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Abstract

Significant attention has been given to developing data-driven methods for tailoring patient care 

based on individual patient characteristics. Dynamic treatment regimes formalize this approach 

through a sequence of decision rules that map patient information to a suggested treatment. The 

data for estimating and evaluating treatment regimes are ideally gathered through the use of 

Sequential Multiple Assignment Randomized Trials (SMARTs), though longitudinal observational 

studies are commonly used due to the potentially prohibitive costs of conducting a SMART. 

Observational studies are typically powered for simple comparisons of fixed treatment sequences; 

a priori power or sample size calculations for tailored strategies are rarely if ever undertaken. This 

has lead to many studies that fail to find a statistically significant benefit to tailoring treatment. 

We develop power analyses for the estimation of dynamic treatment regimes from observational 

studies. Our approach uses pilot data to estimate the power for comparing the value of the optimal 

regime, i.e., the expected outcome if all patients in the population were treated by following the 

optimal regime, with a known comparison mean. This allows for calculations that ensure a study 

has sufficient power to detect the need for tailoring, should it be present. Our approach also 

ensures the value of the estimated optimal treatment regime has a high probability of being within 

a range of the value of the true optimal regime, set a priori. We examine the performance of the 

proposed procedure with a simulation study and use it to size a study for reducing depressive 

symptoms using data from electronic health records.
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1. Introduction

Data-driven methods for personalizing treatment assignment have been of great interest 

to clinicians and researchers. Dynamic treatment regimes (DTRs) operationalize clinical 

decision-making through a sequence of decision rules that map up-to-date patient 

information to a recommended treatment (Chakraborty and Moodie, 2013; Tsiatis et al., 

2019). An optimal treatment regime is a set of decision rules that maximizes the mean of 

a measure of positive health outcome when all patients in the population of interest are 

assigned treatment by following that regime (Murphy, 2003; Robins, 2004). DTRs have been 

studied to improve decision-making in healthcare across many areas of applications such as 

cancer (Zhao et al., 2011; Wang et al., 2012), schizophrenia (Shortreed and Moodie, 2012), 

and depression (Chakraborty et al., 2016).

Many methods for estimating optimal treatment regimes have been proposed, three of which 

are Q-learning, G-estimation, and dynamic weighted ordinary least squares (dWOLS). Q-

learning is a regression-based approach that is straightforward to implement in practice, but 

is not robust to model misspecification (Watkins and Dayan, 1992). G-estimation uses a 

contrast function to estimate an optimal regime, and is doubly robust, meaning it is robust 

to misspecification of either the outcome or propensity score model (Robins, 2004); it 

has, however, seen little uptake in applications. dWOLS is based on a series of weighted 

regression models and, like Q-learning, is straightforward to implement in a continuous 

outcome setting, yet possesses double-robustness (Wallace and Moodie, 2015).

Data for the estimation of optimal treatment regimes are ideally gathered through a 

Sequential Multiple Assignment Randomized Trial (SMART) (Lavori and Dawson, 2000, 

2004; Murphy, 2005). SMARTs are typically sized for comparing specific treatment 

regimes, as opposed to identifying optimal regimes (Oetting et al., 2011; Lei et al., 2012; 

Artman et al., 2020; Seewald et al., 2020). However, data sourced from longitudinal 

observational studies are more commonly used because the resources for conducting 

SMARTs are often prohibitive and estimation of DTRs is often considered exploratory 

in nature (Chakraborty and Murphy, 2014). Observational studies are generally powered 

for simple research questions such as comparisons of fixed strategies. For either study 

type, power and sample size calculations typically do not take estimation of an optimal 

DTR into account. This has resulted in many studies of DTRs failing to find a statistically 

significant benefit to tailoring treatments to individual patient characteristics (e.g. Krakow 

et al., 2017; Simoneau et al., 2020; Coulombe et al., 2021). Further, there is no guarantee 

that the performance of an estimated regime will be close to that of the true optimal 

regime. Therefore, it has been advised that estimated optimal treatment regimes be evaluated 

with a follow-up study in which patients are randomized to regimes of interest (Murphy, 

2005). This approach is costly since it requires conducting two studies. In addition, if the 
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original study is not powered to guarantee a high-quality estimate of the optimal regime, the 

follow-up study could focus on a poor-quality treatment regime.

There has been some work on power and sample size calculations for randomized trials 

for estimating optimal DTRs, i.e., estimating treatment strategies that are potentially more 

highly tailored than the simple, embedded strategies within the trial. These methods provide 

a sample size that ensures sufficient power to compare the optimal regime with standard 

of care as well as ensuring that the performance of the estimated optimal regime is close 

to that of the true optimal regime, however these existing approaches do not account for 

the potential loss of effective sample size (power) due to the confounding that typically is 

present in observational studies. Laber et al. (2016) proposed a method for using pilot data 

to size a two-armed randomized single-stage trial that is based on inverting a projection 

confidence interval; that is, the approach is suitable for a single, tailored decision but 

not a multi-stage SMART for DTRs. Rose et al. (2019) proposed two methods for sizing 

two-stage SMARTs for the estimation of optimal DTRs. The first of the Rose et al. methods 

imposes strong assumptions on the underlying data-generating model that assumes away the 

complexities related to nonregularity, leading to a sample size estimator that resembles a 

comparison of fixed treatment sequences. The second makes minimal assumptions and uses 

bootstrap oversampling (i.e., resampling with replacement with sample size greater than the 

original data size) with pilot data to estimate a sample size. No power calculations exist for 

observational studies for estimating optimal DTRs.

In this paper, we propose a method that uses pilot data to conduct power (or sample size) 

calculations for a multistage, longitudinal observational study for estimating DTRs. This 

approach is based on constructing a projection interval and using bootstrap oversampling 

to estimate the power for a given sample size. Alternatively, this method can also be 

used to conduct sample size calculations by estimating the sample size that results in the 

desired power. In observational studies, it is more common to perform power calculations 

for a given sample size, either prior to conducting an analysis (e.g., for a grant proposal) 

or following an analysis to determine whether low power could explain the null finding 

and thus to provide context for the interpretation of results (Morris and van Smeden, 

2022; Campbell et al., 2022). In some contexts, however, sample size calculations for 

observational studies may be very informative. For instance, a sample size calculation 

inform researchers how many sites to include in a multi-site study or how many years of 

data are needed in a retrospective corhort study. Alternatively, it may be the case that the 

information required for the analysis requires additional processing or expense, such as if 

key biomarkers must be measured from frozen tissue samples or hand-written notes must be 

extracted from patient files.

This work provides the first procedure for conducting power and sample size calculations for 

estimating an optimal treatment regime from observational data as well as the first method 

for power and sample size calculations for any study for estimating an optimal regime that 

consists of more than two treatment decisions. Our method for power calculations requires 

a finite-sample (nonasymptotic) estimate of the variance of DTR parameters, which can be 

accomplished even in nonregular settings via the m − out − of − n bootstrap (Chakraborty et 

al., 2013). This approach, however, has yet to be implemented in more than two stages. 
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Thus, a further contribution of this work is to demonstrate this resampling method for 

estimating confidence intervals for the parameters indexing a DTR with more than two 

stages.

We give an overview of the setup and notation for this work in Section 2. In Section 3, we 

present the proposed method for power calculations. In Section 4, we provide a simulation 

study to demonstrate the empirical performance of the proposed approach and the variability 

in the resulting sample size across different pilot studies for a three-stage observational 

study. In Section 5, we demonstrate the use of our method for sizing a study to reduce 

depressive symptoms using electronic health record (EHR) data from Kaiser Permanente 

Washington (KPWA). In Section 6, we give concluding remarks and a discussion of open 

problems.

2. Setup and Notation

We consider powering an observational study for estimating an optimal dynamic treatment 

regime with K sequential treatment decisions. We assume two potential treatment options 

at each stage. The observed data are of the form Dn = X1, i, A1, i, …, XK, i, AK, i, Y i i = 1
n , which 

comprises n i.i.d. replicates of X1, A1, …, XK, AK, Y  where: X1 ∈ ℝp1 denotes baseline patient 

information, Ak ∈ 0, 1  denotes the treatment assigned at the kth stage, Xk ∈ ℝpk for 

k = 2, …, K denotes additional patient information recorded during the course of treatment 

k − 1 , and Y ∈ ℝ denotes the outcome of interest, coded such that higher values are better. 

Let Hk be patient history available to a clinical decision maker at stage k, so H1 = X1 and 

Hk = X1
T, A1, …, Ak − 1, Xk

T T  for k = 2, …, K.

A treatment regime, d, is defined as a set of decision rules d = d1, …, dK , such that 

dk:domHk 0, 1  for k = 1, …, K is a function that maps a patient’s history to a 

recommended treatment lying within the domain (dom) of possible treatments. Therefore, a 

patient with history Hk = hk is recommended to be assigned treatment dk hk . It is helpful to 

be able to reference a patient’s treatments received and history up to or after a certain stage. 

To do this, we use an overbar to denote the treatments, covariates, and regimes up to stage k, 

so we have that a−k = a1, …, ak , x−k = x1, …, xk , and d−k = d1, …, dk . When we are considering 

the entire sequence of K stages, we will suppress the subscript so that a− = a−K and x− = x−K. 

An underbar will denote treatments, covariates, and regimes from stage k to K such that 

ak = ak, …, aK , xk = xk, …, xK , and dk = dk, …, dK .

To formalize the notion of an optimal regime, we use the potential outcome 

framework (Rubin, 1978). Let Hk
*(a−k − 1) be the potential history under the 

treatment sequence a−k − 1 and Y *(a−) denote the potential outcome under the 

treatment assignment a−. The set of all potential outcomes is then denoted as 

W * = {H2
*(a1), H3

*(a−2), …, HK
* (a−K − 1), Y *(a−): a− ∈ {0, 1}K}. The potential outcome of following 

a regime, d, is defined as
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Y *(d) =
a− ∈ {0,1}K

Y *(a−)I d1 h1 = a1
k = 2

K
I[dk{Hk

* ak − 1 } = ak]

where I is the indicator function. Define the value of any regime by V (d) = E{Y *(d)}. An 

optimal regime, dopt, is then defined as a regime that satisfies V dopt ≥ V (d) for all d.

To be able to express the optimal regime in terms of the observed data, we will need 

three standard causal assumptions for DTRs (Robins, 2004): (C1) the stable unit treatment 

value assumption (SUTVA), Y = Y *(A−) and Hk = Hk
*(A−k − 1) for k = 2, …, K; (C2) sequential 

ignorability, W * ⊥ Ak ∣ Hk for k = 1, …, K; and (C3) positivity, P Ak = ak ∣ Hk = hk > 0 with 

probability 1 for each ak ∈ 0, 1  for k = 1, …, K.

Many estimation methods for an optimal regime focus on estimating a contrast function 

which characterizes how the interaction of treatment and patient history affects the outcome 

of interest. These estimation methods are commonly referred to as A-learning or advantage 

learning methods (Blatt et al., 2004). The optimal blip-to-zero function, γk hk, ak , is defined 

as the difference in expected outcome between receiving treatment ak and some reference 

treatment, which we will take to be treatment 0, for a patient that has history Hk = hk if we 

assume they are treated optimally after stage k. Therefore, we have that

γK hK, aK = E{Y *(a−K − 1, aK) − Y *(a−K − 1, 0) ∣ HK = hK},
γk hk, ak = E Y * a−k − 1, ak, dk + 1

opt − Y * a−k − 1, 0, dk + 1
opt ∣ Hk = hk

for k = 2, …, K − 1,
γ1 h1, a1 = E Y * a1, d2

opt − Y * 0, d2
opt ∣ H1 = h1 .

Note that the treatments assigned by dk + 1
opt  may differ according to its arguments. For 

example, consider γk hk, ak : For the term Y * a−k − 1, ak, dk + 1
opt  we will have that dk + 1

opt  assigns 

treatment dk + 1
opt {Hk + 1

* (a−k − 1, ak)} while in Y * a−k − 1, 0, dk + 1
opt  we have that dk + 1

opt  assigns treatment 

dk + 1
opt {Hk + 1

* (a−k − 1, 0)}. Then an optimal treatment can be seen as the treatment that maximizes 

the blip function at that stage, so we have that dk
opt hk = argmaxak γk hk, ak .

A-learning methods alternatively can focus on the regret function. The regret function at 

stage k, μk hk, ak , is defined as the decrease in expected outcome from assigning treatment 

ak instead of the optimal treatment if we assume that patients were treated optimally in all 

following stages. Therefore, for the K stages, the regret functions are given by

μK hK, aK = E{Y *(a−K − 1, dK
opt) − Y *(a−K − 1, aK) ∣ HK = hK},

μk hk, ak = E{Y *(a−k − 1, dk
opt, dk + 1

opt ) − Y *(a−k − 1, ak, dk + 1
opt ) ∣ Hk = hk}

for k = 2, …, K − 1,
μ1 h1, a1 = E{Y *(d1

opt, d2
opt) − Y *(a1, d2

opt) ∣ H1 = h1} .
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The regret function and the optimal blip-to-zero function are then related by 

μk hk, ak = γk{hk, dk
opt hk } − γk hk, ak . The value of an optimal regime can then be expressed 

as

V dopt = E Y *(A−) +
k = 1

K
γk{Hk, dk

opt Hk } − γk Hk, Ak .

Our power calculations are based on using dWOLS to estimate the parameters of the blip 

functions, which then leads to a substitution estimator for the value of the optimal regime. 

We will let an estimator of dopt from an observational study of size n be denoted by dn. Let 

B0 ∈ ℝ be a fixed, known mean value such that we want to test if assigning treatment by 

following dopt would lead to a mean outcome greater than B0. The choice of B0 will depend 

on the research question of interest and could represent the mean outcome under a specific 

static or dynamic regime, e.g., a fixed treatment sequence or standard of care. Therefore, we 

will construct an α-level test of the null hypothesis, H0:V dopt ≤ B0, based on the estimator, 

dn. Let η > 0 denote a clinically meaningful increase in the expected outcome. We will 

estimate the power given by the probability of rejecting the null hypothesis conditional on 

V dopt ≥ B0 + η.

We will then construct a sample size estimator using our proposed method for power 

calculations that will satisfy two separate conditions. These conditions match those used 

in Rose et al. (2019) which were based on those used in Laber et al. (2016). Let 

η, ϵ > 0, ϕ, α, ζ ∈ (0, 1) be constants. Our goal is to choose n such that:

(PWR) there exists an α-level test of the null hypothesis, H0:V dopt ≤ B0, based on the 

estimator, dn, that has a power of at least (1 − ϕ) × 100 + o(1) provided V dopt ≥ B0 + η; (OPT) 

P{V (dn) ≥ V dopt − ϵ} ≥ 1 − ζ + o 1 .

Each condition guarantees a different aspect of our sample size procedure. The first 

condition, (PWR), ensures that if tailoring treatments based on patient history provides a 

clinically significant improvement in outcomes, then a study sized with our approach will 

be sufficiently powered to detect a statistically significant difference between the value 

of the optimal regime and B0. The second condition, (OPT), guarantees the true value 

of a regime estimated from a study based on our power calculations will be within a 

specified tolerance of the value of the true optimal regime. The quantity V (dn) represents the 

marginal mean outcome if the estimated optimal regime dn is used to assign treatments to the 

population of interest and can be expressed as V (dn) = E{Y *(dn) ∣ Dn}. This will ensure that 

the performance of our estimated optimal regime will be close to the true optimal regime.
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3. Methodology of Proposed Power Calculations

3.1 Dynamic Weighted Ordinary Least Squares

dWOLS estimates parameters in the blip functions using a sequence of weighted ordinary 

least squares regressions (Wallace and Moodie, 2015). We posit a model for the blip-to-zero 

functions given by γk hk, ak; ψk  for k = 1…, K. We will assume that each blip-to-zero function 

is correctly specified such that γk(hk, ak; ψk
*) = γk hk, ak .

The treatment-free outcome is given by

Gk(ψk) = Y − γk hk, ak; ψk +
j = k + 1

K
μj hj, aj; ψj

such that ψk = ψk, …, ψK . If we assume ψk is the true value of the parameter in 

our blip models, then Gk(ψk) represents the patients’ actual outcome adjusted for the 

expected difference in outcome if they received treatment 0 at stage k and then 

were treated optimally for the remaining stages. This is referred to as the treatment-

free outcome since it does not depend on the treatment received at stage k, though 

it is “treatment-free” only if the reference treatment is no treatment. When we are 

considering only active treatments, the treatment-free outcome denotes the expected 

outcome under the reference treatment at stage k. Under assumptions (C1)-(C3), we 

have that E{Gk(ψk
*) ∣ Hk = hk} = E{Y *(a−k − 1, 0, dk + 1

opt ) ∣ Hk = hk}. We then specify a model for 

E{Gk(ψk
*) ∣ Hk = hk} that will be given by gk(hk; βk).

Define the pseudo-outcome for stage k as Y k = Y + ∑j = k + 1
K μj(hj, aj; ψ̂j). The pseudo-outcome 

for stage k represents the estimated counterfactual outcome if treatments were assigned via 

our estimated optimal rules after stage k. We model the pseudo-outcome as the sum of the 

treatment-free model and the blip-to-zero model

E Y k ∣ Hk = hk, Ak = ak; βk, ψk = gk hk; βk + γk hk, ak; ψk .

We could then estimate βk and ψk as a standard regression problem, which would 

lead to an estimated optimal decision rule at stage k, d̂k
opt hk = arg maxak ∈ 0,1 γk(hk, ak; ψ̂k). 

Note that the estimated regime depends only on ψk, so βk is a nuisance parameter, 

but a consistent estimator of ψk would require correctly specifying our models 

for both gk hk; βk  and γk hk, ak; ψk . Therefore, we posit a model πk hk; ξk  for the 

propensity score πk hk = E Ak ∣ Hk = hk . Wallace and Moodie (2015) show that if 

we perform a weighted ordinary least squares with a weight function that satisfies 

πk hk; ξk w 1, hk; ξk = 1 − π hk; ξk w 0, hk; ξk , then the resulting estimate of ψk will be 

consistent as long as the blip model is correctly specified and either the treatment-free 

model or the propensity score model is correctly specified. Weight functions that satisfy this 
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equality include w ak, hk; ξk = ak − π hk; ξk  and the inverse probability of treatment weights 

given by w ak, hk; ξk = ak π hk; ξk
−1 + 1 − ak 1 − π hk; ξk

−1.

3.2 Inference for the Value

We assume linear models for both the treatment-free and blip models. Therefore the model 

for the pseudo-outcome will be given by

E Y k ∣ Hk = hk, Ak = ak; βk, ψk = hk, β
T βk + akhk, ψ

T ψk

where hk, β and hk, ψ are components of hk, each including a leading one. The estimated optimal 

treatment at stage k is given by I(hk, ψ
T ψ̂k > 0), and the pseudo-outcome for stage k is given by 

Y k = Y + ∑j = k + 1
K hj, ψ

T ψ̂j I(hj, ψ
T ψ̂j > 0) − aj . Note the pseudo-outcome at stage k is a nonsmooth 

function of the generative model because of the indicator function. Therefore, the estimator 

for ψk is nonregular when k < K and standard approaches for inference no longer hold 

because n ψ̂k − ψk  is not uniformly normal (Robins, 2004).

Similarly, an estimator for the value is given by

V n dopt = ℙn Y +
k = 1

K
Hk, ψ

T ψ̂k I(Hk, ψ
T ψ̂k > 0) − Ak

where ℙn denotes the empirical expectation. V dopt  is a nonsmooth function of the 

generative model as well, so again, standard approaches for inference do not hold. 

Therefore, to estimate the power for a given sample size, we invert a projection confidence 

interval for V dopt) (Laber et al., 2014). This interval is valid as long as the blip model is 

correctly specified, in addition to either the propensity score model or the treatment-free 

model being correctly specified.

Define Y (ψ) = Y + ∑k = 1
K μk Hk, Ak; ψk , V (ψ) = E{Y (ψ)}, and V n(ψ) = ℙn{Y (ψ)}. Thus 

V n(ψ̂) = V n(d
opt). We also have that V dopt = E{Y (ψ*)}. Note that the value function can 

then be expressed as a function of either a treatment regime, d, or the parameters indexing a 

treatment regime, ψ. Define ς2(ψ) = E{Y (ψ) − EY (ψ) 2 and ς̂n
2(ψ) = ℙn Y (ψ) − ℙnY (ψ) 2. Then 

for a fixed value of ψ, if E Y 2(ψ) < ∞

n V n(ψ) − V (ψ) Normal 0, ς2 ψ .

Let Ψn, 1 − ϑ denote a (1 − ϑ) × 100% confidence region for ψ*. If we choose ϑ1 and ϑ2 such that 

ϑ1 + ϑ2 = α, then an α-level test for H0:V dopt ≤ B0 rejects when

inf
ψ ∈ Ψn, 1 − ϑ1

V n(ψ) −
z1 − ϑ2ς̂n(ψ)

n ≥ B0
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where z1 − ϑ denotes the (1 − ϑ) quantile of a standard normal distribution. See Section A of 

the online Supplementary Material for proof that this is an α-level test. The power for this 

test is given by

P inf
ψ ∈ Ψn, 1 − ϑ1

V n(ψ) −
z1 − ϑ2ς̂n(ψ)

n ≥ B0

≥ P inf
ψ ∈ Ψn, 1 − ϑ1

n V n ψ − V ψ
ς̂n ψ + min n V ψ − B0 , nη

ς̂n ψ ≥ z1 − ϑ2 .

We replace V (ψ) − B0 with min V (ψ) − B0, η  as in Rose et al. (2019) so the sample size is 

based on the minimal effect size of interest instead of the estimated effect size. This will 

result in our proposed sample size procedure having power (1 − ϕ) × 100% when the effect 

size is η, with the power increasing as the true effect size increases to greater than η.

3.3 Confidence Region for ψ
The proposed hypothesis test requires constructing a confidence region for ψ. When K = 1, 

constructing a confidence region for ψ can be done using standard theory for m-estimators 

(Van Der Vaart, 1998). Let Hk, β be the components of the history in the treatment-free model 

at stage k and let Hk, ψ be the components of the history in the blip-to-zero model at stage k. 

For K = 1, the joint estimating equations are given by

i = 1

n H1, β

A1H1, ψ
w1 H1, A1; ξ1 Y − H1, β

T β1 − A1H1, ψ
T ψ1 = 0

i = 1

n 1
H1

A1 − exp ξ11 + H1
Tξ12

1 + exp ξ11 + H1
Tξ12

= 0 .

The standard sandwich variance estimator that does not adjust for the propensity score 

estimation performs well in practice (Wallace et al., 2017). Denoting the variance estimator 

by Σψ̂1, ℨϵ = {ψ1:n(ψ1 − ψ̂1)TΣψ̂1
−1(ψ1 − ψ̂1) ≤ χ1 − ϵ, p1

2 } is a Wald-type asymptotic (1 − ϵ) × 100%
confidence region for ψ1.

When K > 1, as previously mentioned, the estimator for ψk when k < K is nonregular 

due to the nonsmoothness of the pseudo-outcome. One potential solution to 

constructing a valid confidence set for ψ is to use a projection region. Define 

Y k ψk + 1 = Y + ∑j = k + 1
K hj, ψ

T ψj I hj, ψ
T ψj > 0 − aj  so Y k(ψk + 1) is equivalent to the pseudo-

outcome at stage k if ψk + 1 = ψ̂k + 1. For k = 1, …, K − 1 define

ψk
*(ψk + 1) = arg min

ψk
E wk Hk, Ak Y k ψk + 1 − Hk, β

T βk − AkHk, ψ
T ψk

2
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so that ψk
*(ψk + 1) denotes the population-level parameter for the blip-to-zero model if we 

know that ψk + 1
* = ψk + 1. Therefore, we also have that ψk

* = ψk
*(ψk + 1

* ). Define an estimator for 

ψk
*(ψk + 1) to be given by

ψ̂k(ψk + 1) = arg min
ψk

ℙn wk(Hk, Ak; ξ̂) Y k ψk + 1 − Hk, β
T βk − AkHk, ψ

T ψk
2 .

This estimator is the weighted least squares estimator used in dWOLS with the pseudo-

outcome replaced with Y ψk + 1 . Let Σψ̂k(ψk + 1) denote the variance of ψ̂k(ψk + 1). Then

ℨk, n, ϵ(ψk + 1) = ψk:n(ψk − ψ̂k)TΣψ̂k
−1(ψk + 1)(ψk − ψ̂k) ≤ χ1 − ϵ, pk

2

gives a (1 − ϵ) × 100% Wald-type asymptotic confidence region for ψk
*(ψk + 1). Then, given 

ϵ1, …, ϵK ∈ (0, 1) such that ϑ = ∑k = 1
K ϵK ≤ 1,

Ψn, ϑ = ψ:ψK ∈ ℨK, n, ϵK and ψk ∈ ℨk, n, ϵk(ψk + 1) for k = 1, …, K − 1

represents a (1 − ϑ) × 100% confidence region for ψ*. This approach to creating a 

confidence region for ψ will be increasingly conservative as K increases. Also, recall 

that our hypothesis test involves finding infψ ∈ Ψn, 1 − ϑ1 V n(ψ) − z1 − ϑ2ς̂n(ψ)
n . Note that this is 

a constrained optimization problem with ψ constrained by Ψn, 1 − ϑ1. For the projection region, 

Ψn, 1 − ϑ1, we have that ψK is constrained by ℨK, n, ϵK, but for values of k < K we have that 

the constraint depends on the value of ψk + 1. This makes performing the optimization very 

computationally difficult and infeasible for large values of K. We will instead focus on a 

bootstrap-based method for forming a confidence region that does not have the theoretical 

guarantees of the projection region, but has been found to perform well in practice (refer to 

Section B of the online Supplementary Material).

We can construct a valid confidence set using the m − out − of − n bootstrap, a tool 

for producing valid confidence intervals for nonsmooth functionals (Swanepoel, 1986; 

Dumbgen, 1993; Shao, 1994; Bickel et al., 1997). The m − out − of − n bootstrap uses a 

resampling size m that is smaller than the sample size n. Chakraborty et al. (2013) used the 

m − out − of − n bootstrap to create valid confidence intervals for the parameters indexing a 

DTR when estimating an optimal regime using Q-learning as well as an adaptive method to 

select m. Simoneau et al. (2018) examined using this procedure to create valid confidence 

intervals when using dWOLS to estimate the optimal regime. Both papers focused on two-

stage DTRs so the estimator for only the first stage has a nonregular limiting distribution. 

We propose a method for generalizing this procedure to a K-stage DTR in which the 

estimators in all k = 1…, K − 1 stages suffer from nonregularity.

We first discuss how Chakraborty et al. (2013) proposed using the m − out − of − n bootstrap 

to construct confidence intervals for stage-one parameters for a two-stage DTR. Define 
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ϱ ≜ P H2, ψ
T ψ2 = 0 , so that ϱ is a measure of the degree of nonregularity in the data. When 

ϱ = 0, the distribution of n(ψ̂1 − ψ1) is asymptotically normal and the standard bootstrap will 

produce valid confidence intervals. Chakraborty et al. (2013) proposed using a resample 

size of m̂ ≜ n
1 + κ(1 − ϱ̂)

1 + κ , where κ > 0 is a tuning parameter and ϱ̂ is an estimate of ϱ. 

When ϱ = 0, we have that m = n and as ϱ increases, our resample size will decrease, 

while κ determines the smallest acceptable resample size with m taking values within 

the interval [n
1

1 + κ , n]. Chakraborty et al. proposed using a plug-in estimator for ϱ given 

by ϱ = ℙnI{n(H2, ψ
T ψ̂2)2 ≤ τn H2, ψ }, where τn(h2, ψ) is given by h2, ψ

T Σ̂ψ̂2h2, ψχ1,1 − ν
2  such that Σ̂ψ̂2 is 

the plug-in estimator of nCov(ψ̂2, ψ̂2). Let ψ̂1, m̂
(b)  denote the bootstrap estimate for ψ1 from 

using a resample size of m̂. To construct a (1 − ϑ) × 100% confidence interval for ψ1, 

calculate the ϑ/2 × 100 and (1 − ϑ/2) × 100 percentiles of m̂(ψ̂1, m̂
(b) − ψ̂1), which we denote 

by l̂ and û, respectively. Then a (1 − ϑ) × 100% confidence interval for ψ1 is given by 

(ψ̂1 − û/ m̂, ψ̂1 − l̂/ m̂).

To generalize to a K stage DTR, we start by defining ϱk ≜ P Hk + 1, ψ
T ψk + 1 = 0 . Therefore, ϱk

indicates the degree of nonregularity in the estimation of ψk at stage k. The plug-in estimator 

for ϱK − 1 can be calculated using Σ̂ψ̂K. For ϱk for k = 1, …, K − 2, the nonregularity will 

cause the usual plug-in estimator to no longer be valid. Instead, we use the m − out − of − n
bootstrap to construct a valid confidence interval for hk, ψ

T ψk. The estimator ϱ̂k for ϱk is then 

given by the proportion of individuals in the sample for which the confidence interval for 

hk, ψ
T ψk contains zero. We then move backwards through the stages, getting an estimate of ϱ̂k

at each stage using the m − out − of − n bootstrap with a resample size of m̂k = n
1 + κ 1 − ϱ̂k

1 + κ
at each stage. Let ϱ̂ = maxk ϱ̂k. We calculate m̂ using the same formula as before and use 

this as our resample size. We calculate the ϵk/2 × 100 and (1 − ϵk/2) × 100 percentiles of 

m̂(ψ̂k, m̂
(b) − ψ̂k), which we denote by l̂k and ûk for each value of k. Then, given ϵ1, …, ϵK ∈ (0, 1), 

such that ϑ = ∑k = 1
K ϵK ≤ 1, a (1 − ϑ) × 100% confidence region for ψ* is given by

Ψn, ϑ = {ψ:ψk ∈ (ψ̂k − ûk/ m̂, ψ̂k − l̂k/ m̂) for k = 1, …, K − 1 and ψK ∈ ℨK, n, ϵK} .

Section B of the online Supplementary Material contains simulations demonstrating the 

coverage of confidence intervals generated using this procedure when applied to K = 3 stage 

DTRs and a data-driven approach to selecting κ using the double-bootstrap.

3.4 Bootstrap Power Calculations

We estimate the power for a given sample size using a bootstrap of pilot data, 

i.e., resampling from the pilot data samples of size n and assessing power with 

that sample size over a grid of candidate sample sizes n ∈ ℕ. We assume pilot 

data Dn0 = X1, i, A1, i, …, XK, i, AK, i, Y i i = 1
n0  that comprises n0 i.i.d. replicates from the same 

population of interest as the full study. To conduct sample size calculations, we search for 

the smallest sample size n for which the estimated power exceeds the threshold given in 

condition (PWR).
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Let ℙn0, n
(b)  denote the empirical bootstrap distribution for a resample size n from a pilot 

study of size n0. For any functional Zn = f(E, ℙn0), define the bootstrap equivalent by 

Zn0, n
(b) = f(ℙn0, ℙn, n0

(b) ). Let PB denote probabilities computed with respect to the bootstrap 

distribution conditional on the pilot data. An estimate of the power for a given sample 

size, n, is then given by

PB inf
ψ ∈ Ψn0, n, 1 − ϑ1

(b)

n V n0, n
(b) (ψ) − V n0(ψ)

ςn0, n
(b) (ψ)

+
min n V n0(ψ) − B0 , nη

ςn0, n
(b) (ψ)

≥ z1 − ϑ2

such that ϑ1 + ϑ2 = α. It is recommended to set ϑ1 to be relatively small compared to ϑ2

(Berger and Boos, 1994). The bootstrap estimator of the minimum sample size required to 

satisfy condition (PWR) is given by the smallest n that satisfies

PB inf
ψ ∈ Ψn0, n, 1 − ϑ1

(b)

n V n0, n
(b) (ψ) − V n0(ψ)

ζn0, n
(b) (ψ)

+
min n V n0(ψ) − B0 , nη

ζn0, n
(b) (ψ)

≥ z1 − ϑ2 ≥ 1 − ϕ .

Rose et al. (2019) proved that a bootstrap oversampling estimator of this form is consistent 

as n0 and n diverge under mild assumptions. Here, the form of V n0(ψ) is different, requiring 

slightly different assumptions. If we assume:

(A1) infψ E[Y (ψ) − E{Y (ψ)}]2 > 0 and supψ E[Y (ψ) − E{Y (ψ)}]2 > ∞;

(A2) the classes ℱ1 Y (ψ):ψ ∈ Θ  and ℱ2 Y 2(ψ):ψ ∈ Θ  are Donsker;

(A3) E Y (ψ)  is uniformly continuous in a neighborhood of ψ*;

we have that consistency holds and the proof then follows that of Rose et al. (2019).

Now we focus on determining sample sizes for the (OPT) condition. Recall that this 

condition states that P{V (dn) ≥ V dopt − ϵ} ≥ 1 − ζ + o(1). Note that for any sequence 

ψn ∈ Ψn, 1 − ϑ such that V n(ψ*) ≤ V n ψn + oP(1/ n) we have that

P V (ψ) ≥ V dopt + inf
ψ ∈ Ψn, 1 − ϑ1

{V n(ψ) − V (ψ)}− sup
ψ ∈ Ψn, 1 − ϑ1

{V n(ψ) − V (ψ)} ≥ 1 − ϑ1 + o 1 .

Then if Qn, 1 − ϑ2, 1 − ϑ1 is the 1 − ϑ2  th quantile of

sup
ψ ∈ Ψn, 1 − ϑ1

{V n(ψ) − V (ψ)} − inf
ψ ∈ Ψn, 1 − ϑ1

{V n ψ − V ψ },

(OPT) holds asymptotically if ϑ1 + ϑ2 ≤ ζ and Qn, 1 − ϑ1, 1 − ϑ2 ≤ ϵ. We again use bootstrap 

oversampling to estimate the smallest n such that this holds. Let Qn0, n, 1 − ϑ2, 1 − ϑ1
(b)  be the bootstrap 

estimate of Qn, 1 − ϑ2, 1 − ϑ1 from a pilot study of size n0 with a resample size of n. Then the 
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estimate of our sample size is given by the smallest n such that Qn0, n, 1 − ϑ2, 1 − ϑ1
(b) ≤ ϵ. To calculate 

a sample size that satisfies both conditions simultaneously, we recommend calculating a 

sample size for each condition individually and using the max of the two.

4. Simulation Study

We examined the finite sample performance of our proposed method for conducting power 

and sample size calculations with a simulation study. We considered sizing and conducting 

power calculations for a three-stage study with two treatment options at each stage. To 

evaluate the performance of our method for sizing a study, we conducted simulations 

for each of the two conditions (PWR) and (OPT) individually. Section C of the online 

Supplementary Material contains additional simulations for power calculations and sizing a 

two-stage study. The data generating model for our simulations was:

X1 N(0, 1), P Ak = 1 ∣ Hk = hk = 1 + e− ϖk, 0 + ϖk, 1xk
−1 for k = 1, 2, 3,

τ1 N(0, 1), X2 = μ20 + μ21X1 + τ1,
τ2 N(0, 1), X3 = μ30 + μ31X1 + μ32X2 + τ2,
H3,1

T = 1, X1, X2, X3 , H3,0
T = 1, X1, A1, A1X1, X2, A2, A2X1, A2X2, X3, X1

2

v N(0, 1), Y = H3,0
T λ3,0 + A3H3,1

T λ3,1 + v .

The parameters of the data generating model were given by:

ϖ1 = (0.25, 1), ϖ2 = (0.25, 1, − 1, − 1),
ϖ3 = (0.25, 0.5, 0.5, − 0.5, 1, − 0.5),
μ2 = (0, 0.5), μ3 = (0, − 0.5, 0.5),
λ3,0 = (1, 1, 0.5, − 0.75, 0.5, − 0.5, − 0.5, 0.5, 0.5, 0.25), λ3,1 = (0.25, 0.5, 0.5, − 0.5) .

We posited models such that the blip model at each stage was correctly specified, but both 

treatment-free models were misspecified by leaving out X1
2. We modeled the propensity 

score with a correctly specified logistic regression model so that dWOLS produced 

consistent estimates of the blip parameters.

For the simulation study examining our proposed method for estimating the power for a 

given sample size, we let α = 0.05 and η = 1.4. Therefore, we calculated the power for a 

0.05 level test of H0:V dopt ≤ B0. We evaluated the performance of the procedure when the 

effect size of tailoring was equal to η = 1.4 and examined how it changed as the effect 

size increased. An effect size of η = 1.4 corresponded to a standardized effect size of 

0.72, which is relatively moderate (Cohen, 1992). We let V dopt = B0 + η + Δη and varied 

Δ ∈ 0, 0.25, 0.5 . The data generating model was fixed across all settings, which caused 

V dopt  to be fixed, so we let B0 vary with Δ such that B0 = V dopt − Δη − η. We let the 

size of the pilot study vary such that n0 ∈ 200, 400  and estimated the power for a set of 

different sample sizes given by n ∈ 250, 500, 750 . For each sample size, we also estimated 

the true power via simulation. Each of the 500 repetitions of the simulation study involved 

simulating a pilot study of size n0 and using the proposed method to estimate the power for 
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each of the sample sizes n. We also repeatedly simulated studies of size n and conducted the 

proposed hypothesis test to calculate the true power.

Table 1 contains the mean, median, and standard deviation of the estimated power across the 

500 repetitions for each combination of the sample and effect sizes. The average estimated 

power was close to the true power for most settings of the simulation. The settings in which 

the mean differed from the true power were due to the distribution of the estimated power 

truncating at 1 and 0. This caused the mean to underestimate the power when the true power 

was close to 1, with the median remaining close to the true power. This was observed in 

the case of n = 750 and Δ = 0, which had a true power of 0.98, to have a mean and median 

for the estimated power of 0.84 and 0.99, respectively. As Δ increased, the variability in 

the estimated power decreased. Increasing the size of the pilot study from 200 to 400 

also caused the standard deviation in the estimated powers to decrease. As the variability 

decreased, the mean of the estimated powers moved closer to the true power, even when the 

true power was close to 1.

For the simulations using our proposed procedure for sample size calculations, we assumed 

= 0.05, ϕ = 0.1, and η = 1.4. Therefore, the first condition (PWR) held if we had a 0.05 

level test of H0:V dopt ≤ B0 that had power 90%, provided V dopt ≥ B0 + 1.4. We again 

evaluated the performance of the sample size procedure when the effect size of tailoring 

was equal to η = 1.4 and examined how it changed as the effect size increased by varying 

Δ ∈ 0, 0.25, 0.5,1 . We let ζ = 0.1 and varied ϵ ∈ 0.3, 0.5, 0.7 . Therefore, the second 

condition (OPT) held if P{V (dn) ≥ V (dopt) − ϵ} ≥ 0.9.

Each repetition of the simulation study consisted of the following steps. First, we generated 

a pilot study of size n0 ∈ 200, 400 . Second, we estimated the power on a grid of potential 

sample sizes using 500 bootstrap repetitions for each sample size considered. To construct 

a confidence set for ψ, we used the m − out − of − n bootstrap with κ = 0.2. Third, we used 

least squares to regress the estimated power on the potential sample sizes and used the fitted 

model to estimate the smallest sample size, n̂ Dn0 , that achieved the desired power of 90%. 

We fit this model using only the tested sample sizes that resulted in an estimated power in a 

small neighborhood of the targeted power, as the power curve will be approximately linear 

only within a small region. The possibility existed that the estimated value from the pilot 

study would be less than the comparison mean such that V n0(ψ) ≤ B0. When that occurred, 

we would not be able to find a sample size using that pilot that would be powered for a 

comparison with B0, and we define n̂ Dn0 = ∞. Fourth, for each n̂ Dn0 < ∞, we generated 

a study of size n̂ Dn0  and performed a hypothesis test for condition (PWR) calculating 

the empirical power over the 500 simulations using this process. For condition (OPT), we 

estimated the optimal regime using the study of size n̂ Dn0  and calculated the true value of 

the estimated regime using the known data generating functions. Last, we checked whether 

this value was within ϵ of the value of the true optimal regime. Section D of the online 

Supplementary Material contains high-level pseudocode for the simulation study.
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Tables 2 and 3 contain the sizing results for (PWR) and (OPT), respectively. The comparison 

to B0 was slightly underpowered when Δ = 0 and n0 = 200 with a power of 74.39%. This 

is partly due to the size of the pilot study, as we can see that as the pilot size increased 

to n0 = 400, the power increased to 82.68%. Increasing the size of the pilot also decreased 

the variance in the estimated sample size. As Δ increased, the power increased as expected 

and converged to 100%. For Δ = 0, the distribution of n̂ Dn0  was right skewed as expected; 

generally, pilot studies in which the estimated benefit to tailoring is very small will result 

in a large estimated sample size. This also caused the variance of the estimated sample size 

to increase. In general, this will occur when using the proposed method when η is small 

and V dopt  is close to B0 + η. As Δ increased, the degree of skewness and variance in the 

estimated sample size declined. Table 3 shows that the nominal concentration of 90% was 

achieved for all values of ϵ and n0. This procedure is conservative, as we can see that the 

concentration was 100% for all simulation settings. As ϵ decreased, the estimated sample 

size increased as expected. We also see that as we increased the size of the pilot study, the 

variance in the sample size estimate decreased. The simulation results from the two-stage 

study in Section C of the online Supplementary Material were very similar.

5. Illustration Using Data Gathered from EHRs

Kaiser Permanente Washington is a health system providing both clinical care and health 

insurance to members. This study used data extracted from electronic health records and 

health insurance claims from KPWA clients. The data for this study consisted of records of 

82,691 patients who began antidepressant treatment for depression from 2008 through 2018 

and included information on demographics, prior diagnoses of mental health conditions, 

prescription fills, and depressive symptoms as measured by patient report with the Patient 

Health Questionnaire (PHQ) (Kroenke et al., 2001). To be included in the study, patients 

had to be 13 years or older; be enrolled in KPWA for the past year; have a diagnosis of 

a depressive disorder in the 365 days before or 15 days after treatment initiation; have 

no antidepressant prescription fills in the prior year (excluding trazodone, doxepin, and 

amitriptyline, which are primarily used to treat conditions other than depression); and have 

no diagnoses of a personality, bipolar, or psychotic disorder in the past year. We used a 

subset of the data to represent a pilot study to conduct power and sample size calculations 

for estimating an optimal DTR to minimize depression symptoms in this population.

The PHQ-9 score is a measure of the severity of depressive symptoms that is used in 

the KPWA health system for diagnosing depression and monitoring depressive systems 

(Kroenke et al., 2001). The first 8 questions yield a score that ranges from 0 to 24, with 

higher values indicating more severe symptoms. The outcome of interest for this study was 

the negative of the PHQ score after 1 year of treatment, to be consistent with our framework 

that higher values correspond with better patient outcomes. The PHQ score after 1 year 

was defined as the PHQ score recorded closest to exactly one year after starting treatment, 

but was required to be recorded between 305 and 425 days after beginning treatment. 

Initially, patients received one of 17 different antidepressants. The first-stage treatment 

was classified as an antidepressant from the selective serotonin reuptake inhibitor (SSRI) 

class or an antidepressant from a different class. Section E of the online Supplementary 
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Material contains a list of all the antidepressants assigned. A total of 63,060 patients 

received an SSRI at treatment initiation while 19,657 received an antidepressant from an 

alternative class. As this study followed people receiving their regular healthcare, patients 

were observed to switch to a different antidepressant or augment their initial treatment 

with an additional antidepressant or an antipsychotic. Our goal was to estimate an optimal 

DTR that tailored treatment based on age, gender, baseline PHQ score, and diagnosis of an 

anxiety disorder in the past year.

The data set had a significant amount of missingness and censoring. The baseline PHQ 

score, defined as a score recorded 15 days or fewer before treatment initiation or up 

to 3 days after, was observed for 34,541(41.8%) of patients in the sample. Of those, 

8,757(25.35%) were censored due to disenrolling from the health system during the first 

year or were administratively censored because the study ended less than a year after the 

patient started treatment. Of the remaining patients, 8,511 (24.6%) had an observed PHQ 

at one year after treatment initiation. We also artificially censored follow-up if patients 

discontinued treatment or changed treatment more than once during the first year. Our final 

sample size for potential pilot studies was 2,008. We constructed a pilot study by taking a 

simple random sample from these 2,008 remaining patients. Because follow-up data were 

missing and not everyone followed a regime of interest, our sample pilot study might not 

have a representative sample of the population. This could lead to bias in the estimated 

optimal regime from the pilot. Since the purpose of this analysis was to demonstrate how to 

conduct power calculations and size a study, we assumed our pilot was representative and 

did not use any methods to adjust for the potential bias. Due to the potential for selection 

bias, the estimated regime from this pilot should not be used for any clinical interpretation in 

practice. We will consider this point further in the discussion.

Define the outcome, Y , as the negative PHQ score 1 year after initiating treatment. Let A1

denote the first-stage treatment, such that A1 = 1 if prescribed an SSRI and A1 = 0 if assigned 

a non-SSRI. Let A2 denote the second-stage treatment, with A2 = 1 if the patient switched 

treatment and A2 = 0 if the patient augmented treatment with an additional antidepressant or 

antipsychotic while staying on the initial medication. We use X1
β to denote a vector of age, 

gender, indicator variables for race, baseline PHQ score, and an indicator for the diagnosis 

of an anxiety disorder in the past 365 days. Let X1
ψ denote the same vector of patient 

characteristics with race removed, as we did not consider tailoring treatment based on race. 

We posited the following models for the treatment-free and blip functions:

γ1 h1, a1; ψ1 = a1(ψ1,0 + ψ1,1
T x1

ψ), γ2 h2, a2; ψ2 = a2(ψ2,0 + ψ2,1
T x1

ψ + ψ2,2a1),
g1 h1; β1 = β1,0 + β1,1

T x1
β, g2 h2; β2 = β2,0 + β2,1

T x1
β + β2,2a1 .

The propensity score models, πk hk; ξk  for k = 1, 2, were estimated with logistic regression 

using the same set of variables as the treatment-free models.

We included a random sample of 400 patients in the pilot study. We assumed that the 

comparison mean was given by B0 = − 10, as a PHQ score of greater than or equal to 

10 is used to identify moderate depression. We let = 0.05, ϕ = 0.1, and η = 3 so that the 
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first condition (PWR) held if we had a 0.05 level test of H0:V dopt ≤ B0 that had 90% 

power if V dopt ≥ B0 + 3. We let ϵ = 1 and ζ = 0.1 so that the second condition (OPT) 

held if P{V (dn) ≥ V dopt − 1} ≥ 0.9. A confidence set for ψ was constructed using the 

m − out − of − n bootstrap with κ = 0.2.

Table 4 shows the estimated coefficients for the second-stage and first-stage blip models 

from the pilot data. The estimated value of the optimal regime in the pilot was given by 

V n0(dn0) = − 6.67. Therefore, we found some evidence that an adaptive treatment strategy 

could be effective in reducing depressive symptoms, but this difference was not statistically 

significant in the pilot data. Note the wide confidence intervals for the parameters of the 

blip models. We first applied our method to estimate the power for comparing the value 

of the optimal regime to B0, if all 2,008 patients were included in the study. This resulted 

in an estimated power of 43.8%. Therefore, the full study was underpowered for detecting 

any benefit to tailoring treatment. To be able to detect a benefit to tailoring treatment, we 

would need to increase the study size by including additional study sites or increasing the 

range of years under consideration. We applied our proposed sample size method to power 

the comparison of the value of the optimal regime to B0 (PWR), resulting in a sample size 

of n̂ Dn0 = 5, 230. When sizing to guarantee the value of the estimated regime was close to 

the value of the true optimal regime (OPT), we calculated a sample size of n̂ Dn0 = 4, 276. 

Therefore, for both conditions to hold, we recommend a study of size at least n̂ Dn0 = 5, 230.

6. Discussion

We propose a method for conducting power calculations for a K-stage longitudinal 

observational study for estimating DTRs using a pilot study. The method is based on 

bootstrapping a projection interval for the value of the optimal regime. We implemented 

the bootstrap with oversampling to estimate the power for a given sample size and used 

our method to size a study by calculating the smallest sample size that achieved the 

desired power. We demonstrated this method attains the desired power in finite samples 

in a simulation study. We also propose a method for extending the m − out − of − n bootstrap 

to multistage DTRs to obtain valid confidence intervals for the parameters indexing the 

treatment regime.

As in any realistic planning of an analysis, additional sources of variability or loss of power 

must be considered. Examples include the possibility of missing information, measurement 

error, additional unmeasured confounding, and more. In a randomized trial setting, such 

additional concerns are sometimes addressed in sensitivity analyses. For the case of missing 

data, for example, the researchers may assume a specific rate of missingness or withdrawal 

of consent, and inflate the sample size (equivalently, in our setting, decrease the power) 

accordingly (Hsieh et al., 2003).

We implicitly assumed throughout this work that the pilot data are drawn from the same 

population as the data in which the full analysis will be conducted and, more generally, 

to which the results will be applied. This is quite a realistic assumption, as observational 
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analyses tend to be done within a given ‘system’, e.g., a particular healthcare system 

such as a national or provincial health service or within a given health care management 

organization. It may be the case, as noted in the introduction, that only a small dataset 

(the “pilot data”) are initially available due to the cost of extracting certain information, 

such as free-text box fields or analyzing stored blood specimens. Alternatively, it may be 

that the power/sample size calculations encourage a wider collaboration with other similar 

health systems (in Canada, this might be collaboration across provinces; in the context of a 

healthcare management organization, this might mean pooling of data from different centers 

within the same organization).

However, should the pilot be drawn from a population that differs from the target population, 

it may be possible to leverage the resampling used in the power calculations to our 

advantage. The weighted bootstrap has been used as a method to alter the bootstrap 

empirical distribution. Hall et al. (2008) proposed using a weighted bootstrap to align the 

bootstrap-weighted empirical distributions of covariates between treatment groups to more 

effectively compare the treatment response between the groups. To account for differences 

in the distribution of the data between the pilot and full study, we could use a weighted 

bootstrap to induce a shift in the distribution of the bootstrap samples to align with the 

postulated distribution of the data in the full study. This could also be conducted as a 

sensitivity analysis to examine how sensitive the power is to changes in the data distribution 

by repeating this procedure with multiple different bootstrap weights. The performance of 

this approach and the impact of such population changes or “distribution shifts” warrant 

additional research.

This paper focused on DTRs estimated via dWOLS and assumed the blip models 

were correctly specified. This method could be easily adapted to other regression-based 

estimation methods. Value-search or direct-search estimators are an alternative class of 

estimators for identifying optimal treatment regimes that are frequently used (Orellana et 

al., 2010; Zhao et al., 2012; Laber and Zhao, 2015). We leave extensions to this class of 

estimators for future work. In this paper, we focused on discrete treatments with continuous 

outcomes. Extensions to other outcome and/or treatment types, such as survival outcomes 

and continuous doses, are possible, but will require careful thought.

A pilot study may include potential sources of bias, in addition to confounding, due to 

censoring or missing data. The resulting sample size calculations could be adjusted to 

account for bias by using some form of sample size inflation factor or decrease in effective 

sample size based on the level of censoring/missingness and how informative it is. Similarly, 

a sample size inflation factor can be used to deflate the sample size of interest when 

estimating the power for a given sample size. Multiple imputation with bootstrapping has 

also been used for inference (Schomaker and Heumann, 2018; Bartlett and Hughes, 2020), 

and could be adjusted to use bootstrap oversampling to conduct sample size calculations in 

the presence of missing data.

Our proposed method relies on having access to pilot data. Unfortunately, such data are not 

always available. Sizing a study without pilot data would require much stronger assumptions 

about the underlying generative model, which we leave as future work.
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Table 1:

Estimated power from the proposed power calculations using a pilot study of size n0 for varying sample sizes 

n. We assume the effect size under the alternative hypothesis is given by η = 1.4 . Δ denotes the difference 

between the true value of the optimal regime and B0 which is given by η(1 + Δ), so Δ = 0 corresponds to the 

true effect size being equal to η. The remaining columns display the mean, median, and standard deviation 

of the estimated powers across 500 simulated pilot studies as well as the true power which is calculated via 

simulation. We do not estimate the power for n = 250 when the pilot is of size n0 = 400, since it is implausible 

for the pilot sample size to exceed the full study sample size.

Δ n n0 True PWR Mean PWR Med PWR SD PWR

0 250 200 0.42 0.54 0.54 0.32

0.25 250 200 0.99 0.96 0.99 0.09

0.5 250 200 1.00 1.00 1.00 0.01

0 500 200 0.83 0.77 0.92 0.30

0.25 500 200 1.00 0.99 1.00 0.04

0.5 500 200 1.00 1.00 1.00 0.00

0 750 200 0.98 0.84 0.99 0.27

0.25 750 200 1.00 1.00 1.00 0.02

0.5 750 200 1.00 1.00 1.00 0.00

0 500 400 0.82 0.77 0.85 0.24

0.25 500 400 1.00 1.00 1.00 0.01

0.5 500 400 1.00 1.00 1.00 0.00

0 750 400 0.98 0.89 0.98 0.19

0.25 750 400 1.00 1.00 1.00 0.00

0.5 750 400 1.00 1.00 1.00 0.00
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Table 2:

Empirical power (PWR) using the projection-based sample size procedure at a nominal level of 90 using a 

pilot study of size n0 = 200 and n0 = 400; Δ denotes the difference between the true value of the optimal regime 

and B0 which is given by η(1 + Δ). P(n̂ = ∞) represents the proportion of pilot studies for which n̂ Dn0 = ∞. 

The remaining columns give the mean, median, quartiles, and standard deviation of the estimated sample sizes 

across the 500 simulation repetitions.

Δ n0 E n Q1 n Med n Q3 n SD n P n = ∞ PWR

0 200 640.09 307.00 490.00 780.00 511.39 0.04 74.39

0.25 200 180.54 140.00 154.50 180.00 82.45 0.00 90.20

0.5 200 142.23 131.00 141.00 151.00 18.21 0.00 99.80

1 200 142.73 132.00 141.00 152.00 18.32 0.00 100.00

0 400 678.77 410.00 571.00 801.75 408.25 0.01 82.68

0.25 400 160.35 125.00 141.00 179.25 51.96 0.00 88.20

0.5 400 116.67 109.00 116.00 123.00 11.38 0.00 100.00

1 400 116.39 109.00 115.50 123.00 11.11 0.00 100.00
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Table 3:

Empirical concentration (OPT) using the projection-based sample size procedure at a nominal level of 90 

using a pilot study of size n0 = 200 and n0 = 400. We test whether the true value of the estimated regime is 

within ϵ of the true value of the true optimal regime. The remaining columns give the mean, median, quartiles, 

and standard deviation of the estimated sample sizes across the 500 simulation repetitions.

ϵ n0 E n Q1 n Med n Q3 n SD n OPT

0.30 200 1844.93 1561.50 1796.00 2060.00 365.42 100.00

0.50 200 754.27 663.50 748.00 836.00 128.73 100.00

0.70 200 431.14 387.00 426.00 473.00 65.13 100.00

0.30 400 1319.70 1191.50 1294.50 1451.75 193.43 100.00

0.50 400 543.24 500.00 526.50 586.00 69.92 100.00

0.70 400 320.63 293.25 319.00 345.75 37.88 100.00
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Table 4:

Parameter estimates and 95% confidence intervals for the first- and second-stage blip model from the Kaiser 

Permanente Wasington pilot data

Covariate Estimate Confidence Interval

Second Stage Blip Model

A2 0.06 (−2.27, 2.39)

A2 × Gender 4.86 (2.99, 6.73)

A2 × Age −0.04 (−0.10, 0.02)

A2 × Baseline PHQ −0.32 (−0.55, −0.09)

A2 × Anxiety 5.84 (3.93, 7.75)

A2 × A1 5.10 (3.11, 7.09)

First Stage Blip Model

A1 2.20 (−15.53, 11.32)

A1 × Gender 0.73 (−3.53, 7.83)

A1 × Age −0.07 (−0.12, 2.31)

A1 × Baseline PHQ 0.12 (−0.39, 2.53)

A1 × Anxiety 2.19 (−3.80, 7.67)
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