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Abstract5

Gene regulatory networks (GRNs) govern many core developmental and biological processes6

underlying human complex traits. Even with broad-scale efforts to characterize the effects of7

molecular perturbations and interpret gene coexpression, it remains challenging to infer the8

architecture of gene regulation in a precise and efficient manner. Key properties of GRNs, like9

hierarchical structure, modular organization, and sparsity, provide both challenges and op-10

portunities for this objective. Here, we seek to better understand properties of GRNs using11

a new approach to simulate their structure and model their function. We produce realistic12

network structures with a novel generating algorithm based on insights from small-world net-13

work theory, and we model gene expression regulation using stochastic differential equations14

formulated to accommodate modeling molecular perturbations. With these tools, we system-15

atically describe the effects of gene knockouts within and across GRNs, finding a subset of16

networks that recapitulate features of a recent genome-scale perturbation study. With deeper17

analysis of these exemplar networks, we consider future avenues to map the architecture of18

gene expression regulation using data from cells in perturbed and unperturbed states, finding19

that while perturbation data are critical to discover specific regulatory interactions, data from20

unperturbed cells may be sufficient to reveal regulatory programs.21
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1 Introduction22

In the past decade, single cell sequencing assays have been instrumental in enabling functional23

studies of gene regulatory networks (GRNs). Observational studies of single cells have revealed24

substantial diversity and heterogeneity in the cell types that comprise healthy and diseased tis-25

sues [1], and molecular models of transcriptional systems have been used to understand the de-26

velopmental processes involved in maintaining cell state and cell cycle [2, 3]. Meanwhile, recent27

advances in the design of interventional studies, including CRISPR-based molecular perturbation28

approaches like Perturb-seq [4,5], have been useful for learning the local structure of GRNs around29

a focal gene or pathway [6, 7], discovering trait-relevant gene sets at scale [8], and determining30

novel functions for poorly characterized genes in a particular cell type [9]. The preponderance of31

single-cell data in multiple cell types, tissues, and contexts has also fueled a resurgence of interest32

in the wholesale inference of GRNs, capitalizing on new techniques from graph theory and causal33

inference [10, 11].34

In functional genomics, network inference and candidate gene prioritization are typical aims of35

experimental data analysis. In this setting, it is common to make assumptions about the structure36

and function of GRNs to enable convenient computation. In particular, linear models of gene37

expression on directed acyclic graphs (DAGs) have been foundational for studies of GRNs, and38

this approach to structure learning is well-described in the literature [12, 13]. Many extensions39

based on this framework have been proposed, including additional sparsity constraints in the40

form of regression penalties or low-rank assumptions [14, 15]. Analogous techniques have also41

been used in the algorithmic design of perturbation experiments [16].42

Even though convenience assumptions like linearity and acyclicity are rarely seen as limiting43

in practice, it is important to note that they are not always biologically realistic. Gene regula-44

tion is known to contain extensive feedback mechanisms [6], and some regulatory structures (in45

particular, triangles, like the feed-forward motif [17, 18]) are not captured well by low-rank rep-46

resentations of GRNs [19]. Furthermore, biological networks are thought to be well described47

by directed graphs with hierarchical organization and with a degree-distribution that follows an48

approximate power-law [20–22]. In network inference, it is less common to make explicit use of49

these properties, though there are notable exceptions [7, 23].50

With these practical considerations in mind, it is worth critically examining assumptions which51

are (or could be) made about the structure of GRNs. In network theory, there are well-established52

models of networks with group structure [24,25] and with scale-free topologies [26–28]. The defin-53

ing feature of directed scale-free graphs is a power-law distribution of node in- and out-degrees:54

this yields emergent properties including group-like structure and enrichment for structural mo-55

tifs [18]. Further, most nodes in these graphs are connected to one another by short paths, which56

is referred to as the “small-world” property of networks [29, 30].57

Here, we characterize in detail a set of structural properties that we consider to be highly58

relevant for the study of GRNs. We propose a new algorithm to generate synthetic networks59

with these properties and formulate a gene expression model to simulate data from them. We60

use this simulation framework to conduct an array of in silico functional genomic studies and61

characterize the parameter space of our model in light of a recent genome-wide Perturb-seq study62

[9]. Our results provide intuition about the effects of various graph properties and how they63

manifest in experimental data. We conclude by discussing implications for future efforts to map64
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the architecture of gene regulation and complex traits, with particular emphasis on identifying65

pairwise regulatory relationships between genes and clustering genes into programs. Our analysis66

tools are available on github as a resource to the scientific community.67

2 Main68

2.1 Modeling approach69

Inspired by previous work from network theory and systems biology, we list what we consider70

to be key properties of GRNs. We motivate these criteria in light of a recent genome-scale study71

of genetic perturbations, conducted in an erythroid progenitor cell line (K562) (Fig. 1) [9]. To72

date, this is one of the largest available single-cell and single-gene perturbation datasets in any73

cell type: the data contain measurements on the expression of 5,530 gene transcripts in 1,989,57874

cells, which were subject to 11,258 CRISPR-based perturbations of 9,866 unique genes. Here, we75

subset these data to 5,247 perturbations that target genes whose expression is also measured in76

the data (Methods). Key network properties are as follow:77

1. GRNs are sparse: While gene expression is controlled by many variables, the typical gene is78

directly affected by a small number of regulators. We further expect the number of regulators79

of any single gene to be much smaller than the total number of regulators in the network.80

Also, not all genes participate in expression regulation: only 41% of perturbations that target81

a primary transcript have significant effects on the expression of any other gene (Fig. 1A).82

2. GRNs have directed edges and feedback loops: Regulatory relationships between genes83

are directed, with one gene acting as a regulator and the other as a target gene: this means84

that “A regulates B” is distinct from “B regulates A”. Meanwhile, feedback loops are also85

thought to be pervasive in gene regulatory networks. A simple case of a feedback loop is86

bidirectional regulation, which is observed in data: 3.1% of ordered gene pairs have at least87

a one-directional perturbation effect (i.e., “A affects B”, Anderson-Darling FDR-corrected88

p < 0.05), and 2.4% of these pairs further have bi-directional effects (i.e., “B also affects A”)89

(Fig. 1B).90

3. GRNs have asymmetric distributions of in- and out-degree: A further asymmetry between91

regulators and target genes arises from the existence of master regulators, which directly par-92

ticipate in the regulation of many other genes. The number of regulators per gene and genes93

per regulator are both thought to follow an approximate power-law distribution [20, 21],94

and indeed, the number of perturbation effects per regulator has a heavier-tailed distribu-95

tion than the number of effects per target gene (Fig. 1C).96

4. GRNs are modular: Genes in regulatory networks have different molecular functions that97

are executed in concert across various cell and tissue types. This grouping of genes by func-98

tion also corresponds to a hierarchical organization of regulatory relationships that is re-99

vealed when these programs respond similarly to certain sets of perturbations (Fig. 1D).100

While these criteria are not exhaustive, they do substantially constrain the space of plausible101

GRN structures. But from first principles, it is not obvious how these properties of GRNs manifest102
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Figure 1: Key properties of gene regulatory networks. Data from Replogle et. al., 2022. (A) Of the
5,247 perturbations in our analysis subset, 2,152 (41%) have a measurable effect on the transcriptional state
of cells (energy-test p < 0.001). (B) Among all ordered pairs of genes, 3.1% (865,719 pairs) have a one-
directional effect (FDR-corrected p < 0.05). Of these pairs with KO effects, 2.4% (20,621 pairs) further have
bidirectional effects. (C) Summaries of the distribution of KO effects (Anderson-Darling p < 0.05) from
the perspective of genes as subject to perturbation (outgoing effects) and as target genes when other genes
are perturbed (incoming effects). (D) Subset of z-normalized expression data corresponding to 10 gene
modules, using labels as provided in the dataset – each modules is labeled by a color in the to bars above
the x- and y-axes, and z-scores are clipped at ±1, for visualization.

in an ever-growing body of experimental data. In other words, what does it matter that networks103

are sparse, or modular?104

2.2 Network generating algorithm105

To better understand these foundational questions about the architecture of gene expression reg-106

ulation, we propose a two-step process to simulate synthetic GRNs. First, we produce realistic107

graph structures using a novel generating algorithm: we show that its parameters control key108

properties of the resulting graphs. Second, we describe a dynamical systems model of gene ex-109

pression, which we use to generate synthetic data from arbitrary graph structures. With these110

tools, we conduct an array of simulated molecular perturbation studies, varying network proper-111

ties of interest: an overview of our network generating algorithm is in Fig. 2A.112

Our algorithm is based on that of Bollobas et. al., 2003 [28], which models network growth113
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Figure 2: Modeling approach and network generating algorithm. (A) Overview of network generating
algorithm, based on a growth process with preferential attachment. At each step, randomly add either a
node or an edge, with the source and target determined by the out- and in-degree distributions, and node
membership in groups. (B) Key graph properties can be tuned by changing the parameters of the gener-
ating algorithm. We validate this in 1,000 synthetic graphs with 500 nodes each, produced with various
generating parameters. The same networks are plotted in all four panels, indicating robustness across dif-
ferent background distributions of parameters.

with preferential attachment. This algorithm starts with a small initial graph, and randomly adds114

nodes or directed edges until the graph reaches a pre-specified size. When adding a node, the new115

node is selected to be the target of a new directed edge. When adding an edge between existing116

nodes, a node is selected to be the target with a probability that increases with the number of117

outgoing edges it already has. When selecting a node to be the source of a new edge (i.e., to be118

the regulator for a new gene, if we are adding a node, or for an existing gene, if we are adding an119

edge), we select with probability increasing in the number of incoming edges it already has. Our120

work extends this algorithm in two ways: first, by assigning each node in the network to one of121

a number of pre-specified groups, and second, by specifying a within-group affinity term which122

biases edges to be drawn between members of the same group. The full procedure, including123

pseudocode and a description of its parameters, is given by Algorithm 1.124

The output of our algorithm is a directed scale-free network on n nodes, each of which is125

assigned to one of k groups. The parameters in our algorithm control specific network properties.126

To show this, we generated 1,000 synthetic graphs with n = 500 genes using an array of randomly127

sampled parameters (Fig. 2B). We observe that the sparsity term p adjusts the mean number128

of regulators per gene, which is approximately 1/p (Fig. 2B). The number of groups k and the129
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Algorithm 1 Directed scale-free network with groups

Require:
• n: Number of genes (nodes) in the network (n ≥ 3).
• k: Number of groups in the network (1 ≤ k ≤ n).
• p: Sparsity term (0 < p ≤ 1).
• δin: In-degree biasing term (δin ≥ 0).
• δout: Out-degree biasing term (δout ≥ 0).
• w: Group biasing term (w ≥ 1).

▷ Initialize the graph G to be a three-node cycle. Assign each node to its own group. ◁

G ← {(1→ 2), (2→ 3), (3→ 1)}
gp(i)← i, i ∈ {1, 2, 3} ▷ If k = 2 then assign node 3 to group 1.

▷ Grow the graph G according to the below steps, until it has n genes. ◁

while |G| < n do
▷ Pick a gene (node) i to be the target of a new regulatory relationship (edge). With probability p,

add a new gene to G, otherwise pick an existing gene proportional to the in-degree distribution. ◁

if runif(0,1) < p then
i← |G|+ 1
gp(i)← g ∈ {1, . . . , k} uniformly at random.

else
i← i ∈ {1, . . . , |G|} with probability pi ∝ in-degree(i) + δin

▷ Then pick a gene (node) j to regulate i, proportional to the out-degree distribution, weighted by
whether i is in the same group as j. ◁

j← j ∈ {1, . . . , |G|}with probability pj ∝ (out-degree(j)+ δout)× (w if gp(i) = gp(j) else 1)
▷ Add the edge (j → i) to the graph. Note that j and i may be the same node, in which case we

add the edge (j→ j); j and i may also already share the edge (j→ i), in which case we add a
duplicate edge. ◁

G ← (j→ i)

modularity term w determine the fraction of edges which are drawn between members of the k130

groups – this fraction is approximately w/(w + k− 1) (Fig. 2B). Finally, the bias terms δin and δout131

respectively control the coefficient of variation (CV) of the in- and out-degree distributions (Fig.132

2B). CV is the standard deviation of a distribution over its mean, and for power-law distributions133

the CV is related to the power-law coefficient: a larger CV means the distribution has a heavier tail134

(i.e. there are hub regulators which have many target genes; or there are hub target genes which135

are directly affected by many regulators).136

2.3 Expression model137

In order to enable reasonable comparisons with experimental data, we use an expression model138

with quantitative (rather than binary) measurements, and with dynamics subject to a non-linearity139

that enforces realistic physical constraints: gene expression is non-negative and saturates near a140
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maximum value. Given a graph structure generated using the algorithm above, we assign pa-141

rameters to each gene (node) and regulatory interaction (edge) in the graph. Each gene i has two142

rate parameters: one for innate RNA production in the absence of regulators (αi), and another for143

the decay of existing cellular RNAs (ℓi). Each regulatory relationship, between genes j and i, has144

one parameter: a magnitude (β ji) which describes the importance of the regulator for the expres-145

sion of the target gene. We also enforce a constraint that interactions have a minimum strength146

(|β ji| ≥ 1). A full description of the strategy we use to sample these parameters for synthetic147

GRNs is in Methods.148

Our expression model takes the form of a stochastic differential equation (SDE), and we pro-149

duce expression values using forward simulation according to the Euler-Maruyama method (Fig.150

3A). For gene i with regulators j having expression xi (likewise xj) at time t, the difference equation151

for expression x′i at time t + ∆t is given by152

x′i − xi

∆t
= σ(αi + ∑

j
xjβ ji)− ℓixi +N (0, s2 xi

∆t
),

where the terms on the right hand side of the equation, in order, correspond to transcriptional153

synthesis, degradation, and noise. Unless stated otherwise, we set s = 10−4 as the magnitude of154

noise, which serves to scale the intrinsic biological noise in synthesis and degradation of RNAs155

(hence noise is also proportional to xi). We let ∆t = 0.01 be the step size, as in previous work [31],156

and take σ(x) as the logistic sigmoid (expit) function σ(x) = 1/(1 + e−x). In practice, we conduct157

forward simulation in vectorized form with an update rule:158

x′ = x + ∆t · (σ(α + β⊤x)− ℓx) +N (0, ∆t · s2diag(x)).

Throughout our experiments, we perform on the order of thousands of iterations and then check159

that the system of differential equations has reached an expression steady-state (Methods).160

Our model can be used to quantify the effects of many types of perturbations. These include161

(1) gene knockouts (KOs), which we model by nullifying xj = 0 (or equivalently, setting β ji = 0 for162

all i); (2) gene knockdown or overexpression, which can be modeled by decreasing or increasing163

αj, increasing or decreasing ℓj, or directly manipulating xj to a fixed value; (3) enhancer edits or164

transcriptional rewiring, modeled by changing specific β ji; and (4) changes to expression noise,165

modeled by altering s, either globally or for specific genes. We further note that similarly for-166

mulated perturbations with small magnitudes could also make appropriate models of the effects167

of molecular quantitative trait loci (QTLs). Here, we focus solely on gene knockouts, which we168

consider for the remainder of this work.169

2.4 Perturbation studies170

We conducted synthetic perturbation studies in 1,920 GRNs with n = 2,000 genes – these GRNs171

were produced with a range of network generating parameters (Methods). For each GRN, we172

initialized gene expression values at zero and conducted a minimum 5,000 iterations of forward173

simulation, later verifying that the dynamical system reached equilibrium and assessing its stabil-174

ity (Fig. 3A,B, Methods). We then independently knocked out each gene in the network and let175

the system re-equilibrate after additional rounds of forward simulation (Fig. 3B). We computed176
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the effect of perturbing gene j as the log-fold change in expression xi of all other genes i, which177

we refer to as the “perturbation effect” of gene j on gene i. Mathematically, this is178

log2 FCji = log2(xi|do(xj = 0))− log2(xi)

where xi|do(xj = 0) denotes the expression of gene i when gene j has been knocked out. While the179

majority of perturbation effects are small in all GRNs, with 86.6% of all effects below | log2 FC| =180

0.01, each network harbors a median 5,296 large effects on the order | log2 FC| = 1 (Fig. 3C). We181

also note substantial variability in the distribution of perturbation effects across networks (Fig.182

3C).183

Figure 3: Perturbations and their effects within networks. (A) Overview of gene expression model and
its parameters. Here, σ is the logistic sigmoid σ(x) = 1/(1 + e−x). (B) Example forward simulation of the
dynamical systems model. Trace lines show genes, whose expression values are initialized at zero. The sys-
tem eventually reaches a steady-state, and is then subject to perturbation (knockout of gene j, i.e. holding
xj = 0). Further forward simulation leads to a new steady-state, from which we can compute perturbation
effects (log2 FC for other genes i). (C) Distribution of knockout (KO) effects (i.e., log2 fold-changes in ex-
pression xi of a focal gene i) in 50 example GRNs, along with the median distribution (black line). (D) KO
effects as a function of network distance between two genes, and (E) within and across modules given by
the generating algorithm. Note that the solid lines in (D) and (E) are the median distributions over the 50
example GRNs, split respectively by distances and modules.

These effects are largely stratified by the distance between regulator and target (Fig. 3D), with184
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distance here being the length of the shortest path between genes along edges in the network.185

Across GRNs, a majority of direct regulators of a gene confer at least a modest effect on average186

(77.3% of genes at distance 1 have | log2 FC| > 0.01 when knocked out). Meanwhile, indirect187

effects of this magnitude also exist, but are less common on a per-interaction basis (mean 21.5%188

of gene pairs not connected by an edge). However, since mediation is much more common than189

direct regulation, mediated effects contribute a substantial fraction of perturbation effects at all190

but the largest magnitudes – for example, 98.5% of effects at | log2 FC| > 0.01 across GRNs are191

mediated rather than direct (Fig. S1).192

Since genes in the simulated GRNs belong to pre-defined groups, we further investigated the193

extent to which perturbation effects cluster within rather than across groups. On average, there is194

an enrichment of effects within groups – but as with the overall distribution, there is heterogeneity195

in the distributions of within- and across-group perturbation effects (Fig. 3E). This heterogeneity196

is driven largely by the modularity term: as w increases, the distributions of within- and across-197

group effects become further separated, even across networks with different numbers of groups198

(Fig. S2). This effect is based on changes in network architecture: since the strongest perturbation199

effects are from direct regulators, an increased affinity for within-group regulation (i.e., larger w)200

means that these effects should also come from members of the same group.201

2.5 Impact of network properties202

Next, we turned our attention to the relationship between properties of networks (as determined203

by network generating parameters) and their distributions of perturbation effects. As a summary204

of this distribution, we compared the number of genes which are hub KOs and hub target genes205

in each of the 1,920 synthetic GRNs. We say a gene is a hub KO if it introduced a change of206

| log2 FC| > 0.1 in at least 100 other genes when knocked out; analogously, we say a gene is a hub207

target gene if its expression was changed by | log2 FC| > 0.1 upon knockout of at least 100 other208

genes. Genes whose equilibrium expression was below the magnitude of noise were removed209

from these counts, as their expression could vary widely across conditions solely due to noise. We210

find that these statistics behave consistently with respect to the network generating parameters211

across GRNs (Fig. 4), and that the directions of effect are also similar to the overall number of212

perturbation effects at this threshold in the network (Fig. S3).213

Graph sparsity has the greatest influence on the number of hub KOs and hub target genes in214

the GRNs (Fig. 4A). More regulators per gene (large 1/p) tends to translate to more perturbation215

effects overall, increasing the number of both hub knockouts and target genes. Notably, the effects216

on regulators and targets are not identical. In denser networks, the median number of hub KOs217

tends to be larger than the number of hub target genes. However, in a subset of dense networks,218

most genes in the network are identified as hub target genes. This is related to the absence of219

stable equilibrium dynamics in the low-noise limit of the gene expression model (Fig. S4), which220

suggests that as GRNs become more dense and genes are subject to regulation by larger fractions221

of the network, the system is less likely to be stable. Although this term has a large effect on222

perturbation effects, we find no obvious interaction between it and other terms in the generating223

algorithm (Fig. S5).224

GRNs with fewer groups (small k) and higher modularity (large w) tend to have fewer hub225

KOs and hub target genes (Figs. 4B, 4C). The modularity term monotonically increases resilience226
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Figure 4: Network properties influence the distribution of perturbation effects. Counts of genes that
are hub knockouts (left) and hub target genes (right) in each synthetic GRN, as a function of network
generating parameters. Each panel shows all 1,920 GRNs as individual points, stratified by parameter
values. Each distribution is annotated with its mean over GRNs (diamond points).

to perturbation; the group term monotonically decreases it, with the exception of k = 1. From227

the perspective of the network generating algorithm, k = 1 and w = 1 are identical; they are228

equivalent to the algorithm from Bollobas et. al., 2003 [28] and correspond to the dissolution of229

modular structure with respect to the specified grouping. This is also equivalent to k = 2000, in230

which each gene in the network has its own group – this intuition is supported by the remaining231
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trend in (Fig. 4B). Meanwhile, in modular networks (large w), most edges are between members of232

the same group. This might serve to confine the downstream effects of perturbations to members233

of the same group, effectively dampening the transcriptional impact of altering the function of234

master regulators.235

When the out-degree distribution of GRNs has a heavier tail (small δout), there tend to be many236

fewer hub knockout genes (Fig. 4D). This relationship is non-linear, and in the most extreme case237

(δout = 1) there are only 89 hub KOs on average (median 1 hub KO) in the GRN. This effect is238

a consequence of preferential attachment; as more edges are drawn from master regulators, out-239

going regulatory effects also concentrate there as well. Counterintuitively, this parameter exerts240

influence over the number of hub target genes in the network as well, and in the same direction.241

When effects are concentrated among a few key regulators, it may simply be less feasible for any242

gene to be affected by many knockouts since there are fewer genes that have many knockout ef-243

fects at all. As with the sparsity term, we do not see obvious interactions between this term and244

others in the generating algorithm (Fig. S6). Meanwhile, when the in-degree distribution of GRNs245

has a less heavy tail (large δin), there are modestly more hub target genes and hub KOs (Fig. 4E).246

The source of this trend is difficult to intuit, but the effect is very weak.247

Looking across parameters, these results reflect a wide range of variation in the susceptibility248

of GRNs to perturbations as a function of their structural properties. While there is substantial249

overlap in the distributions of hub KO and target genes across network generating parameters,250

we find that all parameters except the in-degree term have statistically significant effects on both251

quantities (p < 0.001 for all tests, Fig. S7 – full results in Tables S1, S2). We estimate these effects252

with a multiple regression on the logit-transformed fraction of genes in each GRN which are hub253

KOs or hub target genes (Methods). In total, the network generating parameters explain just un-254

der half the variance in the fraction of the GRN which is either a hub KO (model r2 = 0.59) or hub255

target gene (model r2 = 0.46). Moreover, there is also a noteworthy thematic consistency across256

parameters. In all cases, the direction of protective effect from perturbation is also the direction257

of biological plausibility with respect to our modeling desiderata, where intuition dictates that258

GRNs should be sparse, modular, and have a heavy-tailed out- but not in-degree distribution.259

2.6 Comparing with experimental data260

With this intuition about network properties in hand, we now return to real experimental data.261

Given that synthetic GRNs with quantifiably different structures produce qualitatively different262

distributions of knockout effects, we next sought to ask whether any of them were also similar to263

real data. For this, we made use of the subset of perturbations that correspond one-to-one with264

gene expression readout in a recent Perturb-seq study [9].265

We compared the real and synthetic data using their cumulative distributions of perturbation266

effects, computed both from the perspective of genes as regulators and as targets of regulation267

(Fig. 5A-B). Since these data have different numbers of genes that are not lowly expressed, we268

normalized the number of incoming and outgoing effects to the size of the network (Methods). In269

the Perturb-seq data, we find noticeable qualitative differences between the distribution of incom-270

ing and outgoing effects – these differences are consistent with the notion that GRNs should have271

master regulators, but not master target genes. In the synthetic data, we find substantial diversity272

in both distributions across GRNs, including many patterns that seem wholly incompatible with273
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Figure 5: Comparing with genome-wide Perturb-seq. Fraction of GRN that (A) affects each gene when
perturbed (outgoing effects) or (B) is affected by other perturbations (incoming effects). In synthetic data,
perturbation effects are thresholded at the top 3% of absolute log-fold change values, matching the pro-
portion of pairwise tests from the Perturb-seq data with FDR-corrected Anderson-Darling p < 0.05. High-
lighted in color are the four GRNs that best match the Perturb-seq data. (C-G) Distribution of network gen-
erating parameters for the 100 GRNs that are best matched to Perturb-seq data (by Kolmogorov-Smirnov
p-value rank for both distributions in A and B).

those observed in experiments. Meanwhile, some GRNs seem well-matched to the Perturb-seq274

results: the distributions closest to the data are highlighted in color in Fig. 5A-B, and correspond275

to those having the smallest Kolmogorov-Smirnov test statistics when compared with the data276

distributions (Methods).277

Although the focus of our work is not network inference, we do observe a coherent set of278

properties among the well-matched networks (Fig. 5C-G). Specifically, they share a relatively279

small number of regulators per gene (two, rather than 16); they have a small number of groups280

(five to ten rather than one or 100); they are highly modular (large w); and they have a heavy281

tail in the distribution of out-degree but not in-degree (δout near three but δin on the order of282

100). Consistent with previous results, we find these parameter sets to be within a range that283

matches our motivating intuition about the structural properties of GRNs, and we do not find284

these properties to have obvious pairwise interactions that affect concordance to data (Fig. S8).285

2.7 Challenges and opportunities for inference286

Finally, we highlight the utility of our simulation approach by considering the value of different287

data sources for inference tasks. For this, we conducted further analysis using an example syn-288

thetic GRN whose patterns of knockout effects were well-matched with Perturb-seq data. Specif-289

ically, we focused on the recovery of edges, edge weights, and group structure using interven-290

tional data (e.g., perturbation effects) and observational data (e.g., coexpression). We made use291
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of perturbation effects as previously described, and further computed pairwise gene coexpression292

values using additional rounds of forward simulation from the expression model at steady state293

to approximate the naturally occurring variation across cells (Methods).294

2.7.1 Discovering pairwise relationships295

Several computational and experimental approaches have been used to estimate pairwise causal296

relationships between genes, with the ultimate goal of wholesale inference of gene regulatory net-297

works [10, 11]. These data and methods are broad in scope, and range from estimating networks298

using natural variation in gene expression values from bulk tissue [12, 23] to fitting complex ma-299

chine learning models on data from single-cell perturbation experiments [7, 15, 32]. Here, we300

consider two descriptive pairwise summary statistics at the gene level – gene coexpression across301

cells and perturbation effects across gene knockouts – and their connections to edges in a simu-302

lated GRN.303

In the synthetic data, we find that the distributions of pairwise gene coexpression values and304

knockout effects both span multiple orders of magnitude (Fig. 6). However, where the distribution305

of knockout effects differs dramatically between gene pairs that share an edge and those that do306

not, the distributions of coexpression values have substantial overlap (Fig. 6A,B). This difference307

in distribution reflects what each statistic tends to measure. Gene perturbation effects tend to308

flow through the network along edges, and are therefore highly related to the network distance309

between genes (Fig. 3D). As a special case, this includes whether or not two genes share a direct310

regulatory relationship in the form of an edge. Meanwhile, strong coexpression is more often due311

to co-regulation than to there being a direct causal relationship between genes (Fig. S9).312

For gene pairs where there is direct regulation we see that both knockout effects (Fig. 6C) and313

coexpression (Fig. 6D) have weak correlation with the strength of known regulatory relationships.314

This reflects that both statistics are imperfect measures of regulatory importance: they are both315

affected by differences in regulatory architecture across genes (e.g., number of regulators or the316

intensity of transcriptional buffering). We further see this when directly comparing coexpression317

and knockout effects between pairs of genes. Across all pairs of genes, these two statistics are318

uncorrelated – but the two are highly correlated among pairs of genes that share an edge (Fig.319

6E). In this way, both perturbation effects and coexpression contain similar information about320

edges in the GRN – but coexpression also measures non-causal relationships between genes, like321

coregulation, and is therefore systematically uncorrelated with perturbation effects even in real322

data (Fig. S10).323

Together, these results underscore the importance of interventional data for inferring network324

edges. They also highlight limitations in the use of coexpression networks. But neither form of325

data are a panacea, and care is warranted in the analysis of experimental data and in the develop-326

ment of structure learning algorithms. For example, sorting and thresholding perturbation effects327

has been shown to be a high-quality baseline for network reconstruction [10, 11] (one that we also328

use to compare networks in Fig. 5). However, false negative effects can arise when regulatory329

effects are weak due to transcriptional buffering, and false positive edges can be drawn where330

effects are amplified by mediation. This suggests that structure learning algorithms could benefit331

from modeling the transcriptional state of individual genes (i.e., level of buffering at baseline) and332

from approaches to explicitly resolve direct versus mediated effects.333
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Figure 6: Perturbations more reliably measure fine-scale network structure than coexpression. (A) Dis-
tribution of perturbation effects between pairs of genes in a realistic synthetic GRN that do or do not share
an edge. (B) Rank correlation of perturbation effect sizes with edge weights. (C) Distribution of gene co-
expression between pairs of genes that do or do not share an edge. (D) Rank correlation of coexpression
magnitude with edge weights. (E) Rank correlation between coexpression and perturbation effects (the y-
axis is clipped at values corresponding to tenfold change).

2.7.2 Discovering group structure334

Recent work has also attempted to identify trait-relevant sets of genes that act through coordinated335

effects in a particular cell type. These groups are sometimes called programs, and it is common to336

use dimensionality reduction techniques like singular value decomposition (SVD) or non-negative337

matrix factorization (NMF) on single-cell expression values to identify groups [8, 33]. In our ex-338

ample synthetic GRN and in the Perturb-seq data, we used a variant of this approach based on339

truncated SVD (TSVD) to assign genes to programs. As input, we used the set of 75,328 unper-340

turbed cells from real data [9] and downsamples of the entire experiment to the same number341

of cells; for the synthetic data, we simulated the same number of cells from baseline or baseline342

and perturbed conditions, mimicking the composition of the real experiments. From these data,343

we computed the first 200 singular vectors of the expression data, using each vector to define a344

“program” of 100 genes with the largest loadings (Methods).345

Here, we assess the extent to which these programs and their constituent singular vectors346

replicate across experiments from perturbed and unperturbed conditions. We use canonical cor-347

relation analysis (CCA) to assess the similarity of the singular vectors. This technique seeks to348

find rotations a, b of inputs x, y such that the correlation between a⊤x and b⊤y is maximized –349

the transformed inputs are called canonical variables, and we report their correlations when the350

inputs x, y are gene singular vectors from different experimental conditions (Fig. 7A). In the syn-351
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thetic GRN, the canonical correlation steadily declines over the 200 dimensions of input. Notably,352

the magnitude of this correlation is similar when perturbation data are compared to a replicate or353

to unperturbed data. Even though this correlation is modest by the 100th set of canonical vari-354

ables, this trend suggests consistency between lower-dimensional representations of expression355

data regardless of cell state (perturbed or unperturbed).356

Figure 7: Learned representations are similar between control and intervened-upon cells. Concordance
between low-rank representations of single cells in a simulated GRN (top row) and downsamples of ex-
perimental data (Replogle et. al., 2022). (A) Correlation between the first 200 canonical variables (linear
combinations of singular vectors) between samples of 75,328 baseline or baseline+perturbed cells from a
synthetic GRN. (B) Overlap in gene programs inferred from singular value decomposition of single cell
expression data. Programs are defined using singular vectors of gene expression from perturbed cells (x-
axis), and intersected with programs analogously defined from baseline and additional perturbed cells. (C)
Canonical correlation of control cells and two downsamples of the entire Perturb-seq experiment (Replogle
et. al., 2022). (D) Overlap in gene programs computed from control and downsamples of experimental
Perturb-seq data.

At this sample size (75,238 cells) for the synthetic GRN, however, there is a difference in the re-357

producibility of individual programs across data sources (perturbed or unperturbed; Fig. 7B). For358

this, we compare programs computed from one perturbation experiment (the “reference”) to pro-359

grams from a replicate perturbation experiment and to programs from unperturbed cells. For each360

program from the reference, we report the maximum number of genes which overlap any other361

program computed from each of the other data sources. The first few programs (corresponding362

to the first few singular vectors) are highly reproducible in the replicate perturbation data. This363

overlap steadily declines to no effective overlap after the first ∼100 programs. Despite similar364

canonical correlation, the unperturbed data do not replicate the same programs to the same extent365

– there is modest overlap with the first few programs from the perturbation data, and this overlap366

decays very quickly (after the first ∼20 programs). When assessing these programs with respect367
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to the (k = 10) ground truth groups of this network, we find that nearly all true groups are at368

least modestly well represented by the top 50 programs from both data sources. However, the369

programs from the perturbation data much better represent the true groups than those from the370

unperturbed data (Fig. S11).371

We find similar results in the experimental Perturb-seq data. Here, however, the first few372

canonical variables are highly correlated, and the canonical correlation drops off precipitously be-373

tween the 50th and 100th canonical variables (Fig. 7C). We also find that programs computed from374

two downsamples of the entire experiment are about as reproducible as those from the simulated375

data, but are slightly more similar to the programs from control cells (Fig. 7D). While this may376

reflect some aspect of GRN structure, it is also related to the number of cells in the input data and377

magnitude of intrinsic gene expression noise. Both tend to reduce canonical correlations and the378

reproducibility of gene programs. In the real data, lowering the number of cells input to TSVD379

lowers both canonical correlation and program similarity compared to the entire experiment; re-380

latedly, we find that the 75,328 control cells exhibit comparable performance as 30,000 perturbed381

cells at recovering representations from the full data (Fig. S12). In the synthetic networks, we find382

that altering the level of global transcriptional noise (s) alters the concordance between replicates383

and between perturbed and unperturbed cell states – at high levels of noise, there is little practical384

difference between programs derived from perturbed or unperturbed cells, but with low levels of385

noise, the programs from perturbation data are markedly different (Fig. S13). For presentation in386

Fig. 7A-B, we chose a level of noise (s = 0.3) that recapitulated the qualitative behavior of the real387

data.388

Taken together, these findings seem to suggest that the leading variance components of single-389

cell gene expression data will be similar across perturbed and unperturbed conditions, unless the390

magnitude of perturbation effects is greater than the level of intrinsic transcriptional noise. Re-391

latedly, we suspect that dimensionality reduction techniques will produce concordant represen-392

tations of both perturbed and unperturbed data under similar conditions, and that this similarity393

can propagate into gene sets derived from these representations. This begs a key line of questions394

for future work: where, and how, do molecular perturbations add value in uncovering the sets of395

genes that are collectively important for cell-type and disease-specific processes? In light of the396

number of cells required for reliable inference at this scale, we anticipate that large atlas-style cell397

reference data (e.g., the Human Cell Atlas and similar resources [34–36]) may provide a critical398

opportunity to reveal global aspects of network structure.399

3 Discussion400

In this work, we have presented a new model to simulate gene regulatory networks, with par-401

ticular emphasis on generating networks with realistic structural properties. We note that this402

algorithm may be of interest in contexts outside gene regulation – namely, in any study of scale-403

free networks with group-like structure. We also anticipate that our technique to simulate gene404

expression from arbitrary networks may be useful for model development and benchmarking, or405

in other studies where network structures are known or may be hypothesized.406

Here, we have highlighted the utility of our approach with simulations to develop intuition407

about key properties of GRNs, particularly in the context of molecular perturbations and coexpres-408
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sion data. While our study design draws inspiration from recent works using Perturb-seq, we also409

acknowledge limitations to the realism of our model. In focusing on the equilibrium dynamics of410

cells of one type, we have ignored developmental trajectories and cell-type heterogeneity within411

tissues, both of which modify our assumptions about regulatory network structure. For the sake of412

computational efficiency in quantifying expression for thousands of genes, we have also eschewed413

detailed models of the biological synthesis and experimental measurement of cellular RNAs: in414

future work where it is critical to match distributions of count data from experiments, we encour-415

age modeling these complexities. Similar considerations may also be necessary for the application416

of our approach beyond modeling knockouts – for example, in studying genetic variation which417

affects gene expression.418

Independently, our results suggest that the space of realistic network structures may be quite419

limited, and that it may be useful to consider this prior information in various inference settings.420

While our approach as outlined in this work is not optimized for inference, the algorithms we421

describe are generative, which means they could be used directly in applications for simulation-422

based inference. Although we used experimental data from K562 cells in this study, we anticipate423

the high-level structural properties of GRNs will generalize across different cell types. Moreover,424

we observed through simulations that hallmark properties of GRNs tend to confer resilience to425

perturbations across multiple measures, reducing the number of sensitive target genes and large-426

effect master regulators. We do not suspect this is an incidental finding in light of the selection427

to which GRNs are subject over evolutionary time, and suspect that considering this type of con-428

straint may be insightful for future work.429

Looking forward, we also anticipate that broad observational studies of diverse cell types and430

deep interventional studies of specific cell lines will both be useful in disentangling the basis of431

complex traits in regulatory networks. However, a key question remains in determining how best432

to leverage these data types towards a unifying understanding of cell biology. We suggest that433

a scaffolded approach to this problem may be useful. Where the scale of cell atlases presents a434

unique opportunity to learn transferable representations of cells across developmental states and435

tissues, perhaps including the discovery of cellular programs, these data are limited in their ability436

to resolve interactions between single genes. This is where perturbation data – however limited437

to specific cell types – retain critical value. Even as existing network inference algorithms expe-438

rience computational challenges in genome-scale applications, the modularity of GRNs suggests439

that piecewise inference strategies may be viable until these challenges are resolved. As efforts440

like these enhance our mechanistic understanding of biological networks, we hope that our work441

serves to provide general intuition on their salient structural properties. We are optimistic that442

understanding these principles will be useful for an array of challenges and highlight future op-443

portunities in functional genomics.444
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5 Methods453

5.1 Graph generating parameters454

5.1.1 Sampling455

A full description of the graph generating algorithm can be found in the main text, with the exact456

procedure given by Algorithm 1. Here, we provide additional intuition on its generating param-457

eters, and detail the scheme for sampling them.458

In motivating our study, we highlight several key properties of gene regulatory networks:459

briefly, these are sparsity, modular groups, and asymmetric power-law degree distributions. In460

Fig. 2 we show that these properties are individually tuned by parameters of our generating461

algorithm. When generating synthetic networks, we sample values for each parameter across one462

to three orders of magnitude. To cover these ranges, the values are spaced geometrically, and the463

extrema are chosen to overlap values which we believe to be consistent with biological intuition464

for a network of n = 2, 000 genes.465

• Sparsity term p: { 1
2 , 1

4 , 1
8 , 1

16}.466

• Number of groups k: {1, 5, 10, 50, 100}.467

• Modularity term w: {1, 9, 40, 90, 400, 900}.468

• In-degree uniformity term δin: {10, 30, 100, 300}.469

• Out-degree uniformity term δout: {1, 3, 10, 30}.470

The sparsity term p is sampled so that the average number of regulators per gene spans from471

low single-digits to low double-digits. The number of groups is sampled from k = 100, which472

corresponds to a rough lower limit on the size of groups (20 genes), to k = 1, which corresponds473

to the dissolution of group structure and is equivalently to the algorithm from Bollobas et. al.,474

2003 [28]. The modularity / within-group affinity term w is sampled in a similar way: w = 1 also475

corresponds to the dissolution of group structure, again giving the algorithm from Bollobas et. al.,476

2003, and w = 900 gives an upper limit on modularity with respect to groups k. The in- and out-477

degree uniformity terms δin, δout are both sampled across orders of magnitude. The bounds for478

the in-degree term to be larger in magnitude, corresponding to the assumption that the in-degree479

distribution should be less dispersed (i.e., have fewer hubs) than the out-degree distribution, but480

the range of values is intentionally overlapping.481

To produce the set of 1,920 GRNs used in the study, we simulated one network with every482

possible combination of parameters listed above: this totals 4× 5× 6× 4× 4 = 1,920 networks.483

5.1.2 Relationship to perturbation effects484

We performed a regression analysis to estimate the effect of each graph generating parameter on485

the distribution of perturbation effects in the synthetic GRNs. Specifically, we regressed the logit-486

transformed fraction of genes in each GRN that are hub regulators or hub targets according to the487
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following equation:488

logit(pgenes) ∼ 1 + (1/p) + k′ + w + δin + δout,

where 1/p is the inverse of the sparsity term, k′ is a transformed number of groups (GRNs with489

k = 1 group are treated as GRNs with k = n = 2000 groups; see Fig. 4), and w, δin, and δout are as490

described above. The dependent variable of the regression, pgenes is either the fraction of genes in491

the GRN which are hub regulators or hub targets. These quantities are analyzed separately. Full492

results for each regression are in Table S1 and S2.493

5.2 Expression simulation494

5.2.1 Parameter selection495

An overview of our gene expression model can be found in the main text. Here, we describe496

the sampling strategy for the parameters of the model and give additional information on their497

interpretation. Recall that the expression, xi, of gene i is influenced by the following variables:498

• the baseline transcription rate, αi,499

• the degradation rate of RNAs, ℓi,500

• effects from regulating genes, β ji,501

• expression noise, with magnitude s.502

Note that α and ℓ are properties of genes (nodes); β is a property of regulatory interactions (edges);503

and s is a global parameter for the entire network. During forward simulation from the discretized504

stochastic differential equation, we take steps of size ∆t = 0.01 as in prior work [31], and update505

expression values from x (at time t) to x′ (at time t + ∆t) according to the following:506

x′ = x + ∆t · (σ(α + βx)− ℓx) + s
√

∆t · xN (0, I).

In the deterministic limit, this results in an equation satisfied by any potential steady-state507

x∗ = σ(α + βx∗)/ℓ,

where σ(x) = 1
1+e−x is the logistic sigmoid. When setting up the model given a graph structure508

from our generating algorithm, we simulate expression parameters according to the following509

scheme:510

• σ(αi)
iid∼ Beta(2, 8), under the assumption that genes have low but non-zero expression at511

baseline, in the absence of regulation – i.e., σ(αi) is small. Here, σ(x) = 1
1+e−x is again the512

logistic sigmoid (expit) function.513

• ℓi
iid∼ Beta(8, 2), under the assumption that the maximum expression of each gene, 1/ℓi, tends514

to be of a similar order of magnitude (close to one), but can vary. To prevent steady-state515

gene expression from being excessively large (by having small ℓi), we hard clip ℓi to be at516

least as large as e−αi .517
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• β ji
iid∼ (2pj− 1) · (1+Half-Normal(0, 1)), under the assumptions that regulatory interactions518

have a minimum strength (|β ji| ≥ 1). Here, pj
iid∼ Bernoulli(p = 0.8) is the probability that a519

regulator j acts as an activator rather than a repressor.520

• s = 10−4, fixed across all genes in the networks. This value is chosen to be as large as possible521

without limiting detection of very small KO effects. At this level of noise, we can reliably522

detect log2 fold-changes down to the order of 10−4 (Fig. 3D).523

5.2.2 Forward simulation524

Once parameters of the expression model are chosen for a specific GRN, we initialize the expres-525

sion of each gene xi = 0 and conduct forward simulation according to the update rule given in526

the previous section, which is also described in the main text.527

When performing forward simulations, we initialize all genes in the network to have zero528

expression. We then perform b = 5,000 iterations of forward simulation as a “burn-in”. After529

burn-in, we check whether the system of equations has converged to a steady-state by measuring530

differences in the time averaged mean after the burn-in. Specifically, we compute the maximum531

absolute log2 fold-change of non-lowly expressed genes in the network532

max
g,x̄g,i>s

log2

(
x̄g,i

x̄g,i−h

)
where g indexes genes whose running mean expression x̄g,i at the current iteration i is above the533

noise magnitude s, and h is the step size to check for convergence. Mathematically, the running534

mean in the numerator is535

x̄g,i =
1

i−b ∑i
t=b xg,t

where xg,t is the expression of gene g at iteration t. The denominator x̄g,i−h is analogously the536

running mean expression of gene g the last time we checked for convergence.537

x̄g,i−h = 1
i−h−b ∑i−h

t=b xg,t

If this maximum log fold-change is below 10−3, we say the system has converged, and take the538

vector x̄i as the steady-state expression of all genes in the network. We perform this check every539

h = 1,000 iterations, up to a maximum tmax = 20,000 iterations. We take the vector x̄tmax as an540

approximate equilibrium state if the system did not fully converge.541

We further assess the stability of the steady-state of each GRN by performing a linear stability542

analysis of the expression model in the limit s → 0. In this limit, the expression model takes the543

form of an ordinary differential equation (ODE). The stability of an equilibrium point x̄ of this544

ODE can be assessed using the eigenvalues of the Jacobian matrix J evaluated at x̄ – if all of the545

eigenvalues have a negative real part, the system is said to be stable [37]. Here, we have546

J =
{

∂ f (xi)

∂xj

}
ij
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where the (i, j)th entries correspond to the partial derivative of the deterministic part of the ex-547

pression function f (xi) of gene i, with respect to the expression xj of gene j. For our model,548

∂ f (xi)

∂xj
=

∂

∂xj
(σ(αi + ∑k βkixk)− ℓixi)

= β jiσ(αi + ∑k βkixk)[1− σ(αi + ∑k βkixk)]− 1(i = j)ℓi

where the first term is zero for β ji = 0 and the second term is zero for j ̸= i.549

5.2.3 Perturbation experiments550

For each synthetic GRN in this study, we perform a systematic assessment of gene-level perturba-551

tion effects. We start with baseline steady-state expression values of an instantiated GRN, with552

edges drawn according to the generating algorithm and expression parameters chosen as de-553

scribed above. Then, separately for each gene j, we perform a knockout by setting β ji = 0 for554

all other genes i – that is, we nullify its outgoing effects. This perturbs the equilibrium dynamics555

of the expression SDE, and we conduct additional rounds of forward simulation using the mod-556

ified parameters until a new expression steady-state is reached. We perform the same procedure557

with burn-in and convergence checks as in the previous section.558

We summarize the effect that perturbing gene j has on gene i using a log fold-change in ex-559

pression values:560

log2 FCji = log2(xi|do(xj = 0))− log2(xi)

where xi is the steady-state expression of gene i under baseline conditions, and xi|do(xj = 0) is its561

steady-state expression when gene j has been perturbed (both computed as described above).562

5.2.4 Baseline coexpression563

Since gene coexpression is also commonly used to describe pairwise relationships between genes,564

we further use the expression SDE to compute the gene-level correlations at steady-state in the565

synthetic GRNs. Under baseline conditions, we perform t = 10,000 additional forward time steps,566

from which we sample m = 10,000 “baseline cells” by taking the gene expression value at every567

step. The noise inherent to the model (s = 10−4) produces sufficient variability in this cell popu-568

lation to compute gene-level correlations. We measure the coexpression of genes all i and j (not569

filtering out lowly expressed genes) using the Pearson correlation between xi and xj across cells.570

5.3 Perturb-seq data571

5.3.1 Data processing572

To motivate aspects of our work, and to assess our simulations in context of experimental data,573

we make use of summary statistics from a recent genome-scale Perturb-seq study [9]. Specifi-574

cally, we used pairwise FDR-corrected Anderson-Darling p-values (from the supplemental file,575

"anderson-darling p-values, BH-corrected.csv.gz") as a measure of the expression response576

to single-gene perturbations. Throughout this work, we used a single large subset of these data577
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corresponding to the set of genes whose expression was subject to both experimental perturba-578

tion and measurement in response. We matched perturbations to target genes using the provided579

ENSEMBL gene IDs, subsetting to perturbations which targeted any primary transcript. In (rare)580

cases where there was more than one such perturbation, we used the perturbation which induced581

a statistically significant change in the expression of the target transcript. We note that target genes582

with expression levels below 0.25 UMI per cell were not included in this file, which further limited583

the genes included in our analysis. We performed a similar post-processing step when analyzing584

results from the synthetic networks, limiting analysis to genes whose steady-state expression was585

above the level of intrinsic noise (i.e., xi > s).586

5.3.2 Comparing with simulations587

We compared the distribution of perturbation effects (incoming and outgoing) at the gene level588

when assessing similarities between the real and simulated networks. For this, we thresholded589

pairwise effects from the experimental data at FDR-corrected Anderson-Darling p < 0.05, saying590

that effects at this significance level constitute biologically meaningful effects, and others do not.591

At this threshold, we find that 3.16% of pairwise effects are called significant. For a given gene i,592

we then computed two values: the fraction of the network that is affected when i is perturbed (i.e.,593

the fraction of genes j for which pij < 0.05), and the fraction of the network that affects i when594

perturbed (i.e., the fraction of genes j for which pji < 0.05).595

We then compared these distributions to analogous quantities derived from the synthetic596

GRNs. Since the experimental data are affected by imperfect statistical power, we set the dis-597

covery rate to be equal across all synthetic GRNs, doing so by taking the top 3.16% of pairwise598

perturbation effects (i.e., | log2 FC|ji > k, where k varies) as “statistically significant”. For each599

gene i in a synthetic GRN, we computed the fraction of the network which is affected when i is600

perturbed (i.e., the fraction of genes j for which | log2 FC|ij > k), and the fraction of the network601

which affects i when perturbed (i.e., the fraction of genes j for which | log2 FC|ji > k). Note that602

in each GRN in Fig. 5, we remove lowly-expressed genes, with baseline expression xi < s. This603

means that the number of genes analyzed is not exactly the same for all GRNs – we therefore nor-604

malized the distribution of perturbation effects by the number of genes that are included in the605

analysis (i.e., those not lowly-expressed).606

Finally, we compared the distributions of incoming and outgoing perturbation effects using607

the Kolmogorov-Smirnov test as implemented in scipy (scipy.stats.ks_2samp) [38]. This is a608

nonparametric test for equality of distribution between two samples, which measures the maxi-609

mum difference between cumulative distribution functions. To select the synthetic GRNs which610

are closest to the real data, we rank GRNs by largest KS p-values with each distribution (incom-611

ing and outgoing), then find the smallest rank r such that k GRNs are in the top r of all GRNs612

compared to both distributions.613
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5.4 Gene programs614

5.4.1 Truncated singular value decomposition615

We used truncated singular value decomposition (TSVD) to cluster genes into “programs” based616

on their expression profiles in cells from both perturbed and unperturbed settings, using the617

TruncatedSVD function from scikit-learn [39]. Briefly, TSVD is an algorithmic modification of618

singular value decomposition (SVD), which produces orthogonal singular vectors corresponding619

to the directions of maximum variance in the input data. In TSVD, only the top k vectors are620

computed, which results in faster computational runtimes for our analysis.621

We assembled separate input datasets consisting of perturbed and unperturbed cells for both622

synthetic data and using downsamples of the experimental Perturb-seq data. For the synthetic623

data, we simulated 75,328 single cells from baseline conditions by forward simulation from the624

expression fixed point of the GRN, sampling cells from every forward time step. We also sim-625

ulated the expression of an identical number of cells under perturbed conditions, modeling the626

split of cells after the real Perturb-seq study: roughly 8.1% of the cells corresponded to baseline627

conditions, and the remainder were assigned uniformly at random to a knockout condition for628

each of the 2,000 genes in the GRN (this corresponds to 35 cells per KO on average). We do not629

filter out lowly expressed genes for this analysis.630

For the real data, we used single-cell expression data of the 5,247 genes in our data subset631

from all 75,328 control cells as measurements of the GRN in unperturbed conditions. Then, to632

avoid effects from varying the size of the input cell population, we performed two independent633

(random) downsamples of the entire experiment to the same number of cells as measurements of634

the GRN in perturbed conditions.635

With each of these input datasets X, we normalized each gene to have zero mean and unit vari-636

ance, and then performed TSVD to compute the top k = 200 dimensions of expression variability.637

This resulted in singular matrices for cells (U) and genes (V), and a diagonal matrix of singular638

values, S. The product of these matrices approximates the input:639

X ≈ USV⊤

and we used the gene loadings (columns v of the gene singular matrix V) to define gene programs.640

Each “program” corresponds one-to-one with one of the gene singular vectors v, and is the set of641

100 genes with the largest squared entries of v.642

5.4.2 Similarity across datasets643

We assess the similarity of gene programs from two different experiments in two distinct ways:644

one using the set of genes which constitutes each program, and the other using the singular vector645

used to define it. When comparing programs {pi} from one (reference) experiment to programs646

{p′j} from another experiment, we report the maximum overlap between each program pi in the647

reference set to any program p′j in other set – that is,648

overlap(pi, {p′j}) = max
j
|pi ∪ p′j|
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which quantifies the extent to which each program is reproduced by the other experiment. When649

comparing gene singular vectors V = {vi}, V ′ = {v′j} from the two experiments, we make use of650

the fact that the SVD of their dot product is a well-characterized mathematical procedure called651

canonical correlation analysis (CCA) [40]. The top k components of this decomposition are called652

canonical variables, and they each represent the axes of rotation which maximize correlation be-653

tween variables in the input data. Here, we report the canonical correlation (singular values from654

the second SVD step) for the first 200 canonical variables, to quantify the extent to which the655

lower-dimensional representations of the inputs are consistent with one another.656
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Supplementary Information818

Figure S1: Mediated effects outnumber direct effects at most magnitudes. Same as Fig. 3D, but with
distances binned by whether pairs of genes are connected by an edge (distance 1, a “direct effect”), any
path (distance greater than 1, a “mediated effect”), or no path at all (“null”). Note also that the y-axis is
the count of gene pairs with a perturbation effect of at least the magnitude given on the x-axis – that is, the
distribution shown is a non-normalized inverse CDF. Gene pairs are pooled from the 50 example GRNs in
Fig. 3.
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Figure S2: Modularity term differentiates within- and between-module effects. Same as Fig. 3E, with
within-module perturbation effects in red and between-module perturbation effects in blue. Here, networks
are chosen so as to highlight the effect of the modularity term w. Each pair of blue and red tracelines
is distribution of the within- (red) or across-module perturbation effects a single GRN. The generating
parameters for these GRNs vary w (see legend) but hold other parameters constant, as follow: p = 1/4,
k = 50, δin = 10, δout = 10.
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Figure S3: Network generating parameters affect the number of KO effects. Same as Fig. 4, but
with summary statistic (y-axis) as the average number of perturbation effects per gene in the GRN with
| log2 FC| ≥ 0.1. We observe a similar direction of effect for each parameter as with the statistics presented
in the main text.
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Figure S4: Network generating parameters affect the stability of the fixed point. Same as Fig. 4, only
showing the number of key target genes and stratifying by whether the expression equilibrium point of the
synthetic GRN is stable (Methods). In all, 1,693 of the 1,920 GRNs (88.2%) reach an expression equilibrium
through forward simulation of the SDE which is a stable fixed point of the corresponding ODE. These GRNs
tend to be sparse (lower 1/p), modular (higher w), and have more hub regulators (lower δout).

33

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 5, 2024. ; https://doi.org/10.1101/2024.07.04.602130doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.04.602130
http://creativecommons.org/licenses/by/4.0/


Figure S5: No interaction between sparsity term and other network generating parameters. Same as
Fig. 4, but with additional stratification by the sparsity term 1/p. There is no obvious visual evidence for
interactions between the parameters.
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Figure S6: No interaction between out-degree term and other network generating parameters. Same as
Fig. 4, but with additional stratification by the out-degree term δout. There is no obvious visual evidence
for interactions between the parameters.
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Figure S7: Summary of regression models for effects of network parameters on perturbations. Coeffi-
cients from regressing the logit-transformed fraction of genes which are hub knockouts (top) or target genes
(bottom) on network generating parameters. Errorbars denote 95% confidence intervals for the regression
coefficients. Model summaries can be found in Tables S1 and S2.
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Dep. Variable: logit(pct_ko) R-squared: 0.587
Model: OLS Adj. R-squared: 0.586
Method: Least Squares F-statistic: 543.6
Date: – Prob (F-statistic): 0.00
Time: – Log-Likelihood: -4167.4
No. Observations: 1920 AIC: 8347.
Df Residuals: 1914 BIC: 8380.
Df Model: 5
Covariance Type: nonrobust

coef std err t P> |t| [0.025 0.975]

const -6.9629 0.115 -60.458 0.000 -7.189 -6.737
r 0.4229 0.009 46.789 0.000 0.405 0.441
k_adj 0.0004 6.18e-05 6.857 0.000 0.000 0.001
w -0.0023 0.000 -15.724 0.000 -0.003 -0.002
delta_in -0.0012 0.000 -2.801 0.005 -0.002 -0.000
delta_out 0.0637 0.004 15.061 0.000 0.055 0.072

Table S1: Summary of regression results (fraction of genes which are hub knockouts).
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Dep. Variable: logit(pct_tg) R-squared: 0.461
Model: OLS Adj. R-squared: 0.460
Method: Least Squares F-statistic: 327.7
Date: – Prob (F-statistic): 6.30e-254
Time: – Log-Likelihood: -3973.5
No. Observations: 1920 AIC: 7959.
Df Residuals: 1914 BIC: 7992.
Df Model: 5
Covariance Type: nonrobust

coef std err t P> |t| [0.025 0.975]

const -4.7854 0.104 -45.966 0.000 -4.990 -4.581
r 0.2983 0.008 36.514 0.000 0.282 0.314
k_adj 0.0003 5.59e-05 5.686 0.000 0.000 0.000
w -0.0016 0.000 -12.002 0.000 -0.002 -0.001
delta_in -0.0002 0.000 -0.438 0.661 -0.001 0.001
delta_out 0.0433 0.004 11.345 0.000 0.036 0.051

Table S2: Summary of regression results (fraction of genes which are hub target genes).
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Figure S8: No interaction between network generating parameters and fit to experimental data. As in
Fig. 5C-E, we show the relationship between pairs of network generating parameters and goodness of fit
to the cumulative distribution of perturbation effects from experimental Perturb-seq data. Each GRN (one
point in every subpanel) is colored by its ranked fit to data: the synthetic GRNs are ranked separately by
Kolmogorov-Smirnov p-value for incoming and outgoing perturbation effects, then the sum of these two
ranks is used to produce an overall ranking. Intense red color indicates better ranked fit to data, and intense
blue color indicates a worse ranking.
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Figure S9: Coexpression is more often due to coregulation than edges. In the focal GRN from Fig. 6, we
show a histogram of coexpression values split by whether pairs of genes share an edge (“A regulates B,
or B regulates A”, share a regulator (“A and B are coregulated”), or have another relationship (left panel).
Similarly, for perturbation effects, we show the distribution split by whether pairs of genes share an edge
(“A regulates B”), a path of distance 2 (“A indirectly regulates B”), or another relationship (right panel). At
nearly all levels of coexpression, coregulation is more common than direct regulation. Meanwhile, direct
regulation is more common than indirect regulation for the largest perturbation effects – note that the range
of KO effects is clipped as in Fig. 6.
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Figure S10: Baseline coexpression and perturbation effects are uncorrelated in Perturb-seq data. Same
as Fig. 6E, using data from our analysis subset of Replogle et. al. 2022 [9]. Gene co-expression (x-axis) is
the unsigned Pearson correlation between normalized single-cell gene expression data from unperturbed
cells (clipped at |r| = 0.1). Perturbation effects (y-axis) are pairwise log-transformed Anderson-Darling p-
values for differences in gene expression distribution between perturbed and unperturbed states (clipped at
− log10(p) = 10). Rank correlation (Spearman’s ρ) is computed on the transformed but not clipped values
of these two statistics.
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Figure S11: True groups in the synthetic GRN are represented among gene programs. In the focal GRN
from Fig. 7, we show the overlap between each of the true groups (k = 10, shown as points in each of
the bins on the y-axis) and its closest matching program (maximum overlap across all 50 gene sets, values
shown on the x-axis). Points corresponding to the same true group are connected with a line spanning
across y-axis bins. There is similar representation of all of the groups among the learned gene programs,
regardless of input data type.
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Figure S12: Program replication depends on the number of cells. Same as Fig 7C,D – instead of taking
downsamples of unperturbed cells from Replogle et. al., 2022, we here downsample the entire experiment
to various study sizes. Here, the “entire experiment” is the normalized expression measurements of 5,247
genes in 932,593 control and intervened-upon cells which received one of the 5,247 perturbations in our
analysis subset (Methods). We compare singular vectors (left) and programs (right) from the resulting
downsamples of the entire experiment, as well as the subsets from Fig 7C,D. We note that the 75,328 control
cells replicate the programs from the entire dataset comparably to 30,000 cells from the entire experiment.
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Figure S13: Program replication depends on the magnitude of intrinsic noise. Same as Fig 7A,B for
different levels of noise. We repeat CCA and analysis of gene programs as in Fig 7 (see Methods), varying
the level of intrinsic noise (s). At low levels of noise (small s), replicates from perturbed conditions are much
more similar to one another than to the unperturbed data. At high levels of noise (large s), the perturbed
data are more similar by canonical correlation to the unperturbed data than to the replicate perturbed data;
but programs derived from each of the singular vectors are equivalently reproducible across conditions.
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