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Abstract

The modeling of the interaction between brain structure and function using deep learning 

techniques has yielded remarkable success in identifying potential biomarkers for different clinical 

phenotypes and brain diseases. However, most existing studies focus on one-way mapping, 

either projecting brain function to brain structure or inversely. This type of unidirectional 

mapping approach is limited by the fact that it treats the mapping as a one-way task and 

neglects the intrinsic unity between these two modalities. Moreover, when dealing with the 

same biological brain, mapping from structure to function and from function to structure yields 

dissimilar outcomes, highlighting the likelihood of bias in one-way mapping. To address this 

issue, we propose a novel bidirectional mapping model, named Bidirectional Mapping with 

Contrastive Learning (BMCL), to reduce the bias between these two unidirectional mappings 

via ROI-level contrastive learning. We evaluate our framework on clinical phenotype and 

neurodegenerative disease predictions using two publicly available datasets (HCP and OASIS). 

Our results demonstrate the superiority of BMCL compared to several state-of-the-art methods.
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1 Introduction

Recent advancements in applying machine learning techniques to MRI-based brain imaging 

studies have shown substantial progress in predicting neurodegenerative diseases (e.g., 
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Alzheimer’s Disease or AD) and clinical phenotypes (e.g., behavior measures), and in 

uncovering novel biomarkers that are closely related to them [4]. Different MRI techniques 

can be used to depict different aspects of the brain organization or dynamics [8,19,23]. 

In general, diffusion MRI can derive brain structural networks that depict the connectivity 

of white matter tracks among brain regions, which gains system-level insights into the 

brain structural changes related to brain diseases and those phenotypes [29]. However, the 

structural networks may not inform us about whether this tract or the regions it connects 

are “activated” or “not activated” in a specific state. As a complementary counterpart, 

the functional MRI provides measures of BOLD (blood-oxygen-level-dependent) signals 

to present activities of brain regions over time [3], but no clue on whether those regions 

are physically connected or not. Therefore, different brain imaging data provide distinct 

but complementary information, and separately analyzing the data of each modality will 

always be suboptimal. In this context, multimodal approaches are being explored to 

improve prediction accuracy by integrating multiple information sources [9,13,27,31–33]. 

For example, it has been shown that combining different modalities of data (e.g., image and 

text) can enhance performance in image classification and clustering tasks [27,33]. In the 

healthcare field, multimodal machine learning has shown its potential in disease detection 

and diagnosis [13]. In brain imaging studies, many studies aim to explore multimodal 

MRI data representations by modeling the communications between functional MRI and its 

structural counterpart. Most of these studies primarily focus on establishing a unidirectional 

mapping between these two imaging modalities (i.e., mapping from structural MRI data to 

the functional counterpart [24,32], or the inverse [16,31]). However, for the same biological 

brain, these two mappings generate distinct results, which highlights the likelihood of bias in 

the unidirectional mapping approach.

To address this, we propose a novel bidirectional mapping framework, where the mapping 

from structural MRI data (i.e., diffusion MRI-derived brain structural network) to the 

functional counterpart (i.e., BOLD signals) and the inverse mapping are implemented 

simultaneously. Unlike previous studies [6,15,22,28,32] that employ unidirectional 

mappings, our approach leverages bidirectional mapping, minimizing the discrepancies 

in the latent space of each one-way mapping through contrastive learning at the brain 

region-of-interest level (ROI level). This method subsequently unveils the inherent unity 

across both imaging modalities. Moreover, our framework is interpretable, where we employ 

integrated gradients [20] to generate brain saliency maps for interpreting the outcomes of 

our model. Specifically, the identified top key brain ROIs in the brain saliency maps are 

closely related to the predicted diseases and clinical phenotypes. Extensive experiments have 

been conducted to demonstrate the effectiveness and superiority of our proposed method 

on two publicly available datasets (i.e., the Human Connectome Project (HCP), and Open 

Access Series of Imaging Studies (OASIS)). In summary, the contributions of this paper can 

be outlined as follows:

– We propose a novel bidirectional framework to yield multimodal brain MRI 

representations by modeling the interactions between brain structure and the 

functional counterpart.

– We use contrastive learning to extract the intrinsic unity of both modalities.
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– The experimental results on two publicly available datasets demonstrate the 

superiority of our proposed method in predicting neurodegenerative diseases and 

clinical phenotypes. Furthermore, the interpretability analysis highlights that our 

method provides biologically meaningful insights.

2 Method

The proposed bidirectional mapping framework (Fig. 1) comprises two encoder-decoder 

structures. One constructs BOLD signals from structural networks, while the other performs 

the inverse mapping. A ROI-level’s contrastive learning is utilized between the encoder and 

decoder to minimize the distinction of the latent spaces within two reconstruction mappings. 

Finally, a multilayer perceptron (MLP) is utilized for task predictions. It’s worth mentioning 

that instead of using the functional connectivity matrix, we directly utilize BOLD signals 

for bidirectional mapping. We believe this approach is reasonable as it allows us to capture 

the dynamic nature of the brain through the BOLD time sequence. Using the functional 

connectivity matrix may potentially disrupt this dynamic information due to the calculations 

of correlations. Furthermore, our experiments indicate that our encoder can directly model 

the temporal relations between different brain regions from the BOLD signals, eliminating 

the need to construct functional networks.

Preliminaries.

A structural brain network is an attributed and weighted graph G = A, H  with N nodes, 

where H ∈ ℝN × d is the node feature matrix, and A ∈ ℝN × N is the adjacency matrix 

where ai, j ∈ ℝ represents the edge weight between node i and node j. Meanwhile, we utilize 

Xℬ ∈ ℝN × T  to represent the BOLD signal matrix derived from functional MRI data of each 

subject, where each brain ROI has a time series BOLD signal with T  points.

Reconstruction.

For the reconstruction task, we deploy an encoder-decoder architecture and utilize the L1

loss function. Particularly, we use a multi-layer feed-forward neural network as the encoder 

and decoder. Our method differs from previous studies [21,32], where the encoder and 

decoder do not necessitate a GNN-based framework, allowing us to directly utilize the 

adjacency matrix A of structural networks as the inputs. Previous studies randomly initialize 

the node features (i.e., H) for the GNN input, since it is difficult to find informative 

brain node features that provide valuable information from the HCP and OASIS datasets. 

Hence, we propose a reconstruction framework that detours using the node feature matrix. 

Our framework is bidirectional, where we simultaneously conduct structural network and 

BOLD signal reconstruction. Here, we have latent representations Zℬ = EncoderB Xℬ  and 

ZS = EncoderS A  for BOLD signals and structural networks, respectively.

ROI-Level’s Contrastive Representation Learning.

With latent representation Zℬ ∈ ℝN × dB generated from BOLD signal and ZS ∈ ℝN × dS

from structural networks, we then conduct ROI-level’s contrastive learning to associate the 

static structural and dynamic functional patterns of multimodal brain measurements. The 
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contrastive learning loss aims to minimize the distinctions between latent representations 

from two modalities. To this end, we first utilize linear layers to project Zℬ and ZS to the 

common space, where we obtain Zℬ
′ = W Zℬ + b, Zℬ

′ ∈ ℝN × d and similarly, ZS
′ ∈ ℝN × d. We 

use zi
B, zi

S
i = 1⋯N to denote representations from the same ROI, where zi

B and zi
S are elements 

of Zℬ
′  and ZS

′ , respectively. For the same brain ROI, the static structural representation and 

the dynamic functional counterpart are expected to share a maximum similarity. Conversely, 

for the pairs that do not match, represented as zi
B, zj

S
i ≠ j, these are drawn from different ROIs 

and should share a minimum similarity.

To formally build up the ROI-level’s contrastive loss, it is intuitive to construct positive 

samples and negative ones based on the match of ROIs. Specifically, we construct 

zi
B, zi

S
i = 1⋯N as positive sample pair, and zi

B, zj
S

i ≠ j as negative sample pair. And our 

contrastive loss can be formulated as follow:

ℒC1 = − E log
i = 1⋯N

Similarity zi
B, zi

S

∑j = 1

N

Similarity zi
B, zj

S

ℒC2 = − E log
i = 1⋯N

Similarity zi
S, zi

B

∑j = 1

N

Similarity zi
S, zj

B

ℒcontrast = ℒC1 + ℒC2

(1)

where Similarity ⋅  is substantiated as cosine similarity.

Loss Functions.

The loss functions within our proposed framework are summarized here. Besides 

the reconstruction loss ℒrec  and the ROI-level’s contrastive loss ℒcontrast , we 

utilize cross-entropy loss ℒsupervised = ℒcross−entropy  for classification tasks, and L1 loss 

ℒsupervised = ℒmean−absolute−error  for regression tasks, respectively. In summary, the loss function 

can be described as:

ℒ = η1ℒcontrast + η2ℒrec + η3ℒsupervised,

(2)

where η1, η2 and η3 are loss weights.

3 Experiments

3.1 Data Description and Preprocessing

Two publicly available datasets were used to evaluate our framework. The first includes 

data from 1206 young healthy subjects (mean age 28.19 ± 7.15, 657 women) from the 

Human Connectome Project [25] (HCP). The second includes 1326 subjects (mean age 

= 70.42 ± 8.95, 738 women) from the Open Access Series of Imaging Studies (OASIS) 
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dataset [12]. Details of each dataset may be found on their official websites. CONN [26] 

and FSL [10] were used to reconstruct the functional and structural networks, respectively. 

For the HCP data, both networks have a dimension of 82 × 82 based on 82 ROIs defined 

using FreeSurfer (V6.0) [7]. For the OASIS data, both networks have a dimension of 132 

× 132 based on the Harvard-Oxford Atlas and AAL Atlas. We deliberately chose different 

network resolutions for HCP and OASIS, to evaluate whether the performance of our new 

framework is affected by the network dimension or atlas. The source code is available at: 

https://github.com/FlynnYe/BMCL.

3.2 Experimental Setup and Evaluation Metrics

We randomly split each dataset into 5 disjoint sets for 5-fold cross-validations, and all 

the results are reported in mean (s.t.d.) across 5 folds. To evaluate the performance of 

each model, we utilize accuracy, precision score, and F1 score for classification tasks, 

and mean absolute error (MAE) for regression tasks. The learning rate is set as 1 × 

10−4 and 1 × 10−3 for classification and regression tasks, respectively. The loss weights 

(i.e., η1, η2, and η3) are set equally as 1/3. To demonstrate the superiority of our method in 

cross-modal learning, bidirectional mapping, and ROI-level’s contrastive learning, we select 

four baselines including 2 single-modal graph learning methods (i.e., DIFFPOOL [30] and 

SAGPOOL [14]), as well as 2 multimodal methods (i.e., VGAE [11] and DSBGM [22]) 

for all tasks. We use both functional brain networks, in which edge weights are defined 

as the Pearson Correlation between BOLD signals, and brain structural networks as input 

for baseline methods. The functional brain networks are signed graphs including positive 

and negative edge weights, however, the DIFFPOOL, SAGPOOL, and VGAE can only take 

unsigned graphs (i.e., graphs only include positive edges) as input. Therefore, we convert 

the functional brain networks to unsigned graphs by using the absolute values of the edge 

weights.

3.3 BOLD Signal and Structural Network Reconstruction

We train the model in a task-free manner where no task-specific supervised loss is involved. 

The MAE values between the edge weights in the ground-truth and reconstructed structural 

networks are 0.0413 ± 0.0009 and 0.0309 ± 0.0015 under 5-fold cross-validation on the HCP 

and OASIS, respectively. The MAE values between ground-truth and reconstructed BOLD 

signals are 0.0049 ± 0.0001 and 0.0734 ± 0.0016 on the HCP and OASIS, respectively. The 

reconstruction results on HCP are visualized in Fig. 2.

3.4 Disease and Sex Classification

We conduct Alzheimer’s disease (AD) classification on the OASIS dataset, and sex 

classification on the HCP dataset. As shown in Table 1, our proposed BMCL can achieve 

the best results in accuracy, precision, and F1 score for both tasks among all methods. 

For example, in the AD classification, our model outperforms the baselines with at least 

4.2%, 5.8% and 4.0% increases in accuracy, precision and F1 scores, respectively. In 

general, multimodal methods can outperform single-model methods. The superiority of 

our bidirectional BMCL model, compared to the unidirectional methods, attributes to the 
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fact that our BMCL reduces the distinction between the latent spaces generated by two 

unidirectional mappings through ROI-level’s contrastive learning.

3.5 ASR and MMSE Regression

Mini-Mental State Exam (MMSE) is a quantitative measure of cognitive status in adults, 

and Adult Self-Report scale (ASR) [1] is to measure the adult’s behavior. As shown in 

Table 2, our proposed BMCL model outperforms all baselines in terms of MAE values. 

The regression results also demonstrate the superiority of bidirectional mapping and the 

importance of ROI-level’s contrastive learning, which is consistent with the results in the 

classification tasks.

3.6 Ablation Study

To demonstrate the significance of bidirectional mapping, we remove a part of our proposed 

BMCL model to yield two unidirectional mappings (i.e., either mapping from structural 

network to BOLD signal, or mapping inversely). As shown in the bottom three rows in Table 

1 and Table 2, the prediction results are declined when we remove each directional mapping, 

which clearly demonstrates the importance of bidirectional mapping.

3.7 Interpretability

The 10 key brain regions (Fig. 3) associated with AD (from OASIS) and with each sex 

(from HCP) are identified using the brain saliency map. The salient regions for AD are 

concentrated in cerebelum (i.e., cerebelum 3 right and left, cerebelum 8 left, cerebelum 

crus2 right) and middle Temporal gyrus (i.e., the posterior division left and right, as well 

as the temporooccipital right of middle temporal gyrus), which have been verified as core 

AD biomarkers in literature [2,18]. Similarly, 10 key regions (Fig. 3) are identified for 

regression tasks (i.e., 3 ASR from HCP and MMSE from OASIS). Interestingly, several 

brain regions (including left and right accumbens areas, cortex left hemisphere cuneus 

and insula, as well as cortex right hemisphere posteriorcingulate and parahippocampal) 

are consistently identified across 3 ASR scales (i.e., aggression, rule-break, and intrusive). 

This finding is supported by [21], which suggests that similar ASR exhibits common or 

similar biomarkers. Also, these regions have been reported as important biomarkers for 

aggressive-related behaviors in literature [5,17].

4 Conclusions

We propose a new multimodal data mining framework, named BMCL, to learn the 

representation from two modality data through bidirectional mapping between them. The 

elaborated ROI-level contrastive learning in BMCL can reduce the distinction and eliminate 

biases between two one-way mappings. Our results on two publicly available datasets show 

that BMCL outperforms all baselines, which demonstrates the superiority of bidirectional 

mapping with ROI-level contrastive learning. Beyond these, our model can identify key 

brain regions highly related to different clinical phenotypes and brain diseases, which 

demonstrates that our framework is interpretable and the results are biologically meaningful. 

The contrastive learning method, while emphasizing the alignment of features from different 

modalities, may inadvertently neglect the unique characteristics inherent to each modality. 
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Moving forward, we intend to refine our method by aiming for a balance between the 

alignment of modalities and the preservation of modality-specific information. Additionally, 

the pre-selection of important features or the consideration of subnetworks holds promising 

for further research.

Acknowledgments.

This study was partially supported by NIH (R01AG071243, R01MH125928, R21AG065942, R01EY032125, and 
U01AG068057) and NSF (IIS 2045848 and IIS 1837956).

References

1. Achenbach TM, McConaughy S, Ivanova M, Rescorla L: Manual for the ASEBA brief problem 
monitor (BPM), vol. 33. ASEBA, Burlington, VT (2011)

2. Airavaara M, Pletnikova O, Doyle ME, Zhang YE, Troncoso JC, Liu QR: Identification of novel 
GDNF isoforms and cis-antisense GDNFOS gene and their regulation in human middle temporal 
gyrus of Alzheimer disease. J. Biol. Chem 286(52), 45093–45102 (2011) [PubMed: 22081608] 

3. Bathelt J, O’Reilly H, Clayden JD, Cross JH, de Haan M: Functional brain network organisation 
of children between 2 and 5 years derived from reconstructed activity of cortical sources of high-
density EEG recordings. Neuroimage 82, 595–604 (2013) [PubMed: 23769920] 

4. Calhoun VD, Sui J: Multimodal fusion of brain imaging data: a key to finding the missing link (s) 
in complex mental illness. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 1(3), 230–244 (2016) 
[PubMed: 27347565] 

5. Couppis MH, Kennedy CH: The rewarding effect of aggression is reduced by nucleus accumbens 
dopamine receptor antagonism in mice. Psychopharmacology 197, 449–456 (2008) [PubMed: 
18193405] 

6. Cui H, et al. : BrainGB: a benchmark for brain network analysis with graph neural networks. IEEE 
Trans. Med. Imaging (2022)

7. Fischl B: Freesurfer. Neuroimage 62(2), 774–781 (2012) [PubMed: 22248573] 

8. Fornito A, Zalesky A, Bullmore E: Fundamentals of Brain Network Analysis. Academic Press, 
Cambridge (2016)

9. Freeman D, Ha D, Metz L: Learning to predict without looking ahead: world models without 
forward prediction. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

10. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM: FSL. Neuroimage 62(2), 
782–790 (2012) [PubMed: 21979382] 

11. Kipf TN, Welling M: Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 (2016)

12. LaMontagne PJ, et al. : Oasis-3: longitudinal neuroimaging, clinical, and cognitive dataset for 
normal aging and Alzheimer disease. MedRxiv pp. 2019–2012 (2019)

13. Lee G, Nho K, Kang B, Sohn KA, Kim D: Predicting Alzheimer’s disease progression using 
multi-modal deep learning approach. Sci. Rep 9(1), 1952 (2019) [PubMed: 30760848] 

14. Lee J, Lee I, Kang J: Self-attention graph pooling. In: International Conference on Machine 
Learning, pp. 3734–3743. PMLR (2019)

15. Li X, et al. : BrainGNN: interpretable brain graph neural network for fMRI analysis. Med. Image 
Anal 74, 102233 (2021) [PubMed: 34655865] 

16. Liu Y, Ge E, Qiang N, Liu T, Ge B: Spatial-temporal convolutional attention for mapping 
functional brain networks. arXiv preprint arXiv:2211.02315 (2022)

17. Peterson CK, Shackman AJ, Harmon-Jones E: The role of asymmetrical frontal cortical activity in 
aggression. Psychophysiology 45(1), 86–92 (2008) [PubMed: 17850239] 

18. Piras IS, et al. : Transcriptome changes in the Alzheimer’s disease middle temporal gyrus: 
importance of RNA metabolism and mitochondria-associated membrane genes. J. Alzheimers Dis 
70(3), 691–713 (2019) [PubMed: 31256118] 

Ye et al. Page 7

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2024 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



19. Qi S, Meesters S, Nicolay K, ter Haar Romeny BM, Ossenblok P: The influence of construction 
methodology on structural brain network measures: a review. J. Neurosci. Methods 253, 170–182 
(2015) [PubMed: 26129743] 

20. Sundararajan M, Taly A, Yan Q: Axiomatic attribution for deep networks. In: International 
Conference on Machine Learning, pp. 3319–3328. PMLR (2017)

21. Tang H, et al.: Hierarchical brain embedding using explainable graph learning. In: 2022 IEEE 19th 
International Symposium on Biomedical Imaging (ISBI), pp. 1–5. IEEE (2022)

22. Tang H, et al. : Signed graph representation learning for functional-to-structural brain network 
mapping. Med. Image Anal 83, 102674 (2023) [PubMed: 36442294] 

23. Tang H, Ma G, Guo L, Fu X, Huang H, Zhan L: Contrastive brain network learning via hierarchical 
signed graph pooling model. IEEE Trans. Neural Netw. Learn. Syst (2022)

24. Tewarie P, et al. : Mapping functional brain networks from the structural connectome: relating 
the series expansion and eigenmode approaches. Neuroimage 216, 116805 (2020) [PubMed: 
32335264] 

25. Van Essen DC, et al. : The Wu-Minn human connectome project: an overview. Neuroimage 80, 
62–79 (2013) [PubMed: 23684880] 

26. Whitfield-Gabrieli S, Nieto-Castanon A: Conn: a functional connectivity toolbox for correlated and 
anticorrelated brain networks. Brain Connect 2(3), 125–141 (2012) [PubMed: 22642651] 

27. Xu K, et al.: Show, attend and tell: neural image caption generation with visual attention. In: 
International Conference on Machine Learning, pp. 2048–2057. PMLR (2015)

28. Yan J, et al. : Modeling spatio-temporal patterns of holistic functional brain networks via multi-
head guided attention graph neural networks (multi-head GaGNNs). Med. Image Anal 80, 102518 
(2022) [PubMed: 35749981] 

29. Yeh CH, Jones DK, Liang X, Descoteaux M, Connelly A: Mapping structural connectivity using 
diffusion MRI: challenges and opportunities. J. Magn. Reson. Imaging 53(6), 1666–1682 (2021) 
[PubMed: 32557893] 

30. Ying Z, You J, Morris C, Ren X, Hamilton W, Leskovec J: Hierarchical graph representation 
learning with differentiable pooling. In: Advances in Neural Information Processing Systems, vol. 
31 (2018)

31. Zhang L, Wang L, Zhu D, Initiative ADN, et al. : Predicting brain structural network using 
functional connectivity. Med. Image Anal 79, 102463 (2022) [PubMed: 35490597] 

32. Zhang W, Zhan L, Thompson P, Wang Y: Deep representation learning for multimodal brain 
networks. In: Martel AL, et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 613–624. Springer, 
Cham (2020). 10.1007/978-3-030-59728-3_60

33. Zhen L, Hu P, Wang X, Peng D: Deep supervised cross-modal retrieval. In: Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10394–10403 (2019)

Ye et al. Page 8

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2024 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
The pipeline of Bidirectional Mapping with Contrastive Learning (BMCL). The brain 

structural network and BOLD signals are initially processed by two separate encoders 

for representation learning. Afterward, ROI-level contrastive learning is applied to these 

extracted representations, facilitating their alignment in a common space. These derived 

representations are then utilized for downstream prediction tasks.
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Fig. 2. 
Bidirectional reconstruction results on the HCP and OASIS dataset.
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Fig. 3. 
Saliency maps to identify top 10 regions associated with (a) intrusiveness, (b) aggression, (c) 

rule-break, (d) sex, (e) AD and (f) MMSE, respectively.
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Table 1.

The results for sex classification on HCP and AD classification on OASIS.

Method HCP (gender) OASIS (disease)

Acc Pre F1 Acc Pre F1

DIFFPOOL† w/ F 67.77 (3.56) 65.25 (2.65) 68.82 (1.72) 68.97 (1.34) 66.03 (3.36) 69.24 (1.83)

SAGPOOL† w/ F 70.95 (2.88) 69.83 (1.85) 71.44 (1.29) 65.65 (2.01) 63.33 (1.95) 67.27 (2.09)

DIFFPOOL† w/ S 58.71 (4.62) 30.96 (4.73) 40.6 (5.17) 86.04 (2.65) 64.92 (4.16) 74.01 (3.64)

SAGPOOL† w/ S 61.06 (4.58) 32.79 (3.54) 42.64 (3.78) 88.48 (2.51) 68.71 (3.92) 77.33 (3.44)

VGAE 73.59(2.42) 74.43 (1.84) 76.25 (1.49) 64.68 (2.49) 62.57 (2.19) 65.85 (1.91)

DSBGM 82.19 (2.01) 85.35 (1.99) 84.71(2.37) 78.92 (1.38) 79.81 (1.41) 80.22(2.25)

BMCL w/o F 93.68 (2.88) 91.71 (2.19) 92.31 (2.31) 90.09 (2.65) 71.26 (4.16) 83.61 (3.64)

BMCL w/o S 69.54 (1.77) 68.61 (1.71) 56.82 (2.60) 89.66 (2.93) 73.35 (3.15) 79.52 (3.29)

BMCL 94.83 (1.35) 93.47 (3.65) 93.21 (1.98) 92.23 (0.62) 84.47(2.14) 83.38(0.76)

The best results are highlighted in bold font. Methods marked with † are unimodal methods.
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Table 2.

The experimental results for ASR regression on HCP and MMSE regression on OASIS.

Method HCP (aggression) HCP (rule-break) HCP (intrusive) OASIS (MMSE)

DIFFPOOL† w/ F 2.39 (0.021) 2.26 (0.0092) 2.47 (0.15) 1.77 (0.56)

SAGPOOL† w/ F 3.07 (0.062) 2.88 (0.0022) 3.47 (0.029) 1.73 (0.79)

DIFFPOOL† w/ S 1.78 (0.268) 1.12 (0.473) 0.61 (0.3335) 2.13 (15.5941)

SAGPOOL† w/ S 1.82 (0.2674) 1.13 (0.3672) 0.63 (0.2608) 0.53 (0.2125)

VGAE 1.74(0.019) 1.37(0.051) 0.67 (0.022) 1.27 (0.25)

DSBGM 1.71 (0.11) 1.21 (0.24) 0.65 (0.026) 0.87 (0.18)

BMCL w/o F 1.98 (0.2688) 1.12 (0.3508) 0.62 (0.3145) 0.49 (0.1908)

BMCL w/o S 2.03 (0.2045) 1.11 (0.3704) 0.63 (0.3839) 0.50 (0.2008)

BMCL 1.68 (0.2374) 1.05 (0.5046) 0.58 (0.3377) 0.45 (0.1726)

The best results are highlighted in bold font. Methods marked with † are unimodal methods.
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