing the best-performing individual 

feature, average paralog gene expression in cancer cell lines, which had an AUC of 0.612. 

Considering the imbalanced nature of the training dataset, with more negative pairs than positive 

ones, we also assessed the classifier’s performance using the Precision-Recall Curve (PRC; Fig. 

3D). Similarly, XGBoost classifier showed better performance compared to all the individual 

features.  Overall, the results underscore the enhanced predictive capability of our XGBoost 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2024. ; https://doi.org/10.1101/2024.07.02.601809doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.02.601809
http://creativecommons.org/licenses/by-nc-nd/4.0/


Dong et al. Paralog ICB manuscript 

classifiers in effectively capturing interactions between features and non-linear relationships, 

thereby enhancing T cell killing potential. 

 

Furthermore, we evaluated the classifier's performance on paralog pairs in cells other than B16F10 

cells. ROC analysis revealed that the classifier trained on B16F10 cell data could not predict 

paralog pairs enhancing T cell killing in other cell types, except for CT26 colon cells (Fig. S3A-

E), indicating inherent heterogeneity among cancer cell models.  

 

Interpreting the prediction of immunotherapy favorable paralog pairs from the machine 

learning classifier  

Using the XGBoost classifier, we comprehensively analyzed the probability of enhancing T cell 

cytotoxicity for additional paralog pairs outside the training and internal testing sets. By filtering 

with criteria including measurements in structural similarity, synthetic lethality, survival 

associations, and excluding pairs from the training and testing sets, we obtained 15,414 paralog 

pairs out of the total 139,654 pairs for prediction.. Each paralog pair was calculated for its potential 

impact, assigned a probability score, and ranked accordingly. The SHapley Additive exPlanations 

(SHAP) tree explainer method assessed the contribution of each feature to the final predictions.  

 

The paralog pairs were ranked by their prediction scores, and subsequent pathway enrichment 

analysis revealed that genes in the top 5% of paralog pairs were significantly enriched in functions 

related to protein phosphorylation and ubiquitination modification (Fig. S4A). The top three 

ranked predicted paralog pairs were: Rapgef1+Papgef2, Cct8+Cct3, and Syk+Itk (Fig. 4A and  

Table S3). Notably the expression of Syk in cancer cells has shown to be associated with both 

tumor promotion and suppression16. Itk, has been reported to enhance immune checkpoint 

blockade response in solid tumors17 and Rapgef1 was identified as essential for melanocyte growth 

through a CRISPR proliferation screen18. Analysis of the Cancer Genome Atlas (TCGA) cohort 

revealed that four genes (Rapgef1, Rapgef2, Itk and Syk) had mutation rates exceeding 1% in pan-

cancer cohort. At the individual cancer type level, four genes (Cct3, Rapgef1, Rapgef2 and Syk) 

had mutation rates exceeding 5% in high mutated endometrial carcinoma, while in melanoma three 

genes (Rapgef1, Rapgef2, and Syk) had mutation rates exceeding 3%, with Itk having a rate of 7.3% 

(Fig. 4B). The SHAP profile revealed differential feature attributions among the top pairs. For 
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example, sequence identity and paralog family size showed negative contributions to the prediction 

in Rapgef1+Rapgef2 (Fig. 4C) and Itk+Syk (Fig. 4D), but positive contributions in Cct3+Cct8 

(Fig. S4B). 

 

To evaluate the synergistic effect of the paralog genes identified by XGBoost classifier, we 

conducted DKO-B16F10-OT1 T cell co-culture assays. Knocking out Rapgef1 alone did not affect 

T cell-mediated tumor cell killing, while knocking out Rapgef2 alone increased tumor cell 

resistance to T cell killing. However, a combined knockout of Rapgef1 and Rapgef2 significantly 

improved T-cell efficiency in killing tumor cells (Fig. 4E and Fig. S4C). A similar pattern was 

observed with the Syk+Itk gene pair, knocking out individual genes increased resistance to T cell-

mediated killing, but a double knockout enhanced T cell killing activity (Fig. 4F and Fig. S4D). 

In contrast, double knockout of the Cct8+Cct3 gene pair impaired T cell killing ability against 

tumor cells (Fig. S4E and S4F). 

 

To further investigate why Cct3/Cct8 might fail while the other two pairs work, we performed 

gene set enrichment analysis (GSEA) on the TCGA-SKCM data, comparing patients with low 

expression in both paired genes (<=25%) to those with high expression (>=75%). We observed 

significant downregulation of the PD-L1/PD-1 signaling pathway in melanoma patients with low 

Rapgef1+Rapgef2 (Fig. 4G) and Itk+Syk (Fig. 4H) expression. Downregulation of the PD-L1/PD-

1 signaling pathway augments T-cell killing by interrupting inhibitory signals that suppress T-cell 

activity. Conversely, patients with low Cct3+Cct8 expression (Fig. S4G) showed insignificant 

upregulation of this pathway compared to others. This finding suggests that the failure of 

Cct3+Cct8 to enhance T cell cytotoxicity may be due activation of other immunosuppressive 

pathways and the elevated expression of inhibitory molecules.  

 

Discussion 

Although numerous CRISPR screen studies aim to identify novel cancer cell targets for enhancing 

cancer immunotherapies, few have focused on functional gene pairs, thus limiting the development 

of combination strategies. To address this, we developed a computational enrichment-based 

approach, pSSEA, to identify potential paralog gene pairs using genome wide CRISPR screen 

datasets by combining sgRNAs from two paralogs. We demonstrated that pSSEA enables the 
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identification of cancer-intrinsic paralog pairs that can synergistically enhance T cell killing. 

Subsequently, we constructed an ensemble-learning XGBoost classifier to predict additional 

cancer-intrinsic-immunotherapy-aiding paralog pairs and experimentally tested the top predictions. 

Notably, all analyses in this study were based on CRISPR screen data. We observed that only a 

small subset of the screen-derived T cell-enhancing paralog pairs demonstrated a combined effect 

in predicting ICB responses when using patient-derived transcriptomic data (data not shown). This 

suggests that these two data types may capture different aspects of immunotherapy-related signals. 

 

In summary, we envision our work providing novel methods to leverage genome-wide screen 

data for selecting combination targets in cancer immunotherapy. We believe the computational 

framework in our study could be adapted to prioritize non-paralogous protein-coding gene pairs, 

broadening its applicability beyond paralogs.  

 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2024. ; https://doi.org/10.1101/2024.07.02.601809doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.02.601809
http://creativecommons.org/licenses/by-nc-nd/4.0/


Dong et al. Paralog ICB manuscript 

Acknowledgments 

We thank all members in Chen laboratory, as well as various colleagues in Yale Genetics, SBI, 

CSBC, MCGD, Immunobiology, BBS, YCC, YSCC, and CBDS for assistance and/or discussions. 

We thank various Yale Core Facilities for technical support.  

 

S.C. is supported by Cancer Research Institute Lloyd J. Old STAR Award (CRI4964), NIH/NCI 

(R33CA281702), DoD (W81XWH-21-1-0514, HT9425-23-1-0472, HT9425-23-1-0860), 

Alliance for Cancer Gene Therapy (ACGT), and Pershing Square Sohn Cancer Research Alliance. 

CD is supported by Boehringer Ingelheim Biomedical Data Science Fellowship. NV is supported 

by American Board of Radiology’s B. Leonard Holman Research Pathway Fellowship and 

ASTRO Seed Grant. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2024. ; https://doi.org/10.1101/2024.07.02.601809doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.02.601809
http://creativecommons.org/licenses/by-nc-nd/4.0/


Dong et al. Paralog ICB manuscript 

Method 

Paralog pairs information 

Information on protein-coding paralog pairs was obtained from Ensembl Compara database via 

biomaRt (hsapiens_gene_ensembl, version 102). Duplicated paralog pairs were filtered out. A total 

of 139,654 protein-coding gene paralog pairs, covering 16,202 protein-coding genes, were collected 

for the analyses in this study. 

 

Collect features for paralog pairs. 

Sequence similarity 

Amino acid sequence of paralog genes were obtained from Ensembl (Release 102)19.  Paralog 

sequence similarities were measured using BLASTP command line tools20. The longest translated 

peptide was used for genes with multiple transcripts. Gene pair sequence identity, paralog family size, 

and whether they are the closest pair in the same gene family were included as sequence-related 

features for paralog pairs. 

We also used high-resolution structures PDB files from https://alphafold.ebi.ac.uk/21.  The structural 

similarity of paralogous proteins was measured using TM-score software22. The template modeling 

score (TM-score), and root mean square deviation (RMSD) were included as additional sequence-

related features. 

 

Shared gene network, complex, and co-localization 

We collected shared protein-protein interaction (PPI) features to characterize the role of paralogs in 

the gene interaction network, including total PPIs, shared PPIs, and two statistical measures: the 

Jaccard index and Fisher exact test -log10(p-value) for shared PPIs. Gene subcellular location data 

were obtained from the Human Protein Atlas (version 22.0, file: subcellular_location.tsv). The co-

localization of paralogous genes was also measured using the Jaccard index. The complex 

membership of paralog pairs and gene-protein complex membership data were obtained from 

CORUM23 via https://maayanlab.cloud/Harmonizome/.  

 

Gene co-evolution 

Gene ages were obtained from ProteinHistorian (https://proteinhistorian.docpollard.org/)24, and we 

used the average age of the two paralogs as the age for the pair (wagner age reconstruction algorithm). 
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The conservation level of an individual gene was calculated as the number of species with orthologs 

(BLASTP e-value < 1-e-5, identity >30%) out of 269 species from Ensembl genomes (version 102). 

The shared homologs of a gene pair was calculated as the number of species having both gene 

homologs.  The ratio of the number of non-synonymous substitutions per non-synonymous site to the 

number of synonymous substitutions per synonymous site (Ka/Ks) for gene pairs was calculated 

using the codeml program in the PAML package (version 4.10.6)25,26. We adopted the phylogenetic 

distance method developed by Tabach et al. to measure the co-evolution of a pair of genes27. A non-

negative matrix factorization (NMF)-derived distance considering phylogenetic tree information was 

calculated using the phylogenetic profiles of the paralogous genes28,29. 

 

Essentiality and synthetic lethality  

Paralogs with available evidence of essentiality from S. pombe and S. cerevisiae ortholog data from 

OGEE v3 were marked as essential pairs30. We adopted Kegel’s method to identify synthetic lethality 

pairs6 using DepMap CRISPR data (https://depmap.org/portal, 23Q2 release). Paralog pairs were 

considered synthetic if the A1 gene was essential gene (Chronos score31 < -0.6 in 1% or 10% of cell 

lines), and its dependency was significantly associate with A2 loss status with p-value less than 0.05. 

 

Co-expression pattern 

Gene pair co-expression was measured using Spearman correlation coefficient ρ at multiple levels: 

cancer cell lines, normal tissues, and cancer scenarios. Cancer Cell Line Encyclopedia (CCLE) gene 

expression data were downloaded from DepMap32. Tissue-specific gene expression profiles from 

healthy donors were downloaded from Genotype-Tissue Expression (GTEx, https://gtexportal.org/) 

public releases33. Cancer-specific gene expression profiles for 33 cancer types were downloaded from 

the TCGA GDC portal (https://portal.gdc.cancer.gov/)34. 

 

Perturbation similarity 

Due to the limited number of gene perturbation experiments in Connectivity Map (L1000, 

https://clue.io/data/)35, we conducted pseudo perturbation using TCGA mRNA sequence data to 

mimic the transcriptomic gene expression changes associated with single gene manipulation. 

Practically, the differential expression profile of a specific gene inhibition was calculated as the 

log fold change in gene expression between patients with expression levels in the lowest 25th 
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percentile versus those in the highest 75th percentile of the query gene. The perturbation similarity 

of paralogous genes was measured using recovery AUC with the paralog gene differential 

expression profiles. 

 

Microenvironment associations 

The tumor microenvironment plays an important role in cancer progression and treatment outcome. 

We attempted to uncover features quantifying the association of the paralogs with multiple 

microenvironment indicators. CD8+ T cell infiltration was measured by the ssGSEA method14. We 

calculated T cell exclusion and dysfunction scores using another software, TIDE algorithm developed 

by Jiang et al36. The association with gene pairs and microenvironmental characteristics was 

calculated by Kendall's rank correlation test37. 

 

Survival associations 

To determine gene pairs with a synergistic effect on survival outcomes, we calculated the survival 

associations to assess whether a paralog pair acts in concert to influence cancer prognosis. First, 

patients were categorized into three groups based on the expression levels of the paired paralog genes: 

groups were designated as 1 for both genes showing low expression, 3 for both showing high 

expression, and 2 for any other expression combination. The survival association for paralog pairs 

was then calculated using the formula: 

Survival association = -log10(P) * sign(β_gene1*β_gene2) 

In this formula, P refers to the p-value from the Cox regression analysis of the paralog group, adjusted 

for sex and age, while β_gene1 and β_gene2 represent the exponentiated coefficients of the individual 

genes from the Cox proportional hazards model. Clinical data and genomics data for TCGA-SKCM 

were downloaded from GDC portal (https://portal.gdc.cancer.gov/)38.  

 

XGBoost ensemble classifier 

The popular supervised-learning algorithm, XGBoost – a gradient boosting ensemble learner with 

regularization parameters was used in this study (implementation in the XGBoost package)39. We 

performed a grid search based on 5-fold cross-validation of our paralog pair dataset to explore the 

space of potential hyper-parameters for the XGBoost classifier. The parameters used in the final 

model are as follows: objective = reg: logistic, n_estimators = 400, max_depth = 10, 
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min_child_weight = 1, min_split_loss = 0.1, subsample = 1,  colsample_bytree = 1,  learning_rate 

= 0.01, and random_state=8 (for reproducibility). All parameters not listed used default settings. 

 

Performance evaluation  

The ROC AUC and PRC AUC for the feature values as well as the classifiers were computed to 

evaluate the performance of individual features and trained models. 

 

Lentivirus purification 

For lentivirus production, 20 μg of lenti-U6-sgRNA-EFS-GFP-WPRE, or 20 μg of lenti-U6-sgRNA-

EFS-Puro-WPRE, 10 μg of pMD2.G, and 15 μg of psPAX2 were co-transfected into LentiX-293 

cells plated in a 150 mm-dish at 80-90% confluency using 130 μg polyethyleneimine (PEI). 6 hours 

later, the media was replaced with fresh DMEM+10%FBS. Virus supernatant was collected 48 h 

post-transfection and centrifuged at 1,500 g for 15 min to remove the cell debris. The virus 

supernatant was concentrated by Lenti-X concentrator at 4°C for 30 minutes (1 volume of Lenti-X 

concentrator with 3 volumes of supernatant), followed by centrifugation at 1,500 x g for 45 minutes 

at 4°C. Finally, the virus was resuspended in DMEM, aliquoted, and stored at -80°C.  

 

Generation of single-gene-knockout or double-gene-knockout cells 

B16F10 cells stably expressing Cas9 were generated by transducing B16F10 cells with lentiviral 

EF1a-NLS-Cas9-2A-Blast-WPRE, followed by 5 days of selection under 20 μg/ml blasticidin. 

B16F10-Cas9 cells were further transfected with lentiviral EF1a-mCherry-2A-OVA-WPRE and 

sorted for mCherry positive cells to generate B16f10-Cas9-mCherry-OVA cells. The two gRNAs 

targeting each gene within the paralog pair were transduced into the B16F10-Cas9-mCherry-Ova 

cells simultaneously.  Guide RNA virus infected cells were cultured at 37°C for more than 24 h, and 

then GFP positive cells were sorted and selected under 5 μg/ml puromycin 3 days to generate the 

double knockout cells.  

 

T7E1 assay 

T7E1 was used to estimate gRNA cutting efficiency. In brief, gDNA was extracted by using Genomic 

DNA prep with Quick Extract (QE) buffer. PCR amplification of the genomic regions flanking the 

crRNAs was performed using the primers listed in supplementary Table S2 Using Phusion Flash 
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High Fidelity Master Mix (Thermo Fisher Scientific), the thermocycling parameters for PCR were 

98 °C for 1 minutes, 35 cycles of (98 °C for 1 second, 60 °C for 5 seconds, 72 °C for 15 seconds) and 

72 °C for 2 minutes. The PCR amplicons were then used for T7E1 assays according to the 

manufacturer’s protocol. 

 

Naïve OT-I CD8a + T cell isolation and co-culture assay 

The Naive OT-I CD8a+ T Cells were isolated using the Naive CD8a+ T Cells isolation Kit (Miltenyi 

Biotec) following the manufacturer’s instructions. Naive CD8a+ T cells were isolated from the spleen 

of OT-I mice and stimulated with anti-mouse CD3/CD28 antibody for 2 days. For the tumor cell and 

OT-I T cell co-culture assay, B16F10-Cas9-mCherry-Ova gene knockout cells were co-cultured with 

OT1 cells at E:T=1:1 ratios. Tumor cell killing were tested at 24h hours by flow cytometry. The 

LIVE/DEAD Near-IR was diluted at 1:1000 to identify the dead cells. Tumor cells were identified as 

mCherry positive cells. 

 

Data availability 

The interactively web application of this study is deployed at 

https://sidichenlab.shinyapps.io/imparalog for free visiting and querying. All the processed input 

data, analysis output data can be downloaded from the website.  

 

Code availability 

The source code for processed data and modeling is available under GitHub at 

https://github.com/cpdong/imParalog. 
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Table Legend 

Table S1. Identification of T cell enhancing paralog pairs using the pSSEA method in six cancer 

cell CRISPR screen data. 

Table S2. Experimental data of paralog pairs selected for validation in this study, including 

guide sequence, FACS data and statistical analysis of results. 

Table S3. Construction of XGBoost classifier for predicting T cell enhancing paralog pairs. 
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Figure Legends 

 

Figure 1. Identification of paralog pairs that enhance T cell killing using pSSEA.  

(A) Protein-coding paralogous genes retrieved from Ensembl Compara database using bioMart  

(B) Workflow for identifying paralog pair hits using the paralog sgRNA Set Enrichment Analysis 

(pSSEA).  

(C)  Identification of paralog pairs that enhance T cell killing in six cancer models using pSSEA. 

CRISPR screen data was from Lawson et al. 2017. The volcano plot of pSSEA outputs, with the 

x-axis representing the enrichment score and the y-axis showing the negative logarithm (base 10) 

of the p-value from pSSEA, is shown.  

(D) Scatter plot illustrating the characteristics of identified T cell enhancing paralog pairs using a 

single gene enrichment model. The x-axis and y-axis represent the negative logarithm (base 10) of 

the p-values from the enrichment results of gene1 and gene2, respectively. 

 

Figure 2. Synergistic paralog pairs that together boost T cell killing function in B16F10 

tumor model 

(A) The T cell synergistic paralog pairs identified in the B16F10 melanoma model and the 

intersection across the other 5 tumor models. T cell enhanced paralog pairs were identified using 

pSSEA, and synergistic pairs were denoted as pairs where neither of the two genes could reach 

significance using a single gene enrich approach. Four paralog pairs were identified in 4 out of 6 

tumor models. Left panel: upset plot of overlap synergistic paralog pairs identified from B16F10 

melanoma model that were also significant in the other 5 cancer cell models in Lawson study.  

(B) Experimental design for the validation of selected paralog pairs predicted to enhance T cell 

killing. Naive CD8a+ T cells were isolated from the spleen of OT-I mice and stimulated with anti-

mouse CD3/CD28 antibody for 2 days. Then B16F10-Cas9-mCherry-Ova gene knockout cells 

were co-cultured with OT-I T cells at a E:T=1:1 ratio. Tumor cell killing were tested at 24 hours 

by flow cytometry.  

(C) Bar chart of mean viability of B16F10 cells with Adam10 and Adam15 single or double gene 

knockout/s following culture with or without OT-1 T cells. Individual data points are shown as 

black dots. The p values come from two-sided heteroscedastic t tests (ns,  p>0.05;  *, P ≤ 0.05; **, 

P ≤ 0.01. ***, P ≤ 0.001). 
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(D)  Bar chart of mean viability of Ppp2r2a and Ppp2r2d knockout/s B16F10 cells following 

culture with or without OT-1 T cells.  

(E)  Bar chart of mean viability of Elf2 and Etv6 knockout/s B16F10 cells following culture with 

or without OT-1 T cells   

(F)  Bar chart of mean viability of Rbm45 and Rbms2 knockout/s B16F10 cells following culture 

with or without OT-1 T cells .  

 

Figure 3. Development and evaluation of XGBoost classifier for predicting T cell enhancing 

synergistic paralog pairs.  

(A) Schematic for constructing a machine learning classifier to predict T cell enhancing paralog 

pairs. 

(B) AUROC and AUPRC measures of 32 paralog features for predicting paralog pairs that boost 

T-cell killing.  

(C) ROC curves of XGBoost and top individual features in the internal test dataset. The XGBoost 

classifier outperformed the traditional individual features. 

(D) Precision recall curves of the XGBoost classifier and individual features. 

 

Figure 4. Visualization and validation of top 3 predicted paralogs from XGBoost classifier 

(A) Paralog pairs with the top 3 prediction scores are displayed in a scatter plot.  

(B) Mutation profile of top 3 paralog pairs RAPGEF1/RAPGEF2, SYK/ITK and CCT8/CCT3 in 

the Cancer Genome Atlas (TCGA) cohorts. 

(C, D) SHAP profile for RAPGEF1/RAPGEF2 (C) and SYK/ITK (D).   

(E, F) Bar chart of mean viability of Rapgef1/ Rapgef2 (E) and Itk/Syk (F) knock-out treated 

B16F10 melanoma cells following culture with or without OT-1 T cells. The p values come from 

two-sided heteroscedastic t tests.  

(G, H) Gene sets enrichment analysis (GSEA) revealed that patients with low expression of 

RAPGEF1/RAPGEF2 (G) and SYK/ITK (H) were associated with downregulation of PD-L1/PD-1 

signaling pathway. The GSEA was performed using the differential expression output between 

patients with low (<25%) expression of both paralog genes versus all remaining patients. 
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Supplemental Figure Legends 

Figure S1. Validation of synergistic paralog pairs identified using pSSEA.  

(A)  Selection of T cell enhancing paralog pairs using MAGeCK hits. Left panel: identification of 

cancer-intrinsic genes that enhance T cell killing using CRISPR screen data; Middle panel: 

Selection of dual-hit paralog pairs where both genes are identified as T cell enhancing hits; Right 

panel: Selection of single-hit paralog pairs where either gene is identified as a T cell enhancing hit. 

(B)  Heatmap of B16F10 melanoma cell CRISPR-seq sgRNA profile from GSE149933 for 

selected paralog pairs.  

(C-F) Distribution of sgRNA ranked by log2FC for visualizing selected paralog pairs 

Adam15/Adam10 (C), Ppp2r2d/Ppp2r2a(D), Elf2/Etv6 (E) and Rbm45/Rbms2 (F) in CRISPR-seq 

of six cell lines. The log2 fold change was measured by DESeq2 between with and without OT1 

T cells co-cultured groups. (G-J) T7E1 assays were used to test the cutting efficiency of dual gene 

knockouts for Adam15/Adam10 (G), Ppp2r2d/Ppp2r2a(H), Elf2/Etv6 (I) and Rbm45/Rbms2 (J).  

 

Figure S2. Data and feature characteristics for developing XGBoost classifier for predicting 

paralog pairs that synergistic enhance T cell function. 

(A) Heatmap of the training and the internal testing sets including all 3204 paralog pairs.  

(B) Correlation plot of 32 features used in the XGBoost classifier. The color represents the 

correlation between two features in 3204 paralog pairs.  

(C) Characterization of XGBoost classifier feature importance using the training set. 

 

Figure S3. Evaluation of classifier performance on additional cancer cell lines 

ROC curves showing the performance of our classifier in distinguishing paralog pairs out of 

B16F10 melanoma data in CT26 (A), MC38 (B), 4T1 (C), EMT6 (D), and Renca (E) cancer cell 

lines. Area under curve (AUC) was used for measuring the average precision of prediction.  

 

Figure S4. Test performance of top 3 predicted paralogs from XGBoost classifier 

(A) Biological process pathways enriched in the top 5% of paralog pair genes based on prediction 

scores using clusterProfiler. 

(B) SHAP profile for CCT3/CCT8.  
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(C, D) T7E1 assays were used to test the cutting efficiency of dual gene knockouts for 

Rapgef1/Rapgef2 (C), and Syk/Itk (D). 

(E) Bar chart of mean viability of Cct3/Cct8 knock-out treated B16F10 melanoma cells following 

culture with or without OT-1 T cells. The p values are from two-sided heteroscedastic t tests.  

(F) T7E1 assays were used to test the cutting efficiency of dual gene knockouts for Cct3/Cct8. 

(G) GSEA analysis between patients with low expression of CCT3/CCT8 against PD-L1/PD-1 

signaling pathway. The GSEA was performed using the differential expression output between 

patients low (<25%) in both CCT3/CCT8 versus all remaining patients.  
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Figure S3
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