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Abstract

Human tissue samples are often mixtures of heterogeneous cell types, which can confound the 

analyses of gene expression data derived from such tissues. The cell type composition of a tissue 

sample may itself be of interest and is needed for proper analysis of differential gene expression. 

A variety of computational methods have been developed to estimate cell type proportions using 

gene-level expression data. However, RNA isoforms can also be differentially expressed across 

cell types, and isoform-level expression could be equally or more informative for determining cell 

type origin than gene-level expression. We propose a new computational method, IsoDeconvMM, 

which estimates cell type fractions using isoform-level gene expression data. A novel and useful 

feature of IsoDeconvMM is that it can estimate cell type proportions using only a single gene, 

though in practice we recommend aggregating estimates of a few dozen genes to obtain more 

accurate results. We demonstrate the performance of IsoDeconvMM using a unique data set with 

cell type–specific RNA-seq data across more than 135 individuals. This data set allows us to 

evaluate different methods given the biological variation of cell type–specific gene expression data 

across individuals. We further complement this analysis with additional simulations.

Keywords

alternative splicing; bulk expression; deconvolution; isoform; RNA-seq

Correspondence Hillary M. Heiling, Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC. 
hheiling@live.unc.edu. 

SUPPORTING INFORMATION
Web Appendix A, referenced in Section 2, and Web Appendix B, referenced in Sections 3, 4, and 5 are available with this paper at the 
Biometrics website on Wiley Online Library. An R package for the IsoDeconvMM method is available in gitHub: https://github.com/
hheiling/IsoDeconvMM. The code used to run the analyses in the paper and Web Appendix B are provided both on the Biometrics 
website and GitHub: https://github.com/hheiling/IsoDeconvMM_Supplement

HHS Public Access
Author manuscript
Biometrics. Author manuscript; available in PMC 2024 July 12.

Published in final edited form as:
Biometrics. 2023 June ; 79(2): 854–865. doi:10.1111/biom.13614.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/hheiling/IsoDeconvMM
https://github.com/hheiling/IsoDeconvMM
https://github.com/hheiling/IsoDeconvMM_Supplement


1 | INTRODUCTION

RNA sequencing data derived from human tissue samples are often mixtures of 

heterogeneous cell types. It is often of interest to quantify the relative abundance of each 

constituent cell type found within a tissue sample. In some cases, the relative abundance 

profiles themselves contain relevant information for the main goal of a study. For example, 

the relative abundance of different types of immune cells within tumor samples can be 

used to predict patients’ response to cancer immunotherapy. In others, abundance profiles 

are crucial for proper cell type–specific differential expression analyses (Li and Wu, 2019; 

Jin et al., 2020). Cell-sorting and other physical separation techniques exist to partition 

tissue samples into purified samples of their constituent cell populations, but such methods 

can be costly and may even induce changes to the cellular environment, which can impact 

expression profiles (Shen-Orr et al., 2010). As an alternative to physical separation methods, 

the development of statistical models for the deconvolution of expression profiles from 

tissue samples has become an active area of research.

In silico expression deconvolution models can largely be separated into three main 

developments: ratio-based models, linear models, and infiltration scores. Ratio-based models 

rely upon computing expression ratios between a mixed expression profile and a “gold 

standard” reference for a single cell type. The minimum of these ratios across genes roughly 

approximates the proportion of the referent cell type (Gosink et al., 2007; Clarke et al., 

2010; Wang et al., 2014). These methods are often limited to study two cell types (eg, 

tumor vs normal). The linear model and infiltration score approaches can handle more than 

two cell types. The linear model framework assumes that appropriately normalized mixture 

expressions can be modeled as a weighted summation of cell type–specific gene expression 

in two or more cell types (Lu et al., 2003; Gong and Szustakowski, 2013; Newman et al., 

2015; Zhong et al., 2013). The infiltration scores approach aim to estimate unitless quantities 

designed to reflect the abundance each constituent cell type (Becht et al. (2016); Li et al. 

(2016)).

However, existing methods have been designed to utilize gene-level expression only. Thus, 

appropriate deconvolution requires that cell types express differently at the gene level. In 

the case of highly similar cell types, however, it may be the case that gene-level expression 

differences are minimal. An alternative is to quantify gene expression at a more granular 

level: isoform expression. Each gene in the human genome is often composed of multiple 

exons separated by introns, and one gene may produce multiple distinct transcripts by taking 

different combinations of exons. This process, known as alternative splicing, allows a single 

gene to encode multiple proteins and thus greatly increases the biodiversity of proteins that 

can be encoded by the genome. More than 90% of human genes could undergo alternative 

splicing (Wang et al., 2008). Because cell types are often defined through the expression 

of proteins, the isoform-level expression could be more sensitive to cell type identity than 

higher level gene expression that is often the summation of gene expression across multiple 

isoforms.

In this paper, we outline the development of a statistical model named IsoDeconvMM 

for expression deconvolution in mixture tissues by exploiting isoform-level expression 
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differences between cell types. A crucial factor for the success of expression deconvolution 

is to identify a good set of signature genes/isoforms whose expression has much higher 

variation across cell types than within cell types. However, even for such carefully 

selected genes/isoforms, there are still biological variation of cell type–specific gene/isoform 

expression across individuals. IsoDeconvMM is designed to explicitly model biological 

variability to achieve robust performance. We demonstrate the utility of our method 

using the Blueprint data set (Chen et al., 2016). This data set contains human bulk RNA-

seq samples for three sorted immune cell populations (CD4-positive, alpha-beta T cell; 

CD14-positive, CD16-negative classical monocyte; and mature neutrophil) from up to 197 

individuals. In an in silico data analysis, we used these data to model the variability across 

individuals and test the performance of our method given this biological variability.

The rest of the paper is organized as follows. In Section 2, we present the statistical models 

and algorithm used to estimate cell type proportions in mixture tissues, and describe the 

data and materials needed for the method. In Section 3, we present in silico data analyses. 

In these analyses, we compare the performance of our method with the performance of 

CIBERSORTx (Newman et al., 2015). In Section 4, simulations are conducted to assess 

the performance of the IsoDeconvMM method when different underlying data distributions 

are assumed. Concluding remarks are given in Section 5. Technical proofs are given in the 

Web Appendix A. Additional details regarding the procedures and materials required for the 

analyses in Sections 3 and 4 are given in the Appendix and the Web Appendix B.

2 | METHODS

2.1 | Required data and resources

Consider a biological tissue sample composed of K different cell types. We seek to estimate 

the unknown relative abundance of each cell type k—or the proportion of cells of type k—in 

the heterogeneous sample. In order to estimate these proportions, IsoDeconvMM requires a 

single RNA-seq experiment performed on the mixture sample. In addition, it is assumed that 

there exist RNA-seq data for Nk purified samples for cell type k. For each sample, RNA-seq 

read counts are summarized at the exon level by counting the number of reads (or RNA-seq 

fragments for paired-end reads) overlapping various sets of exons.

In order to summarize the read counts at the exon set level, it is assumed that a detailed gene 

model on the location of each exon and the structure of each isoform is available for each 

gene. Consider a hypothetical gene composed of m nonoverlapping exons that are utilized by 

I isoforms, or distinct mRNA transcripts formed by unique combinations of these exons. As 

specified in the gene models, the locations of these exons within the gene are known as are 

the identities and compositions of all isoforms used by this gene. We define the read count 

at any exon set A as the number of reads that overlap each of the exons in A and only these 

exons.

To visualize the setup, consider the hypothetical gene displayed in Figure 1. This gene is 

composed of E = 4 exons. An exon set is defined as some subset of the exons, which for 

this hypothetical gene could include sets containing only a single exon, sets containing two 

of the four exons, sets containing three of the four exons, or the set with all four exons 
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combined. Each RNA-seq read from the gene maps to one and only one of the possible exon 

sets. If an RNA-seq read maps to each exon in some exon set A and no other exons, we say it 

belongs to exon set A.

The gene in Figure 1 is composed if I = 3 isoforms. Suppose that isoforms 1, 2, and 3 

compose the set of all isoforms used by the gene and that their structure with respect to the 

exons is as given in the figure. Consider the exon set A: = 1, 2, 3 . The read count at A is 

defined as the number of RNA-seq reads, which, when mapped, overlap exons 1, 2, and 3 

but do not overlap exon 4.

Identifying the exon set to which an RNA-seq read belongs gives us insight into the isoform 

to which the read belongs. Although a gene is composed of (2E − 1) possible exon sets, the 

exon sets possible for each of the isoforms can be restricted. In this hypothetical example, 

isoforms 1 and 2 do not contain exon 3, so none of the exon sets containing exon 3 are 

possible for isoforms 1 and 2. Which exon sets are theoretically possible for each of the 

three isoforms of this gene is provided in Table 1.

In some cases, two exons of a gene overlap partially. When this happens, we handle the 

situation similar to Sun et al. (2015). We split the two exons into three exons: the two 

nonoverlapping sections unique to a particular exon and the overlapping section belonging 

to both exons. It is also possible for multiple genes to overlap one or more exons, and we 

consider these overlapping genes as a transcript cluster.

IsoDeconvMM also assumes that there exists a list of cell type–specific genes wherein 

there are gene- and/or isoform-expression differences across the K cell types. Such a list 

of genes can be found using one of a variety of expression testing methods for RNA-seq 

data. Furthermore, IsoDeconvMM requires empirical knowledge of the fragment length 

distribution for the bulk RNA-seq samples.

2.2 | The IsoDeconvMM model and algorithm

2.2.1 | Model parameters—Within the IsoDeconvMM model, cell type proportions are 

estimated independently within each gene, and these gene-specific proportion estimates are 

then aggregated to produce a sample-level cell type relative abundance estimate. To simplify 

discussion, we outline the IsoDecon-vMM model for a single gene.

RNA-seq expression is commonly corrected for feature length. Previously, however, the 

notion of feature length pertained to the length of the genes or isoforms being measured and 

not to the lengths of exon sets. Sun et al. (2015) extended the definition of feature length to 

exon sets and referred to it as the effective length for exon sets. Briefly, the effective length 

of an exon set is the expected number of starting locations, where an RNA-seq fragment that 

overlaps with all the exons of this exon set can be sampled. Such expectation is taken over 

the distribution of RNA-seq fragment length. Note that the effective length of an exon set 

varies across isoforms. For example, isoforms that do not contain all the exons within the 

set cannot produce reads in that exon set, thus the effective length of the exon set for such 

isoforms will be zero. See the supplementary material of Sun et al. (2015) for more details.
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We first consider the models and parameters used to describe the gene expression in 

cell type–specific samples. In all the notation, we utilize the subscripts kj to denote the 

parameters for sample j of cell type K. Let Y kj = Y kjA  denote the vector of read counts 

across all E exon sets in the given gene/transcript cluster for sample j of cell type K. Also 

denote Y kj(O) as the total read count outside the gene of interest in this sample. We assume 

that the vector Y kj(O), Y kj
T T  follows a multinomial distribution

Y k j(O)

Y kj
τkj, γkj ∼ Multinomial tkj,

1 − τkj

τkjXγkj
,

(1)

where τkj is the probability that a randomly selected read maps to the gene of interest, 

γkj = γkj1, …, γkjI
T  is the vector of I isoform expression parameters, tkj is the total read count 

in the sample, and X is a matrix of effective lengths such that column i of X is the vector of 

effective lengths for all the exon sets of isoform i.

We further describe the probability τkj and the isoform parameters γkj with the following beta 

and Dirichlet distributions:

τkj ∼ Beta βk

l ∘ γkj ∼ Dirichlet αk ,

(2)

where l = l 1, …, l I , l i = ∑A ∈ isoform i XA represents the total effective lengths of isoform i for 

1 ≤ i ≤ I, and ∘ represents element-wise multiplication of two vectors. It should be noted that 

the γkj parameters can be interpreted as per-unit-of-effective-length conditional probabilities 

that a read maps to isoform i given that it maps to the gene, which utilizes isoform i. The 

fact that we model gene expression for each sample j of cell type k separately in the above 

models allows us to capture the biological variation across samples. The similarity of all the 

samples from cell type k is modeled by the shared beta or Dirichlet distribution in Equation 

(2). We next consider the models and parameters used to describe the exon set counts in the 

mixture sample. Let Z = ZA  denote the vector of read counts across all E exon sets in the 

given gene for the mixture sample, and let ZT = ∑A ZA denote the sum of the read counts for 

the given gene. We assume that the vector of counts Z follows a multinomial distribution 

such that

[Z] ∣ τk
∗, γk

∗ ∼ Multinomial ZT, ∑k = 1
K ρkτk

∗Xγk
∗

∑k = 1
K ρkτk

∗ ,

(3)

where τk
∗ represents the probability that a randomly selected read from cell type k maps 

to the gene of interest in the mixture sample, γk
∗ = γk1

∗ , …, γkI
∗  is the vector of I isoform 
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expression parameters unique to cells of type k found within the mixture sample, and ρk is 

the proportion of cell type k in the mixture sample.

Using the same cell type k gene expression hyperparameters βk and isoform expression 

hyperparameters αk from the pure sample models in Equation (2), we further describe the 

probabilities τk
∗ and the mixture isoform parameters γk

∗ as follows:

τk
∗ ∼ Beta βk

l ∘ γk
∗ ∼ Dirichlet αk .

(4)

Given those shared parameters βk and αk, we assume independence across samples.

2.2.2 | Model estimation—Within each gene, the model is fit using a staged estimation 

approach with three stages. In Stage 1, the gene and isoform expression parameters are 

estimated separately for each purified reference sample by maximum likelihood estimation. 

The likelihood used for Stage 1 involves only Equation (1). Under such a framework, 

closed-form estimates of τkj are obvious and a logarithmic adaptive barrier algorithm can be 

used to obtain estimates of the γkj subject to boundary constraints. Once obtained for each 

cell type and sample, these estimates are held fixed for all further stages.

Within Stage 2, the values of τkj and γkj estimated during Stage 1 are treated as observations 

from Equation (2). Estimates of αk and βk are obtained via maximum likelihood estimation 

within separate Dirichlet models. Once obtained, these estimates of αk and βk are fixed for 

Stage 3.

Finally, in Stage 3, the αk and βk estimates are used in Dirichlet distributions as penalty 

functions in the estimation of the γk
∗ and τk

∗. In this way, we regularize estimates of γk
∗

and τk
∗ to be similar to those estimates obtained in the pure cell type samples. The use 

of an Expectation-Maximization (EM) algorithm allows separation of the full likelihood 

into K + 1 independent components in the M step. The first K components pertain to the 

isoform expression parameters from each of the K cell types. Each of these components is 

optimized using a Newton-Raphson algorithm on the log γk
∗  until convergence of isoform 

parameters. The last component contains information regarding the ρk and log τk
∗  values, 

which are optimized using a quasi-Newton’s method optimization procedure (Broyden-

Fletcher-Goldfarb-Shanno). Estimation is seeded at various start points to identify global 

maxima. The E step updates the posterior means of the exon set counts in the mixture 

sample (Z) attributable to cell type k. The expectation has a closed-form solution, provided 

in Web Appendix A. The EM algorithm is iterated until convergence in the proportion 

estimates. Proportion estimates across multiple genes are then aggregated using the spatial 

median to obtain final estimates of cell type proportions.

Technical proofs and further details about the models and methods can be found in Web 

Appendix A located in the online supplementary information. Web Table 1 in Web Appendix 
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A contains a summary of the notation presented in Section 2. A discussion about why a 

staged estimation approach was used instead of a joint estimation approach is included in 

Section Web Appendix A1.7.

3 | IN SILICO BLUEPRINT DATA ANALYSIS

To the best of our knowledge, our IsoDeconvMM is the first method that estimates cell 

type proportions using isoform expression. Since there are already several methods for 

cell type composition estimation using gene expression (instead of isoform expression) 

data, an immediate question is what is the advantage to use isoform expression. In 

this section, we compare our IsoDeconvMM method with CIBERSORTx (Newman et 

al., 2019), a representative and popular method for cell type composition estimation 

using gene expression, and demonstrate that IsoDeconvMM has similar performance 

with CIBERSORTx when the number of genes is relatively large and it outperforms 

CIBERSORTx with large margin when the number of genes is small. To compare 

IsoDeconvMM and CIBERSORTx, we utilize the Blueprint data set (Chen et al., 2016) 

discussed in Section 1. We arbitrarily label the three cell types as follows: CT1 represents 

CD4-positive, alpha-beta T cell; CT2 represents CD14-positive, CD16-negative classical 

monocyte; and CT3 represents mature neutrophil.

In order to create mixture files from the Blueprint data, we selected 100 individuals who 

had pure reference samples collected from all three cell types. For each of these individuals, 

we used their pure reference samples to create a mixture file. The 100 mixture proportions 

were randomly selected from the distribution ρmix ∼ Dirichlet(2, 2, 2). Relatively extreme 

probabilities, defined as probability vectors that assigned one or more cell types to have a 

probability less than .05, were eliminated from consideration.

To select genes/transcript clusters to be used by the IsoDeconvMM method, we sought to 

identify differential isoform usage (DU) transcript clusters that had the largest difference 

between the isoform distributions in the three cell types. To this end, we identified clusters 

that had at least one isoform highly expressed in one cell type and either minimally 

expressed or not expressed at all in the other two cell types, collectively. The selection 

of transcript clusters proceeded as follows. We selected 10 pure reference samples (not used 

in the mixture file creation) from each of the three cell types present in the Blueprint data. 

We then used the isoDetector function in the isoform R package (Sun et al., 2015) to acquire 

isoform abundance information for transcript clusters present on chromosomes one through 

four for all of the 30 pure reference samples. Using the abundance information output, we 

examined both fold change magnitudes and Wilcoxon rank sum tests comparing abundance 

levels for the isoforms in the cluster between a single cell type and the other two cell types 

combined. Using these results, we identified isoforms of interest. The transcript clusters that 

these isoforms belonged to were then selected for further analysis. A full description of the 

procedure to identify DU clusters of interest can be found in the Appendix.

For the CIBERSORTx method, we aimed to select DE transcript clusters in a similar manner 

to the DU transcript clusters used in the IsoDeconvMM analysis. We first quantified the total 

expression per transcript cluster, restricting the transcript clusters considered to those present 
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on chromosomes one though four. Then we applied DESeq2 (Love et al., 2014) to identify 

transcript clusters with differential expression that were relatively overexpressed in one cell 

type compared to the other two cell types combined.

In the Web Appendix B, we compared the performance of the IsoDeconvMM algorithm 

across different algorithm settings. Based on results presented in the Web Appendix B (see 

Web Figure 1), we concluded that using five samples per cell type in the IsoDeconvMM 

analysis was sufficient. Therefore, all further IsoDeconvMM and CIBERSORTx results 

utilize five pure reference samples per cell type. Since the IsoDeconvMM algorithm requires 

multiple initial points in order to optimize the accuracy of the results, we also explored how 

many initial points were sufficient to use. Web Figure 2 in the Web Appendix B suggests 

that using the 10 generic initial points specified in Table A1 in the Appendix is sufficient for 

this case of three total cell types. Therefore, all IsoDeconvMM algorithm results presented 

in this section utilized these 10 initial points in the algorithm. Recommendations of initial 

points for the generic case of K cell types are given in the Appendix. The IsoDeconvMM 

package gives automated recommendations for initial points.

In the exploratory analyses presented in the Web Appendix B, we found that the estimates 

of the cell type–specific isoform parameters could be unstable for a small number of 

transcript clusters. This could be due to extra variance or outliers in these genes. In those 

clusters, the estimate of the αk parameters of Equation (2) (estimated in Stage 1 of the 

model fit algorithm) tended be much larger than other clusters. Therefore, we performed 

a filtering step such that if two or more cell type–specific isoform parameter estimates for 

a transcript cluster were greater than 500, the cluster was excluded from further analysis. 

We now compare the the performance of IsoDeconvMM and CIBERSORTx results when 

different numbers of transcript clusters were used in the analysis (Figure 2). In each 

simulation setup, the best N of the available transcript clusters were selected by first 

choosing the best nS clusters per cell type comparison (cell type j vs the other two cell 

types collectively) and then take their union. The number nS was adjusted such that the union 

gave N = 100, 50, 25, 10  clusters.

When 100 or 50 transcript clusters are used in the analysis, both the CIBERSORTx and 

IsoDeconvMM methods perform well, with CIBERSORTx performing slightly better than 

IsoDeconvMM. For the 25 cluster case, both methods perform equally well. For the case 

when only 10 clusters are used, the CIBERSORTx method is very unstable. In contrast, the 

IsoDeconvMM method is still reasonably accurate.

4 | SIMULATION STUDIES

Our model assumes an underlying Dirichlet-multinomial distribution, which allows 

overdispersion beyond the variance of multinomial distribution. However, it is still possible 

that a Dirichlet-multinomial distribution cannot fit the real data well. In this section, we 

evaluate the performance of IsoDeconvMM when the observed data are generated from 

Dirichlet-negative binomial distributions. We simulated bulk RNA-seq counts data from 

three sorted cell populations given the generic labels of CT1, CT2, and CT3.
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For all of the simulations, we first generated the gene-level counts from a Dirichlet-

multinomial distribution. In order to make the distribution of gene counts as realistic as 

possible, we used gene count distribution from a real data set (Parikshak et al., 2016) that 

contained the number of RNA-seq reads per gene for 89 human bulk RNA-seq samples. The 

genes present in this data set were filtered such that each transcript cluster was comprised 

of a single gene (for convenience purposes) and genes with low expression were excluded. 

The genes were then limited to those present on chromosomes one to nine in order to reduce 

computational burden, resulting in 5172 total genes. A full description of the gene selection 

procedure is provided in the Web Appendix B. We fit a Dirichlet distribution to these data 

using the R package DirichletReg (Maier, 2014).

For each simulated pure sample, the Dirichlet distribution described above generated a 

probability vector associated with the genes. The total read count per sample was selected 

from a normal distribution with mean 7 million and standard deviation 1 million. This 

normal distribution was based on the distribution of the total read counts of the selected 

5172 genes in the 89 bulk RNA-seq samples (Parikshak et al., 2016). Individual gene counts 

were then generated using a multinomial distribution.

Of the total 5172 genes, we selected 1000 genes with relatively high expression and at least 

three isoforms as possible genes to be used for the mixture sample proportion estimate in the 

IsoDeconvMM analysis. For all 1000 of these genes of interest, we calculated the effective 

length design matrix X as described in Section 2. After additional filtering to exclude genes 

with over 15 isoforms, we randomly selected 100 genes for DU.

The Dirichlet-multinomial and the Dirichlet-negative binomial simulations diverge on the 

simulation of the exon set counts. For each cell type, we gave each of the 1000 genes of 

interest a Dirichlet distribution for their isoforms. These Dirichlet distributions only differed 

between the three cell types for the 100 genes specified for DU. A probability vector 

πg = πg1, …, πgI  was drawn from these Dirichlet distributions, where πgi is the proportion of 

read counts in isoform i given that the read comes from gene g.

In the Dirichlet-multinomial simulation, the vector πg was set equal to the l ∘ γg vector 

described in Section 2 in Equation (2). We then model the exon set counts for gene g by

yg ∼ Multinomial(Tg, sg ∑
i = 1

I
xgiγgi), γgi ≥ 0,

(5)

where xgi for 1 ≤ i ≤ p represents the vector of effective lengths of all of the exon sets for the 

ith isoform for gene g, Tg is the total read count for gene sg∑i = 1
I xgiγgi = 1, and Sg is the scaling 

factor such that sg ∑i = 1
I xgiγgi = 1.

In the Dirichlet-negative binomial simulation, the probability vector πgi was used differently. 

The vector of counts of the possible exon sets within the gene, yg, was given a negative 

binomial distribution Ψ μg, ϕ  with mean μg and dispersion parameter ϕ. We model μg by
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μg = Xgβg = ∑
i = 1

p
xgiβgi = ∑

i = 1

p
xgiπgirg, βgi ≥ 0

(6)

where πgi again is the proportion of read counts in isoform i given that the read comes from 

gene g, Xg = xg1, …, xgp , xgi for 1 ≤ i ≤ p represents the effective lengths of all of the exon 

sets for the ith isoform for gene g, and rg is a scaling factor equal to the ratio of the total read 

count of the gene and the sum of the vector ∑i = 1
p xgiπgi.

In the Dirichlet-negative binomial simulations, we also compared the algorithm fit results 

under low and moderate overdispersion assumptions for the Negative Binomial portion of 

the model. The dispersion parameter ϕ was given the range 1/90 to 1/120 for the low 

dispersion setup and the range 1/50 to 1/60 for the moderate dispersion setup.

In order to make the isoform Dirichlet distributions for the DU genes as realistic as 

possible, we modeled these distributions using the results from the Blueprint data set 

analysis described in Section 3. The cell type–specific isoform Dirichlet parameter αk

(estimated by Dirichlet-multinomial distribution) were used in the simulations. In the 

Dirichlet-multinomial simulations, these values were used directly. In the Dirichlet-negative 

binomial simulations, these values were multiplied by a constant of five so that the overall 

variance between Dirichlet-multinomial and Dirichlet-negative binomial are similar.

Three data sets were simulated using the three different data modeling assumptions: 

Dirichlet-multinomial, Dirichlet-negative binomial with moderate overdispersion, and 

Dirichlet-negative binomial with low overdispersion. We generated 15 pure reference 

samples per cell type for each simulation setup. We partitioned the pure samples such that 

for each cell type, 10 samples were used to generate the mixture samples and the other 5 

were used to estimate cell type–specific gene/isoform expression. Fifty mixture proportions 

were randomly selected from the distribution ρmix ∼ Dirichlet(2, 2, 2). Relatively extreme 

probabilities, defined as probability vectors that assigned one or more cell types to have a 

probability less than .05, were eliminated from consideration.

For the fragment length distribution file, we chose to simulate paired-end read lengths from 

a truncated normal distribution with mean 300 bp, standard deviation 50 bp, and truncated to 

the left at 150 bp. For the initial points, we used the same 10 generic initial points used in 

Section 3, provided in the Appendix in Table A1.

All three of the simulated data sets were then fit using the IsoDeconvMM algorithm and 

we examine the performance of IsoDeconvMM when different number of transcript clusters 

are used to estimate cell type proportions. In each simulate setup, we randomly selected 

the desired number of transcript clusters from the 100 simulated DU clusters. The results 

presented in Figures 3 and 4 suggest that the results of our IsoDeconvMM method is 

robust to the data generation mechanisms. The only situation where the performance of 
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IsoDeconvMM is slightly worse is when the number of transcript clusters is small (ie, only 

10 clusters) and the Dirichlet-negative binomial has moderate overdispersion.

5 | DISCUSSION

We have developed a new statistical method named IsoDeconvMM that estimates cell 

type abundance of bulk RNA-seq samples that are mixtures of multiple cell types. This 

method is unique from other deconvolution methods in that it utilizes DU information. 

We anticipate that this method will be of particular relevance in cases where DU is more 

informative than differential gene expression, or when the number of available genes is 

small. Currently, application of our method is limited by the availability of cell type–specific 

and isoform-specific gene expression data. Single cell RNA-seq (scRNA-seq) is a popular 

approach to generate cell type–specific gene expression data across different cell types, 

though most scRNA-seq pipelines cannot capture the complete information of different 

isoforms. However, the emerging spatial RNA-seq data show that it is possible to capture 

isoform-level gene expression for each cell or a few cells around a locus (Lebrigand et 

al., 2020; Maynard et al., 2020). We expect that the full advantage of IsoDeconvMM can 

be demonstrated when combining such cell type–specific and isoform-specific expression 

derived from these new pipelines.

We did not know of another deconvolution method that utilizes DU information with 

which to compare our method. Instead, we compared IsoDeconvMM with CIBERSORTx 

(Newman et al., 2015), which utilizes differential gene expression information. We believe 

a key advantage of our method over existing reference-based deconvolution methods is 

that we can estimate cell type fractions using the gene expression data from a single gene 

by exploiting the relative expression of each isoform within a gene. We tested this theory 

by comparing our method with CIBERSORTx, which uses information across genes. We 

found that our method performs similarly compared with CIBERSORTx when a moderate 

number of genes or transcript clusters are used and outperforms CIBERSORTx when a 

small number of transcript clusters are used. In addition to seeing this pattern in the in 

silico Blueprint analyses presented in Section 3, we also found similar results when we 

performed both IsoDeconvMM and CIBERSORTx on simulated Dirichlet-multinomial data 

(see Web Appendix B for details and results). This could be very useful when it is desired 

to distinguish between highly similar cell types, such as closely related neuron cells, in 

which case there may not be many transcript clusters that can truly discriminate between the 

cell types. Additionally, this could be useful in clinical settings that utilize a small panel of 

genes.

Although we could have compared our method with CIBERSORTx using isoforms instead 

of genes (or transcript clusters), thereby using information across isoforms, we felt applying 

CIBERSORTx on isoforms has several limitations. The estimate of isoform expression is 

generally more noisy and has more measurement error. Furthermore, a major limitation 

of approaches that use information across genes/isoforms is that a sufficient sample size 

of genes or isoforms is required. This limitation, which was illustrated in the in silico 

analysis results, is the same limitation for either CIBERSORTx on genes or CIBERSORTx 

on isoforms. Consequently, using CIBERSORTx on isoforms would not provide a benefit. In 
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contrast to methods that use information across genes/isoforms, IsoDeconvMM utilizes gene 

expression variation across exon sets. The number of exon sets can increase quickly with 

the number of exons, and thus there are many genes with enough sample size within a gene 

itself.

The IsoDeconvMM method has other beneficial properties. In Web Appendix B, we have 

demonstrated that our method only requires a small number of pure reference samples per 

cell type. The simulations also show that the IsoDeconvMM method is robust to some model 

misspecification.

The IsoDeconvMM method has some limitations related to its computation time. Part of 

the reason for this time limitation is due to the fact that it requires an input of multiple 

initial points. However, this could be remedied using parallel computation techniques. 

Parallel computation techniques can be easily used in conjunction with the IsoDeconvMM 

method because a separate proportion estimate is calculated for each transcript cluster, and 

these individual estimates are later aggregated to get the overall proportion estimate. The 

IsoDeconvMM package, available for download in gitHub, allows for either serial or parallel 

computation. When the algorithm was run in serial using the UNC Longleaf computing 

cluster (CPU Intel processors between 2.3 GHz and 2.5 GHz), it took an average of 16.55 

minutes to estimate the mixture proportion for a transcript cluster using 10 initial points.

More generally, the IsoDeconvMM procedure has the same limitations that apply to all 

reference-based deconvolution methods. These methods require assumptions about the true 

number and identity of cell types in the mixture samples. In many applications, this cell type 

information is unknown.

We looked further into the cell type 1 bias seen in the in silico Blueprint analyses. We 

performed 10 replicates of the in silico analyses, picking different sets of 100 individuals 

to create the mixture samples, picking different sets of pure reference samples, but using 

the same transcript clusters used in Section 3. We found that 2 of the 10 analysis replicates 

resulted in similar V shapes in the cell type 1 scatter plots seen in the paper results, but the 

other 8 replicates did not. This led us to believe that this concerning V shape in the cell type 

1 scatter plot results were likely a result of unlucky randomness in the simulation setup. See 

Web Appendix B for further details and results.

It should be noted that the IsoDeconvMM method is sensitive to the isoform distribution 

effect size across the different cell types. We recommend users to be conscientious about 

selecting isoforms with the greatest effect sizes between the different cell types, regardless 

of what method they choose to identify isoforms with differential usage across the cell types.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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permission of BLUEPRINT Data Access Committee Members (blueprint-dac@ebi.ac.uk).

APPENDIX: ADDITIONAL SIMULATION DETAILS

A.1 | Transcript cluster selection: Large isoform effect sizes

This section describes the procedure used to select transcript clusters that have isoforms 

highly expressed in one cell type but minimally expressed or not expressed at all in the other 

two cell types. In the first part of the section, we describe the specific procedure we utilized 

to select transcript clusters for use in the in silico Blueprint analysis described in Section 3; 

many of the pure sample isoformparameter estimates from these clusters were also used in 

the simulations presented in Section 4. Later in the section, we discuss how these steps can 

be generalized for those wishing to use the IsoDeconvMM procedure.

A.1.1 | In silico Blueprint analysis

Ten samples per cell type were selected from the cell type–specific gene expression data 

generated by the Blueprint project (Chen et al., 2016). These 30 samples were separate from 

the samples used during the IsoDeconvMM algorithm fit and the samples used to create 

the mixture files. For each of these samples, the function isoDetector from the isoform 

R package (Sun et al., 2015) was applied to obtain penalized estimation of isoform-level 

expression for each cluster.

Next we outline the procedure for cluster selection. The transcript clusters were first filtered 

such that we only considered clusters on chromosomes one through four. Additionally, 

transcript clusters were filtered such that every cluster had between 3 and 20 isoforms.

For each cell type, we sought to select a cluster if it has at least one isoform with high 

expression in one cell type, and no or minimal expression in all other cell types. The same 

procedure is applied to each cell type and here we just use cell type 1 as an example. For 

each transcript cluster, we identified isoforms that were sufficiently expressed in cell type 1 

(eg, it had nonzero abundance values in at least 9 of the 10 samples for cell type 1). For each 

isoform that met this criteria, we calculated the fold change of its average abundance in cell 

type 1 versus the average abundance in the other two cell types combined.

In addition to fold change, we also applied hypothesis testing for cluster selection. Again, 

consider cluster selection for cell type 1. We again identified isoforms that were sufficiently 

expressed in cell type 1 (eg, it had nonzero abundance values in at least 9 of the 10 samples 

for cell type 1). For each isoform that was expressed in cell type 1, a one-sided Wilcoxon 

rank sum test was performed to test the hypothesis that this isoform has higher abundance in 

cell type 1 than the other two cell types combined.
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Isoforms that resulted in Bonferroni-adjusted P-values below the .05 threshold from the 

Wilcoxon rank sum tests were kept for further consideration. Of the isoforms that met 

this criteria, the 60 isoforms with the largest fold change values from each cell type were 

selected. The union across all cell types of the clusters associated with these best isoforms 

gave 130 transcript clusters.

Once the pure sample fit portion of the IsoDeconvMM algorithm was applied to these 

transcript clusters, some further filtration was applied. Clusters whose pure sample isoform 

Diriclet parameter values resulted in NA values or extremely large and divergent values 

(more than two values were greater than 500) were excluded from further consideration. In 

the case when five pure samples were used to estimate the cell type–specific parameters, 

eight clusters met this exclusion criteria.

Once these clusters were excluded, nS isoforms with the greatest fold change values for each 

cell type were selected. We adjusted the value of nS so that the total number of transcript 

clusters selected was 100, 50, 25, and 10.

A.1.2 | Generalization of procedure

We provide here a generalization of the above procedure. For general data with K cell 

types, we recommend obtaining at least five pure cell type reference samples from each 

cell type. On each of the pure cell type reference samples, run the isoDetector function in 

order to obtain the abundance estimates of each isoform within each transcript cluster. For a 

particular cell type k, perform the following steps:

1. Identify isoforms where no more than one of the pure reference samples for cell 

type k have an estimated abundance of zero for that isoform.

2. For each isoform that meets the criteria of step 1, calculate the average 

abundance of the isoform within the samples of cell type k and calculate the 

average abundance of the isoform within all other cell type samples. Calculate 

the fold change between these average estimates.

3. For each isoform that meets the criteria of step 1, perform a one-sided Wilcoxon 

rank sum test to test the hypothesis that this isoform has higher abundance in 

cell type 1 than the other two cell types combined. Calculate Bonferroni-adjusted 

P-values and ignore isoforms that give adjusted P-values above a certain cutoff 

(eg, cut-off .05).

4. Of the isoforms that meet the criteria of step 3, examine their fold change 

estimates. At this step, one could either pick the X isoforms with the highest fold 

change values (eg X = 50 or X = 25) or pick the isoforms with fold change values 

above a particular threshold.

5. For the isoforms picked after step 4, identify the transcript clusters to which 

these isoforms belong.
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TABLE A1

The 10 generic initial points used in the in silico Blueprint analysis

CT1 CT2 CT3

0.10 0.10 0.80

0.10 0.80 0.10

0.80 0.10 0.10

0.25 0.25 0.50

0.25 0.50 0.25

0.50 0.25 0.25

0.20 0.40 0.40

0.40 0.20 0.40

0.40 0.40 0.20

0.33 0.33 0.33

Complete the above procedure for each cell type k = 1, …, K. Use the transcript clusters identified with this procedure in 

the IsoDeconvMM analysis.

A.1.3 | Initial points used for in silico Blueprint analysis

Table A1 comprises a systematic approach to selecting initial points, where the following 

scenarios are represented: extreme cases where one cell type dominates with a large 

proportion and the other cell types split the remaining proportion; the equality case where all 

cell types are represented equally; and moderate cases that fall in between the extreme and 

equality cases. In the more general case of K cell types, we would also recommend setting 

up a mix of these three cases for the initial points. For the extreme cases, one could consider 

setting initial points in the following manner: K − 1 cell types initialized with proportion 

0.10, and the Kth cell type initialized with the remaining proportion (1 − 0.1 ∗ (K − 1)). When 

K ≥ 4, it would be sufficient to leave out moderate cases and instead just add the equality 

case when each proportion is equal to 1/K, which would not be much different from any 

moderate cases that could be specified. In the case of K = 2, we recommend adding the 

moderate cases of cell type proportion combinations {0.25, 0.75} and {0.33, 0.67}. The 

IsoDeconvMM R package automatically recommends initial points in the above manner.
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FIGURE 1. 
Hypothetical gene and isoform construction model
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FIGURE 2. 
Blueprint mixture proportion estimate results calculated using the CIBERSORTx and 

IsoDeconvMM methods. Results separated by cell types and number of transcript clusters 

used in the analysis. (a) Proportion estimates vs true proportions for CIBERSORTx method 

(used DE clusters only). (b) Proportion estimates vs true proportions for IsoDeconvMM 

method (used DU clusters only). (c) Correlation and (d) sum-of-square (SSE) results 

compared across methods
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FIGURE 3. 
IsoDeconvMM proportion estimates for different underlying data models: (a) Dirichlet-

multinomial, (b) Dirichlet-negative binomial with moderate overdispersion, and (c) 

Dirichlet-negative binomial with low overdispersion. Results separated by cell types (rows) 

and number of transcript clusters used in the analysis (columns)
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FIGURE 4. 
Correlation and sum-of-square error (SSE) results comparing the IsoDeconvMM proportion 

estimates vs the true proportions for simulations assuming different underlying data 

models: Dirichlet-multinomial, Dirichlet-negative binomial with moderate overdispersion, 

and Dirichlet-negative binomial with low overdispersion. Results separated by cell types 

and number of transcript clusters used in the analysis. This figure appears in color in the 

electronic version of this article, and any mention of color refers to that version
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TABLE 1

The exon sets available for each of the three isoforms from the hypothetical gene in Figure 1. Value of 1 

indicates that a paired-end read could theoretically map to that exon set given that the read comes from the 

isoform specified; value of 0 otherwise

Exon set Isoform 1 Isoform 2 Isoform 3

E1 1 1 1

E2 0 1 1

E3 0 0 1

E4 1 1 1

E1, E2 0 1 1

E1, E3 0 0 1

E1, E4 1 1 1

E2, E3 0 0 1

E2, E4 0 1 1

E3, E4 0 0 1

E1, E2, E3 0 0 1

E1, E2, E4 0 1 1

E1, E3, E4 0 0 1

E2, E3, E4 0 0 1

E1, E2, E3, E4 0 0 1
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