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Keypoint-MoSeq: parsing behavior by 
linking point tracking to pose dynamics
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Keypoint tracking algorithms can flexibly quantify animal movement 
from videos obtained in a wide variety of settings. However, it remains 
unclear how to parse continuous keypoint data into discrete actions. This 
challenge is particularly acute because keypoint data are susceptible 
to high-frequency jitter that clustering algorithms can mistake for 
transitions between actions. Here we present keypoint-MoSeq, a machine 
learning-based platform for identifying behavioral modules (‘syllables’) 
from keypoint data without human supervision. Keypoint-MoSeq uses a 
generative model to distinguish keypoint noise from behavior, enabling it 
to identify syllables whose boundaries correspond to natural sub-second 
discontinuities in pose dynamics. Keypoint-MoSeq outperforms commonly 
used alternative clustering methods at identifying these transitions, 
at capturing correlations between neural activity and behavior and at 
classifying either solitary or social behaviors in accordance with human 
annotations. Keypoint-MoSeq also works in multiple species and generalizes 
beyond the syllable timescale, identifying fast sniff-aligned movements in 
mice and a spectrum of oscillatory behaviors in fruit flies. Keypoint-MoSeq, 
therefore, renders accessible the modular structure of behavior through 
standard video recordings.

Work from ethology demonstrates that behavior—a chain of actions 
traced by the body’s movement over time—is both continuous and 
discrete1–3. The rapid advance of keypoint tracking methods (includ-
ing SLEAP4, DeepLabCut5 and others6,7) has given researchers broad 
access to the continuous dynamics that underlie animal behavior8. 
But parsing these dynamics into chains of discrete actions remains 
an open problem9–11. While several action segmentation approaches 
exist12–17, their underlying logic and assumptions differ, with different 

methods often giving distinct descriptions of the same behavior13,15. 
An important gap, therefore, exists between our access to movement 
kinematics and our ability to understand their underlying structure.

One method for parsing behavior in mice is Motion Sequenc-
ing (MoSeq)16,18–21. MoSeq uses unsupervised machine learning to 
transform its inputs—which are not keypoints, but three-dimensional 
(3D) depth videos—into a set of behavioral motifs (like rears, turns 
and pauses) called syllables. To identify syllables, MoSeq searches for 
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even missing data) and the behavioral syllables they represent. We 
validate this model, called keypoint-MoSeq, using accelerometry meas-
urements, neural activity recordings and supervised behavior labels 
from expert observers, and show that it generalizes beyond mouse 
syllables to capture behaviors at multiple timescales and in several 
species. Because keypoint tracking can be applied in diverse settings 
(including natural environments), requires no specialized hardware 
and affords direct control over which body parts to track and at what 
resolution, we anticipate that keypoint-MoSeq will serve as a general 
tool for parsing the structure of behavior. To facilitate broad adoption, 
we have directly integrated keypoint-MoSeq with widely used tracking 
methods (including SLEAP and DeepLabCut) and made the code freely 
accessible for academic users at http://www.moseq4all.org/.

Results
Mouse syllables are evident in depth-based video recordings as dis-
continuities of movement that reoccur with sub-second cadence16. To 
test if the same sub-second structure is present in keypoint data, we 
recorded conventional videos of mice exploring an open field arena 
and used a neural network to track eight keypoints (two ears and six 
points along the dorsal midline). We also captured simultaneous depth 
videos for comparison to depth-based MoSeq (Fig. 1a).

Similar sub-second discontinuities appeared in both the depth 
and keypoint data, with a keypoint-based change score (total velocity 
of keypoints after egocentric alignment) spiking at the transitions 

discontinuities in behavioral data at a timescale that is set by the user; 
this timescale is specified through a ‘stickiness’ hyperparameter that 
influences the frequency with which syllables can transition. In the 
mouse, where MoSeq has been extensively applied, pervasive dis-
continuities at the sub-second-to-second timescale mark boundaries 
between syllables, and the stickiness hyperparameter is explicitly set 
to capture this timescale16.

Previous studies have applied MoSeq to characterize the effects 
of genetic mutations, drugs, neural manipulations and changes in the 
sensory or physical environment16,22–24. MoSeq syllables are encoded 
in the dorsolateral striatum (DLS)—an area important for action  
selection—and can be individually reinforced through closed-loop 
dopamine stimulation22,23, arguing that MoSeq-identified syllables 
are meaningful units of behavior used by the brain to organize action 
sequences. But MoSeq’s reliance on depth cameras is a substantial 
constraint; depth cameras are difficult to deploy, suffer from high 
sensitivity to reflections and have limited temporal resolution25. In prin-
ciple, these limits could be overcome by applying MoSeq to keypoint 
data. But attempts to do so have thus far failed: researchers applying 
MoSeq-like models to keypoint data have reported flickering state 
sequences that switch much faster than the animal’s actual behavior13.

Here we confirm this finding and trace its cause to jitter in the 
keypoint estimates, which is mistaken by MoSeq for behavioral transi-
tions. To address this challenge, we reformulated the model underlying 
MoSeq to simultaneously infer correct pose dynamics (from noisy or 
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Fig. 1 | Keypoint trajectories exhibit sub-second structure. a, Left: 
simultaneous depth and 2D infrared (IR) recording setup. Middle: pose 
representations using the depth data (top) or IR (bottom, tracked keypoints 
indicated). Right: Example syllable sequences from MoSeq applied to depth 
data (referred to as ‘MoSeq (depth)’) or to keypoint data (referred to as ‘MoSeq 
(keypoints)’). Figure created with SciDraw under a CC BY 4.0 license. b, Keypoint 
change scores or low-confidence detection scores, relative to the onset of MoSeq 
transitions (x axis) derived from either depth (gray) or keypoint (black) data. 
Differences in each case were significant (P = 2 × 10−7 over N = 20 model fits, 
Mann–Whitney U test; plots show mean and range across model fits).  
c, Comparison of syllable durations for MoSeq (keypoints) and MoSeq (depth), 
showing mean and inter-95% confidence interval range across N = 20 model 
fits. d, Left: keypoint detection errors, including high-frequency fluctuations 

in keypoint coordinates (top row) and error-induced syllable switches (bottom 
row). Right: keypoint coordinates before (frame1) and during (frame2) an 
example keypoint detection error. This error (occurring in the tail keypoint) 
causes a shift in egocentric alignment, hence changes across the other tracked 
keypoints. e, 5-s interval during which the mouse is immobile yet the keypoint 
coordinates fluctuate. Left: egocentrically aligned keypoint trajectories. Right: 
path traced by each keypoint during the 5-s interval. f, Variability in keypoint 
positions assigned by eight human labelers. g, Cross-correlation between various 
features and keypoint fluctuations at a range of frequencies. Each heat map 
represents a different scalar time series (such as ‘transition probability’—the 
likelihood of a syllable transition on each frame). Each row shows the cross-
correlation between that time series and the time-varying power of keypoint 
fluctuations at a given frequency.
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between depth-based MoSeq syllables (Fig. 1b). Yet when we applied 
MoSeq directly to the keypoint data, it failed to recognize these dis-
continuities as syllable transitions, instead generating implausibly 
brief syllables that aligned poorly with the keypoint change score 
(Fig. 1b,c). These observations are consistent with prior work show-
ing that MoSeq underperforms alternative clustering methods when 
applied to keypoints13,26.

We wondered whether this poor performance could be explained 
by noise in the keypoint data, which might introduce subtle disconti-
nuities that are falsely recognized by MoSeq as behavioral transitions. 
In our data, this noise took the form of high-frequency jitter that 
reflected errors in body part detection or rapid jumps in the inferred 
location of a stationary body part (Fig. 1d,e, Extended Data Fig. 1a,b 
and Supplementary Video 1). Much of the jitter—which was perva-
sive across camera angles and tracking methods—seemed to reflect 
inherent ambiguity in the true location of a keypoint, as frame-to- 
frame fluctuations in detected keypoint position had a similar 

scale as the variability in human labeling (Fig. 1f and Extended Data  
Fig. 1b–e). We confirmed that the jitter was unrelated to true move-
ment by tracking the same body part using multiple cameras; 
although overall movement trajectories were almost identical across 
cameras, high-frequency fluctuations around those trajectories were 
uncorrelated, suggesting that the fluctuations are a tracking artifact 
(Extended Data Fig. 1f,g).

Consistent with the possibility that keypoint noise dominates 
MoSeq’s view of behavior, syllable transitions derived from keypoints—
but not depth—frequently overlapped with jitter and low-confidence 
estimates of keypoint position (Fig. 1b,g). We were unable to correct 
this defect through simple smoothing: application of a low-pass filter—
while removing jitter—also blurred true transitions, preventing MoSeq 
from identifying syllable boundaries (Extended Data Fig. 1h). Median 
filtering and Gaussian smoothing also yielded no improvement. These 
data reveal that high-frequency tracking noise prevents MoSeq from 
accurately segmenting behavior.
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Fig. 2 | Hierarchical modeling of keypoint trajectories decouples noise from 
pose dynamics. a, Graphical models illustrating traditional MoSeq and keypoint-
MoSeq. In both models, a discrete syllable sequence governs pose dynamics 
in a low-dimensional pose state; these pose dynamics are either described 
using principal component analysis (PCA; as in ‘MoSeq’; left) or inferred from 
keypoint observations in conjunction with the animal’s centroid and heading, 
as well as a noise scale that discounts keypoint detection errors (as in ‘keypoint-
MoSeq’; right). b, Example of error correction by keypoint-MoSeq. Left: before 
fitting, all variables (y axis) are perturbed by incorrect positional assignment 
of the tail-base keypoint (whose erroneous location is shown in the bottom 
inset). Right: Keypoint-MoSeq infers plausible trajectories for each variable 
(shading represents the 95% confidence interval). The inset shows several likely 

keypoint coordinates for the tail-base inferred by the model. c, Top: various 
features averaged around syllable transitions from keypoint-MoSeq (red) versus 
traditional MoSeq applied to keypoint data (black), showing mean and inter-95% 
confidence interval range across N = 20 model fits. Bottom: cross-correlation of 
syllable transition probabilities between each model and depth MoSeq. Shaded 
regions indicate bootstrap 95% confidence intervals. Peak height represents the 
relative frequency of overlap in syllable transitions. Differences in each case were 
significant (*P = 2 × 10−7 over N = 20 model fits, Mann–Whitney U test). d, Duration 
distribution of the syllables from each of the indicated models. Shading as in  
c. e, Average pose trajectories for example keypoint-MoSeq syllables. Each 
trajectory includes ten poses, starting 165 ms before and ending 500 ms after 
syllable onset.
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Hierarchical modeling decouples noise from behavior
Keypoint jitter contaminates MoSeq syllables because MoSeq assumes 
that each keypoint is a faithful representation of a point on the ani-
mal, and thus cannot distinguish noise from real behavior. To address 
this issue, we rebuilt MoSeq as a switching linear dynamical system 
(SLDS)—a class of model that explicitly disentangles signal from noise 
in time-series data27,28. This model—called ‘keypoint-MoSeq’—has three 
hierarchical levels (Fig. 2a): a discrete state sequence that governs tra-
jectories in a low-dimensional pose space, which then combines with 
location and heading information to yield actual keypoint coordinates. 
When fit to data, keypoint-MoSeq estimates for each frame the animal’s 
location and pose, the noise in each keypoint29 and the identity of the 
current behavioral syllable (Fig. 2a). Because of its structure, when a 
single keypoint implausibly jumps from one location to another, the 
model can attribute this sudden displacement to noise and preserve a 
smooth pose trajectory; if all the keypoints suddenly rotate within the 
egocentric reference frame, the model can adjust the inferred heading 
for that frame and restore a plausible sequence of coordinates (Fig. 2b).

Unlike traditional MoSeq, keypoint-MoSeq homed in on behav-
ioral syllables rather than noise in the keypoint data, yielding syllable 
transitions that overlapped more strongly with changepoints in pose, 
correlated better with syllable transitions from depth MoSeq and clus-
tered less around low-confidence neural network detections (Fig. 2c). 
Keypoint-MoSeq also outperformed traditional MoSeq when the latter 
was applied to filtered keypoint data, or to keypoints inferred with a 
pose estimation method (Lightning Pose) that includes a jitter penalty 
in its training objective (Extended Data Fig. 2a,b). Furthermore, when 
we simulated missing data by ablating subsets of keypoints within 
random (0–3 s) intervals, keypoint-MoSeq was better able to preserve 
syllable labels and boundaries than traditional MoSeq (Extended Data 
Fig. 2c–f). From a modeling perspective, the output of MoSeq was 
sensible: cross-likelihood analysis revealed that keypoint-based syl-
lables were mathematically distinct trajectories in pose space, and 
submitting synthetic keypoint data that lacked any underlying block 
structure to keypoint-MoSeq resulted in models that failed to identify 
distinct syllables (Extended Data Fig. 2g,h).

Because keypoint-MoSeq produces slightly different syllable 
segmentations when run multiple times with different random seeds, 
we developed a likelihood-based metric that allows post hoc ranking 
of model runs (Extended Data Fig. 3a–g); the metric tends to be lowest 
for outlier models and highest for those that are consensus-like, pro-
viding a rational basis for model selection (Extended Data Fig. 3h–k). 
The metric revealed that 500 fitting iterations (~30 min of compute 
time on a GPU for ~5 h of data) are sufficient to achieve a good model fit 
with our open field dataset. Rather than choosing a single best model, 
users can also estimate an approximate probability distribution over 
syllable labels, although full Bayesian convergence remains impractical 
(Extended Data Fig. 3l).

In our open field data, keypoint-MoSeq identified 25 syllables 
that were easily distinguishable to human observers (Extended Data 
Fig. 4a and Supplementary Videos 2 and 3). These included catego-
ries of behavior (for example, rearing, grooming and walking), and 
variations within categories (for example, turn angle, speed; Fig. 2e). 
Importantly, keypoint-MoSeq preserved access to the kinematic and 
morphological parameters that underlie each behavioral syllable 
(Extended Data Fig. 4b). Thus, keypoint-MoSeq can provide an inter-
pretable segmentation of behavior from standard two-dimensional 
(2D) keypoint tracking data.

Keypoint-MoSeq is sensitive to behavioral transitions
To characterize keypoint-MoSeq, we related the discovered syllables 
to orthogonal measures of behavior and neural activity and compared 
them to the behavioral states identified by alternative behavior analysis 
methods. These alternatives, which include VAME, MotionMapper and 
B-SOiD, all work by transforming keypoint data into a feature space that 

reflects the local dynamics around each frame, and then clustering 
frames according to those features12,13,17,30.

When applied to our open field data, behavioral states from 
VAME, B-SOiD and MotionMapper were usually brief (median dura-
tion 33–100 ms, compared to ~400 ms for keypoint-MoSeq) and their 
transitions aligned poorly with changepoints in keypoint data, sug-
gesting diminished sensitivity to the natural breakpoints in mouse 
behavior (Fig. 3a–c). This observation was not parameter dependent, 
because it remained true across a broad range of temporal windows 
(used by B-SOiD and MotionMapper) and after comprehensive scans 
over latent dimension, state number, clustering mode and preproc-
essing options (across all methods as applicable; Extended Data 
Fig. 5a).

Rearing offers a clear example of the differing sensitivity of each 
method to temporal structure. B-SOiD and keypoint-MoSeq both 
learned a specific set of rear states, and each encoded the mouse’s 
height with comparable accuracy (Fig. 3d,e). Yet the rear states had 
different dynamics. Whereas keypoint-MoSeq typically detected two 
syllable transitions per rear (one entering the rear and one exiting), 
B-SOiD detected five to ten different transitions per rear, including 
switches between distinct rear states as well as flickering between 
rear and non-rear states (Fig. 3f and Extended Data Fig. 5b). Whereas 
mouse height increased at transitions into keypoint-MoSeq’s rear state 
and fell at transitions out of it, height tended to peak symmetrically at 
transitions into and out of B-SOiD’s rear states (Fig. 3g); this observa-
tion suggests that—at least in this example—B-SOiD does not effectively 
identify the boundaries between syllables, but instead fragments them 
throughout their execution.

We also evaluated each method using an orthogonal kinematic 
measurement: 3D head angle and acceleration from head-mounted 
inertial measurement units (IMUs; Fig. 3h). Behavioral transitions 
were identifiable in the IMU data as sudden changes in acceleration 
(quantified by jerk) and orientation (quantified by angular veloc-
ity). These measures tended to overlap with state transitions from 
keypoint-MoSeq but less so (or not at all) for B-SOiD, MotionMapper 
and VAME (Fig. 3i). Furthermore, IMU-extracted behavioral features 
(like head pitch or acceleration) typically rose and fell symmetrically 
around B-SOiD, MotionMapper and VAME-identified transitions, while 
keypoint-MoSeq identified asymmetrical changes in these features 
(Fig. 3i and Extended Data Fig. 6a).

The fact that keypoint-MoSeq more clearly identifies behavioral 
boundaries does not necessarily mean that it is better at capturing the 
overall content of behavior. Indeed, coarse kinematic parameters were 
captured equally well by all four of the tested methods (Extended Data 
Fig. 5c). However, the fact that movement parameters—as measured 
by accelerometry—change suddenly at the onset of keypoint-MoSeq 
syllables, but not at the onset of B-SOiD, VAME or MotionMapper states, 
provides evidence that these methods afford fundamentally different 
views of temporal structure in behavior.

State transitions align with fluctuations in neural data
A core use case for unsupervised behavioral classification is to under-
stand how the brain generates self-motivated behaviors outside a rigid 
task structure9; in this setting, boundaries between behavioral states 
serve as surrogate timestamps for alignment of neural data. For exam-
ple, we recently used depth MoSeq to show that dopamine fluctuations 
in DLS are temporally aligned to syllable transitions during spontane-
ous behavior22. Here we asked whether the same result was apparent 
in keypoint-based segmentations of behavior (Fig. 4a).

Syllable-associated dopamine fluctuations (as captured by 
dLight photometry) were remarkably similar between depth MoSeq 
and keypoint-MoSeq, but much lower in amplitude (or nonexistent) 
when assessed using B-SOiD, VAME and MotionMapper (Fig. 4b and 
Extended Data Fig. 7a). We wondered if this apparent discrepancy 
in syllable-associated dopamine could be explained by differences 
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in how each method represents the temporal structure of behavior. 
If, as we have shown, B-SOiD, VAME and MotionMapper can capture 
the content of behavior but not the timing of transitions, then aver-
age dopamine levels should vary consistently across their behav-
ior states but lack clear dynamics (increases or decreases) at state 
onsets. Indeed, for all four methods, almost every state was associated 
with a consistent above-average or below-average dopamine level 
(Fig. 4c,d and Extended Data Fig. 7b), and yet dopamine dynamics 
varied widely. Whereas dopamine usually increased at the initiation 
of keypoint-MoSeq syllables, it was usually flat (having just reached 

a peak or nadir) at state onsets identified by alternative methods 
(Fig. 4c–e). Furthermore, aligning the dopamine signal to randomly 
sampled times throughout the execution of each behavioral state—
rather than its onset—altered state-associated dopamine dynamics 
for keypoint-MoSeq, but made little difference for alternative meth-
ods (Fig. 4f and Extended Data Fig. 7c,d). These results suggest that 
keypoint-MoSeq syllable onsets are meaningful landmarks for neural 
data analysis, while state onsets identified by alternative methods are 
often functionally indistinguishable from random timepoints during 
a behavior.
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from keypoint-MoSeq and B-SOiD during a pair of example rears. States are 
colored as in d. Top: mouse height over time with rears shaded gray. Callouts 

show depth and IR views of the mouse during two example frames. g, Mouse 
height aligned to the onsets (solid lines) or offsets (dashed lines) of rear-specific 
states defined in d, showing mean and 95% confidence of the mean. h, Signals 
captured from a head-mounted IMU, including absolute 3D head orientation 
(top) and relative linear acceleration (bottom). Each signal and its rate of change, 
including angular velocity (ang. vel.) and jerk (the derivative of acceleration), 
are plotted during a 5-s interval. Figure created with SciDraw under a CC BY 4.0 
license. i, IMU signals aligned to the onsets of each behavioral state. Each heat 
map row represents a state. Line plots show the median across states for angular 
velocity and jerk (average and standard across N = 10 model fits). Keypoint-
MoSeq peaks at a higher value for both signals (P < 0.0005, N = 10,  
Mann–Whitney U test).
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Keypoint-MoSeq generalizes across experimental setups and 
behaviors
Keypoint tracking is a powerful means of pose estimation because 
it generalizes widely across experimental setups. To test whether 
keypoint-MoSeq inherits this flexibility, we asked if it could quantify 
changes in behavior induced by environmental enrichment. Mice 
were recorded in either an empty arena or one that contained bed-
ding, chew toys and a transparent shelter (Extended Data Fig. 8a). 
The enriched environment was too complex for traditional depth 
MoSeq but yielded easily to keypoint-based pose estimation. Based 
on these poses, keypoint-MoSeq identified 39 syllables, of which 21 
varied between environments: syllables upregulated in the enriched 
environment tended to involve manipulation and orientation toward 
nearby affordances (for example, ‘investigation’, ‘stationary right turn’ 
and ‘stop and dig’), whereas those upregulated in the empty box were 
limited to locomotion and rearing (‘dart forward’ and ‘rear-up in corner’; 
Extended Data Fig. 8b,c). These results suggest that keypoint-MoSeq 
may be useful in a broad range of experimental contexts, includ-
ing those whose cluttered structure precludes the effective use of  
depth cameras.

To test if keypoint-MoSeq can also generalize across laborato-
ries—and to better understand the mapping between syllables and 
human-identified behaviors—we next analyzed a pair of published 
benchmark datasets31,32. The first dataset included human annota-
tions for four mouse behaviors in an open field (locomotion, rearing, 
face grooming and body grooming) and keypoint detections from the 
TopViewMouse model in the DLC Model Zoo33 (Fig. 5a–c). The second 
dataset (part of the CalMS21 benchmark32) included a set of three 
manually annotated social behaviors (mounting, investigation and 
attack) as well as keypoints for a pair of interacting mice (Fig. 5d–f). 
Keypoint-MoSeq recovered syllables from both datasets whose aver-
age duration was ~400 ms, while, as before, the B-SOiD, MotionMap-
per and VAME identified behavioral states that were much shorter 
(Extended Data Fig. 9a). Keypoint-MoSeq states also conformed more 
closely to human-identified behavioral states (Fig. 5c,f and Extended 
Data Fig. 9b). Although this advantage was modest overall, there were 
some important differences: in the CalMS21 dataset, for example, 
MotionMapper, B-SOiD and VAME only identified a single behavior 
consistently, with B-SOiD and VAME only capturing mounting and 
MotionMapper only capturing investigation in 100% of model fits; 
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dopamine fluctuations, where asymmetry is defined as the difference in mean 
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keypoint-MoSeq, in contrast, defined at least one state specific to each 
of the three behaviors in 100% of model fits (Extended Data Fig. 9c).

The above benchmark datasets differed widely in the number 
of keypoints tracked (7 for CalMS21 versus 21 for the TopViewMouse 
model; Fig. 5a,d), raising the question of how the pose representation 

fed to keypoint-MoSeq influences its outputs. One possibility— 
suggested by the higher syllable count for depth MoSeq (~50) compared 
to keypoint-MoSeq fit to 2D keypoints (~25)—is that higher-dimensional 
input data allows MoSeq to make finer distinctions between behav-
iors. To test this rigorously, we used multiple cameras to estimate 
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keypoints in 3D (including six keypoints that were not visible in the 
overhead-camera 2D dataset) and confirmed that the 3D keypoints had 
higher intrinsic dimensionality than 2D keypoints (Fig. 5g and Extended 
Data Fig. 9d,e). Despite this difference in dimensionality, similar 
changepoints were evident in both datasets, and keypoint-MoSeq iden-
tified syllables with similarly timed transitions (Fig. 5h and Extended 
Data Fig. 9f).

There was a bigger change, however, in how behaviors were cat-
egorized. Keypoint-MoSeq made finer-grained behavior distinctions 
based on 3D data as compared to 2D data, especially for behaviors that 
varied in height (Fig. 5i–l and Supplementary Video 4). Turning, for 
example, was grouped as a single state based on the 2D keypoint data 
but partitioned into three states with different head positions based 

on the 3D keypoint data (nose to the ground versus nose in the air; 
Fig. 5j–l). Rearing was even more fractionated, with a single 2D syllable 
splitting six ways based on body angle and trajectory in the 3D keypoint 
data. Depth-based MoSeq fractionated these behaviors still further. 
This analysis suggests that higher-dimensional input data permit 
richer descriptions of behavior, but even relatively low-dimensional 
2D keypoint data still capture the timing of behavioral transitions.

Keypoint-MoSeq parses behavior across species and 
timescales
To test if keypoint-MoSeq generalizes across rodent species, we ana-
lyzed previously published 3D motion capture data derived from 
rats. In this dataset, rats were adorned with reflective body piercings 
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g, Average pose trajectories for three fly motifs. h, Example of motif sequences 
during locomotion. Top: Keypoint-MoSeq output for models tuned to a range 
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keypoint trajectories (anteroposterior coordinate). i, Frequency of motifs across 
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labels (right) during fast locomotion. Colors in the right-hand plot correspond to 
models with a range of values for the stickiness hyperparameter, which sets the 
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and recorded in a circular home cage arena with a lever and water 
spout for operant training (Fig. 5m; Rat7M dataset34). As with mice, 
keypoint-MoSeq syllables aligned with changepoints in the keypoint 
data (Fig. 5n) and included a diversity of behaviors, including a sylla-
ble specific to lever pressing in the arena (Fig. 5o and Supplementary 
Video 5).

Mice combine postural movements, respiration and whisking to 
sense their environment. Recent work suggests that rodents coordinate 
these behaviors in time, generating rhythmic head movements that 
synchronize with the sniff cycle35,36. Using an autoregressive hidden 
Markov model (AR-HMM), for example, head-movement motifs were 
discovered that align to respiration and arise during olfactory naviga-
tion21. Respiration, therefore, defines a fast timescale of mouse behav-
ior that coexists with—but is distinct from—the ~400-ms timescale of 
behavioral syllables.

To test if keypoint-MoSeq can capture behavioral motifs at this 
faster timescale, we used 120-Hz cameras to track 3D keypoints of mice 
and measured respiration with an implanted thermistor37 (Fig. 6a). 
Consistent with prior work, we observed respiration-synchronized 
fluctuations in nose velocity, although synchrony was weak or absent in 
other parts of the body (Fig. 6b,c). We then fit keypoint-MoSeq models 
with a range of target timescales (~35 ms to ~300 ms; Extended Data 
Fig. 10a). Motifs were defined as ‘respiration coupled’ if they consist-
ently aligned with transitions in respiration state (inhale-to-exhale or 
exhale-to-inhale; Fig. 6d,e). Although respiration coupling was evident 
across all models, its prominence peaked at shorter timescales (Extended 
Data Fig. 10a), especially when fit to a subset of anterior keypoints that 
emphasized neck and nose movements (Extended Data Fig. 10b). The 
best-synchronized motifs (from the full-body model) tended to coincide 
with exhalation and involved isolated movements in which the nose 
flutters down (Fig. 6e,f). These results suggest that keypoint-MoSeq can 
characterize fast, sniff-aligned movements in the mouse.

Given that keypoint-MoSeq can parse two different timescales of 
mouse behavior, we wondered if it could also segment fly behavior, 
which similarly occurs at multiple well-defined timescales. Flies tend 
to switch between distinct, oscillatory pose trajectories17. These move-
ments can be finely subdivided, as in the coordinated stance and swing 
phases of locomotion38, or more coarsely segmented at the transitions 
between distinct oscillatory modes (for example, locomotion versus 
grooming), as they are by MotionMapper17. To capture these distinct 
levels of organization, we fit keypoint-MoSeq to 2D keypoints from 
flies exploring a flat substrate17,39 (Extended Data Fig. 10c). The result-
ing behavioral motifs varied from tens to hundreds of milliseconds 
depending on keypoint-MoSeq’s target timescale. At longer time-
scales, keypoint-MoSeq identified recognizable behaviors such as 
locomotion, head grooming or left-wing grooming, similarly to the 
behaviors reported by MotionMapper (Fig. 6g, Supplementary Video 6  
and Extended Data Fig 10d–f).

At shorter time scales, keypoint-MoSeq divided these behav-
iors into their constituent phases. Fast locomotion, for example, 
was split between six phase-locked motifs that tiled the stride cycle 
(Fig. 6h). As target timescales grew longer, locomotion merged from 
six to two phases (corresponding to the alternating swings and stances 
of a canonical tripod gait) before eventually collapsing to a single 
motif that encompassed the full stride cycle (Fig. 6h–j and Extended 
Data Fig. 10g). This shift was evident in the power spectral density 
of keypoint-MoSeq’s output, which began with a prominent peak at 
~12 Hz during fast locomotion (corresponding to the stride cycle) 
that slowly disappeared as keypoint-MoSeq’s target timescale was 
increased (Fig. 6k). The same hierarchy of timescales appeared for 
non-locomotion behaviors as well (Extended Data Fig. 10h). These 
results demonstrate that keypoint-MoSeq is useful as a tool for fly 
behavior analysis and suggest a principle for setting its target timescale 
that depends on whether researchers wish to subdivide the distinct 
phases of oscillatory behaviors.

Discussion
Syllables are broadly useful for understanding behavior16,22–24, but their 
scope has been limited by the past requirement for depth data. Here 
we show that keypoint-MoSeq affords similar insight as depth-based 
MoSeq while benefiting from the generality of markerless keypoint 
tracking. Whereas depth MoSeq was limited to a narrow range of spatial 
scales and frame rates, keypoint-MoSeq can be applied to mammals 
and insects, parsing behaviors at the second or millisecond timescale. 
And because keypoint tracking is more robust to occlusion and environ-
mental clutter, it is now possible to parse syllables amid environmental 
enrichment, in animals behaving alone or socially, with or without 
headgear and neural implants.

The core innovation enabling keypoint-MoSeq is a probabilis-
tic model that effectively handles occlusions, tracking errors and 
high-frequency jitter. These noise sources are pervasive in pose track-
ing5,26; because standard methods like SLEAP and DLC process each 
frame separately, keypoint coordinates tend to jump from frame to 
frame even when the subject’s pose has not discernably changed. A 
newer generation of pose tracking methods, such as GIMBAL29, Deep 
Graph Pose26 and Lightning Pose40, correct for some of these errors; 
and two-step pipelines that build on these methods may be less prone 
to keypoint jitter. Here, we describe a different solution: combining 
noise-correction and behavior segmentation in a single end-to-end 
model that leverages learned patterns of animal motion to infer the 
most plausible pose trajectory from noisy or missing data.

Keypoint-MoSeq is somewhat resilient to noise, but it will perform 
best with clean keypoint data that capture most parts of the body. 
Although directly modeling the raw pixel intensities of depth16 or 2D 
video41 provides the most detailed access to spontaneous behavior, 
technical challenges like reflections, occlusions and variation in per-
spective and illumination remain a challenge in those settings. The 
development of keypoint-MoSeq—together with advances in marker-
less pose tracking—should enable MoSeq to be used in a variety of  
these adversarial circumstances, such as when animals are obstructed 
from a single axis of view, when multiple animals are interacting simul-
taneously, when the environment changes dynamically and when 
animals wear elaborate headgear.

Compared to keypoint-MoSeq, the alternative methods for unsu-
pervised behavior segmentation that we tested (B-SOiD12, MotionMap-
per17 and VAME13) tend to emit shorter behavior motifs that often start 
or stop in the middle of what humans might identify as a behavioral 
module or motif (for example, a rear). Our analysis suggests two pos-
sible reasons for this difference. First, unlike alternative methods, 
MoSeq can discretize behavior at a particular user-defined timescale 
and, therefore, is better able to identify clear boundaries between 
behavioral elements that respect the natural rhythmicity in move-
ments associated with syllables, sniffs or steps. The resulting parsi-
mony prevents over-fractionation of individual behaviors. Second, 
the hierarchical structure of keypoint-MoSeq’s underlying generative 
model means it can detect noise in keypoint trajectories and distinguish 
this noise from actual behavior without smoothing away meaningful 
behavioral transitions.

That said, we stress that there is no one best approach for behav-
ioral analysis, as all methods involve trade-offs42,43. For example, 
keypoint-MoSeq does not yield a single fixed description of behav-
ior, since its output is probabilistic. In principle, one could summa-
rize this uncertainty in the form of a posterior distribution. Because 
proper posterior estimation is impractical using our current fitting 
procedure, we have defined an alternative approach whereby users 
generate an ensemble of candidate model fits and identify a consensus 
model for downstream analysis. Users wishing to better quantify model 
uncertainty can also apply subsequent analyses to the full ensemble 
of models. Keypoint-MoSeq is also limited to describing behavior at a 
single timescale. Although users may vary this timescale across a broad 
range, keypoint-MoSeq cannot simultaneously analyze behavior across 
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multiple timescales or explicitly represent the hierarchical nesting of 
behavior motifs. Finally, because keypoint-MoSeq learns the identity 
of syllables from the data itself, it may miss especially rare behavioral 
events that could otherwise be captured using supervised methods.

To facilitate the adoption of keypoint-MoSeq, we built a website 
(http://www.moseq4all.org/) that includes free access to the code 
for academics as well as extensive documentation and guidance for 
implementation. As demonstrated here, the model underlying MoSeq 
is modular and thus accessible to extensions and modifications that can 
increase its alignment to behavioral data. For example, a time-warped 
version of MoSeq was recently reported that incorporates a term to 
explicitly model variation in movement vigor19. We anticipate that 
the application of keypoint-MoSeq to a wide variety of experimental 
datasets will both yield important information about the strengths and 
failure modes of model-based methods for behavioral classification, 
and prompt continued innovation.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
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References
1. Tinbergen, N. The Study of Instinct (Clarendon Press, 1951).
2. Dawkins, R. In Growing Points in Ethology (Bateson, P. P. G. & 

Hinde, R. A. eds.) Chap 1 (Cambridge University Press, 1976).
3. Baerends, G. P. The functional organization of behaviour.  

Anim. Behav. 24, 726–738 (1976).
4. Pereira, T. D. et al. SLEAP: a deep learning system for multi-animal 

pose tracking. Nat. Methods 19, 486–495 (2022).
5. Mathis, A. et al. DeepLabCut: markerless pose estimation of 

user-defined body parts with deep learning. Nat. Neurosci. 21, 
1281–1289 (2018).

6. Sun, J. J. et al. Self-supervised keypoint discovery in behavioral 
videos. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern 
Recognit. 2022, 2161–2170 (2022).

7. Graving, J. M. et al. DeepPoseKit, a software toolkit for fast and 
robust animal pose estimation using deep learning. eLife 8, 
e47994 (2019).

8. Mathis, A., Schneider, S., Lauer, J. & Mathis, M. W. A primer on 
motion capture with deep learning: principles, pitfalls, and 
perspectives. Neuron 108, 44–65 (2020).

9. Datta, S. R., Anderson, D. J., Branson, K., Perona, P. & Leifer, A. 
Computational neuroethology: a call to action. Neuron 104,  
11–24 (2019).

10. Anderson, D. J. & Perona, P. Toward a science of computational 
ethology. Neuron 84, 18–31 (2014).

11. Pereira, T. D., Shaevitz, J. W. & Murthy, M. Quantifying behavior to 
understand the brain. Nat. Neurosci. 23, 1537–1549 (2020).

12. Hsu, A. I. & Yttri, E. A. B-SOiD, an open-source unsupervised 
algorithm for identification and fast prediction of behaviors.  
Nat. Commun. 12, 5188 (2021).

13. Luxem, K. et al. Identifying behavioral structure from deep 
variational embeddings of animal motion. Commun. Biol. 5,  
1267 (2022).

14. Marques, J. C., Lackner, S., Félix, R. & Orger, M. B. Structure of 
the Zebrafish locomotor repertoire revealed with unsupervised 
behavioral clustering. Curr. Biol. 28, 181–195 (2018).

15. Todd, J. G., Kain, J. S. & de Bivort, B. L. Systematic exploration 
of unsupervised methods for mapping behavior. Phys. Biol. 14, 
015002 (2017).

16. Wiltschko, A. B. et al. Mapping sub-second structure in mouse 
behavior. Neuron 88, 1121–1135 (2015).

17. Berman, G. J., Choi, D. M., Bialek, W. & Shaevitz, J. W. Mapping 
the stereotyped behaviour of freely moving fruit flies. J. R. Soc. 
Interface https://doi.org/10.1098/rsif.2014.0672 (2014).

18. Batty, E. et al. BehaveNet: nonlinear embedding and Bayesian 
neural decoding of behavioral videos. in Advances in Neural 
Information Processing Systems 32 (eds H. Larochelle et al.) 
15706–15717 (Curran Associates, 2019).

19. Costacurta, J. C. et al. Distinguishing discrete and  
continuous behavioral variability using warped autoregressive 
HMMs. in Advances in Neural Information Processing Systems 35 
(eds S. Koyejo et al.) 23838–23850 (Curran Associates,  
2022).

20. Jia, Y. et al. Selfee, self-supervised features extraction of animal 
behaviors. eLife 11, e76218 (2022).

21. Findley, T. M. et al. Sniff-synchronized, gradient-guided olfactory 
search by freely moving mice. eLife 10, e58523 (2021).

22. Markowitz, J. E. et al. Spontaneous behaviour is structured by 
reinforcement without explicit reward. Nature 614, 108–117 
(2023).

23. Markowitz, J. E. et al. The striatum organizes 3D behavior via 
moment-to-moment action selection. Cell 174, 44–58 (2018).

24. Wiltschko, A. B. et al. Revealing the structure of 
pharmacobehavioral space through motion sequencing.  
Nat. Neurosci. https://doi.org/10.1038/s41593-020-00706-3 
(2020).

25. Lin, S. et al. Characterizing the structure of mouse behavior using 
motion sequencing. Preprint at https://arxiv.org/abs/2211.08497 
(2022).

26. Wu, A. et al. Deep Graph Pose: a semi-supervised deep graphical 
model for improved animal pose tracking. in Proceedings of the 
34th International Conference on Neural Information Processing 
Systems (Curran Associates, 2020).

27. Murphy, K. P. Machine Learning (MIT Press, 2012).
28. Linderman, S. et al. In Proceedings of the 20th International 

Conference on Artificial Intelligence and Statistics Vol. 54  
(eds Aarti, S. et al.) 914–922 (PMLR, Proceedings of Machine 
Learning Research, 2017).

29. Zhang, L., Dunn, T., Marshall, J., Olveczky, B. & Linderman, S. In 
Proceedings of The 24th International Conference on Artificial 
Intelligence and Statistics Vol. 130 (eds Banerjee Arindam & 
Fukumizu Kenji) 2800–2808 (PMLR, Proceedings of Machine 
Learning Research, 2021).

30. Klibaite, U. et al. Deep phenotyping reveals movement 
phenotypes in mouse neurodevelopmental models. Mol. Autism 
13, 12 (2022).

31. Bohnslav, J. P. et al. DeepEthogram, a machine learning pipeline 
for supervised behavior classification from raw pixels. eLife 10, 
e63377 (2021).

32. Sun, J. J. et al. Caltech mouse social interactions (CalMS21) 
dataset. https://doi.org/10.22002/D1.1991 (2021).

33. Ye, S., Mathis, A. & Mathis, M. W. Panoptic animal pose 
estimators are zero-shot performers. Preprint at https://arxiv.org/
abs/2203.07436 (2022).

34. Marshall, J. D. et al. Continuous whole-body 3D kinematic 
recordings across the rodent behavioral repertoire. Neuron 109, 
420–437 (2021).

35. Moore, J. D. et al. Hierarchy of orofacial rhythms revealed  
through whisking and breathing. Nature 497, 205–210  
(2013).

36. Kurnikova, A., Moore, J. D., Liao, S. -M., Deschênes, M. & Kleinfeld, D.  
Coordination of orofacial motor actions into exploratory behavior 
by rat. Curr. Biol. 27, 688–696 (2017).

37. McAfee, S. S. et al. Minimally invasive highly precise monitoring of 
respiratory rhythm in the mouse using an epithelial temperature 
probe. J. Neurosci. Methods 263, 89–94 (2016).

http://www.nature.com/naturemethods
http://www.moseq4all.org/
https://doi.org/10.1038/s41592-024-02318-2
https://doi.org/10.1098/rsif.2014.0672
https://doi.org/10.1038/s41593-020-00706-3
https://arxiv.org/abs/2211.08497
https://doi.org/10.22002/D1.1991
https://arxiv.org/abs/2203.07436
https://arxiv.org/abs/2203.07436


Nature Methods | Volume 21 | July 2024 | 1329–1339 1339

Article https://doi.org/10.1038/s41592-024-02318-2

38. DeAngelis, B. D., Zavatone-Veth, J. A. & Clark, D. A.  
The manifold structure of limb coordination in walking 
Drosophila. Elife https://doi.org/10.7554/eLife.46409  
(2019).

39. Pereira, T. D. et al. Fast animal pose estimation using deep neural 
networks. Nat. Methods 16, 117–125 (2019).

40. Dan, B. et al. Lightning Pose: improved animal pose estimation 
via semi-supervised learning, Bayesian ensembling, and 
cloud-native open-source tools. Preprint at bioRxiv https://doi.
org/10.1101/2023.04.28.538703 (2023).

41. Batty, E. et al. In NeurIPS vol. 32 (eds H. Wallach et al.)  
(Curran Associates, 2019).

42. Berman, G. J., Bialek, W. & Shaevitz, J. W. Predictability and 
hierarchy in Drosophila behavior. Proc. Natl Acad. Sci. USA 113, 
11943–11948 (2016).

43. Berman, G. J. Measuring behavior across scales. BMC Biol. 16,  
23 (2018).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended use 
is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder. To view 
a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

http://www.nature.com/naturemethods
https://doi.org/10.7554/eLife.46409
https://doi.org/10.1101/2023.04.28.538703
https://doi.org/10.1101/2023.04.28.538703
http://creativecommons.org/licenses/by/4.0/


Nature Methods

Article https://doi.org/10.1038/s41592-024-02318-2

Methods
Ethical compliance
All experimental procedures were approved by the Harvard Medical 
School Institutional Animal Care and Use Committee (protocol number 
04930) and were performed in compliance with the ethical regulations 
of Harvard University as well as the Guide for Animal Care and Use of 
Laboratory Animals.

Animal care and behavioral experiments
Unless otherwise noted, behavioral recordings were performed 
on 8–16-week-old C57/BL6 mice (The Jackson Laboratory stock no. 
000664). Mice were transferred to our colony at 6–8 weeks of age 
and housed in a reverse 12-h light/12-h dark cycle. We single-housed 
mice after stereotactic surgery and group-housed them otherwise. 
On recording days, mice were brought to the laboratory, habituated 
in darkness for at least 20 min, and then placed in the behavioral arena 
for 30–60 min. We recorded 6 male mice for 10 sessions (6 h) in the 
initial round of open field recordings; 5 male mice for 52 sessions (50 h) 
during the accelerometry recordings; 16 male mice for 16 sessions (8 h) 
during the environmental enrichment experiment; and 5 male mice 
for 9 sessions (6 h) during the thermistor recordings. The dopamine 
photometry recordings were obtained from a recent study22. They 
include 6 C57/BL6 mice and 8 DAT-IRES-cre (The Jackson Laboratory 
stock no. 006660) mice of both sexes, recorded for 378 sessions. Of 
these, we selected a random subset of 95 sessions (~50 h) for bench-
marking keypoint-MoSeq.

Stereotactic surgery procedures
For all stereotactic surgeries, mice were anesthetized using 1–2% iso-
flurane in oxygen, at a flow rate of 1 l min−1 for the duration of the pro-
cedure. Anteroposterior (AP) and mediolateral (ML) coordinates (in 
millimeters) were zeroed relative to bregma, and the dorsoventral (DV) 
coordinate was zeroed relative to the pial surface. All mice were moni-
tored daily for 4 days following surgery and were allowed to recover 
for at least 1 week. Mice were then habituated to handling and brief 
head-fixation before beginning recordings.

For dopamine recordings, 400 nl of AAV5.CAG.dLight1.1 (Addgene, 
111067; titer: 4.85 × 1012) was injected at a 1:2 dilution into the DLS (AP 
0.260; ML 2.550; DV −2.40), and a single 200-μm-diameter, 0.37–
0.57-NA fiber cannula was implanted 200 μm above the injection site 
(see ref. 22 for additional details).

For accelerometry recordings, we surgically attached a Mill-Max 
connector (DigiKey, ED8450-ND) and head bar to the skull and secured 
it with dental cement (Metabond). A nine-degree-of-freedom absolute 
orientation IMU (Bosch, BN0055) was mounted on the Mill-Max con-
nector using a custom printed circuit board (PCB) with a net weight 
below 1 g.

For thermistor surgeries, we adapted a protocol previously 
described37. We first prepared the implant (GAG22K7MCD419, TE 
Connectivity) by stripping the leads and soldering them to two male 
Mill-Max pins (0.05-inch pitch, 851-93-050-10-001000). The pins and 
their solder joins were then entirely covered in Prime-Dent light-curable 
cement, and cured for 10–20 s, to ensure the longevity and stability of 
the electrical connection. Each implant was tested by touching two 
leads of a multimeter (set to measure resistance) to the female side of 
the Mill-Max, breathing gently on the thermistor, and checking for a 
resistance drop of roughly 20 kΩ to 18 kΩ.

To implant the thermistor, a midline incision was made from ~1 mm 
behind lambda to ~1 mm anterior to the nasal suture, and the skull 
cleaned and lightly scored. A craniotomy was made just anterior to 
the nasal suture (well posterior to the position originally reported37), 
large enough for the thermistor to fit fully inside. The thermistor was 
fully inserted along the AP axis so that it lay flat in the horizontal plane 
inside the nasal cavity. The craniotomy was then sealed with KwikSil, 
and the thermistor wire was secured to the skull 1–2 mm posterior to the 

craniotomy with cyanoacrylate glue (Loctite 454). Then dental cement 
(Metabond) was used to attach the Mill-Max connector in an upright 
position between bregma and lambda, and a head bar was cemented 
to the skull at lambda.

Microsoft Azure recording setup
For the initial set of open field recordings (Figs. 1, 2, 3a–g and 5g–l), 
mice were recorded in a square arena with transparent floor and walls 
(30 cm length and width). Microsoft Azure Kinect cameras captured 
simultaneous depth and near-IR video at 30 Hz. Six cameras were used 
in total: one above, one below and four side cameras at right angles at 
the same height as the mouse.

Accelerometry recordings
For the accelerometry recordings, we used a single Microsoft Azure 
Kinect camera placed above the mouse, and an arena with transparent 
floor and opaque circular walls (45-cm diameter). Data were transferred 
from the IMU using a lightweight tether attached to a custom-built 
active commutator. The IMU was connected to a Teensy microcon-
troller, which was programmed using the Adafruit BNO055 library with 
default settings (sample rate: 100 Hz, units: m/s2). To synchronize the 
IMU measurements and video recordings, we used an array of near-IR 
LEDs to display a rapid sequence of random 4-bit codes that updated 
throughout the recording. The code sequence was later extracted from 
the behavioral videos and used to fit a piecewise linear model between 
timestamps from the videos and timestamps from the IMU.

Thermistor recordings
To record mouse respiration and movement at high frame rates, we 
built a multi-camera recording arena using six Basler ace acA1300-
200um Monochrome USB 3.0 Cameras (Edmund Optics, 33-978) that 
recorded from above, from below and four side views. The cameras 
were triggered at 120 Hz using an Arduino. Video compression was 
performed in real time on a GPU using a custom library (https://github.
com/calebweinreb/multicamera_acquisition/). Mice were recorded in 
an open-top glass cube and illuminated with 32 near-IR high-power LED 
stars (LEDSupply, CREEXPE-FRD-3). To avoid reflections and satura-
tions effects, the bottom camera was triggered slightly out of phase 
with the top cameras, and the LEDs were split into two groups: one 
group below the arena that turned on during the bottom camera’s 
exposure, and one group above the arena that turned on during the 
top and side cameras’ exposure.

To record the thermistor signal, we designed a custom PCB that 
used an op-amp (INA330AIDGST, Texas Instruments) to transform 
the thermistor’s resistance fluctuations into voltages, and another 
circuit element to keep the voltage within the 0–3.3 V range. The PCB 
was connected to an Arduino (separate from the one controlling the 
cameras) that recorded the output. The PCB parts list, schematic and 
microcontroller code are available upon reasonable request to the 
laboratory of S.R.D.

Before behavioral recording sessions with the thermistor, mice 
were briefly head-fixed, and a cable with a custom headstage was 
inserted into the head-mounted Mill-Max adaptor. The cable was 
commutated with an assisted electric commutator from Doric Lenses 
and connected to the input of the op-amp on the custom PCB. To syn-
chronize the thermistor and video data, we piped a copy of the camera 
trigger signal from the camera-Arduino to the thermistor-Arduino and 
recorded this signal alongside the thermistor output.

Environmental enrichment recordings
To test the effects of environmental enrichment on behavior, we built 
an arena for overhead video recording of an open-topped home cage. 
The home cage was surrounded on each side by a 16-inch vertical bar-
rier, illuminated from above by three near-IR LED starts (LEDSupply, 
CREEXPE-FRD-3) and recorded with a Basler ace acA1300-200um 
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Monochrome USB 3.0 Camera (Edmund Optics 33-978). For half the 
recordings, the cage was filled with bedding, nesting material, chew 
sticks and a transparent, dome-shaped hut. For the other half, the cage 
was completely empty (except for the mouse).

Software
The following publicly available software packages were used for analy-
sis: Python (version 3.8), NumPy (version 1.24.3), Scikit-learn (version 
1.2.2), PyTorch (version 1.9), Jax (version 0.3.22), SciPy (version 1.10.1), 
Matplotlib (version 3.7.1), Statsmodels (version 0.13.5), Motionmap-
perpy (version 1.0), DeepLabCut (version 2.2.1), SLEAP (version 1.2.3), 
B-SOiD (version 1.5.1), VAME (version 1.1), GIMBAL (version 0.0.1), 
HRNet (unversioned), LightningPose (version 0.0.4) and segmenta-
tion_models_pytorch (version 0.3.3).

Statistics
All reported P values for comparisons between distributions were 
derived from Mann–Whitney U tests unless stated otherwise. In all 
comparisons to ‘shuffle’, the shuffle represents a cyclic permutation 
of the data.

Processing depth videos
Applying MoSeq to depth videos involves: (1) mouse tracking and 
background subtraction; (2) egocentric alignment and cropping; (3) 
PCA; and (4) probabilistic modeling. We applied steps 2–4 as described 
in the MoSeq2 pipeline25. For step 1, we trained a convolutional neural 
network (CNN) with a Unet++44 architecture to segment the mouse 
from background using ~5,000 hand-labeled frames as training data.

Keypoint tracking for Microsoft Azure IR recordings
We used CNNs with an HRNet45 architecture (https://github.com/ste-
fanopini/simple-HRNet/) with a final stride of two for pose tracking. 
The networks were trained on ~1,000 hand-labeled frames each for the 
overhead, below-floor and side-view Microsoft Azure cameras. Frame 
labeling was crowdsourced through a commercial service (Scale AI). 
The crowdsourced labels were comparable to those from experts in our 
laboratory (Extended Data Fig. 1d). For the overhead camera, we tracked 
two ears and six points along the dorsal midline (tail base, lumbar spine, 
thoracic spine, cervical spine, head and nose). For the below-floor cam-
era, we tracked the tip of each forepaw, the tip and base of each hind paw, 
and four points along the ventral midline (tail base, genitals, abdomen 
and nose). For the side cameras, we tracked the same eight points as for 
the overhead camera and included the six limb points that were used for 
the below-floor camera (14 total). We trained a separate CNN for each 
camera angle. Target activations were formed by centering a Gaussian 
with a 10-pixel (px) standard deviation on each keypoint. We used the 
location of the maximum pixel in each output channel of the neural net-
work to determine keypoint coordinates and used the value at that pixel 
to set the confidence score. The resulting mean absolute error (MAE) 
between network detections and manual annotations was 2.9 px for the 
training data and 3.2 px for held-out data. We also trained DeepLabCut 
and SLEAP models on the overhead-camera and below-floor-camera 
datasets. For DeepLabCut, we used version 2.2.1, setting the architec-
ture to resnet50 architecture and the ‘pos_dist_thresh’ parameter to 
10, resulting in train and test MAEs of 3.4 px and 3.8 px, respectively. 
For SLEAP, we used version 1.2.3 with the baseline_large_rf.single.json 
configuration, resulting in train and test MAEs of 3.5 px and 4.7 px. For 
Lightning Pose40, we used version 0.0.4 and default parameters with 
‘pca_singleview’ and ‘temporal’ loss terms.

Keypoint tracking for thermistor recordings
We trained separate keypoint detection networks for the Basler cam-
era arena (used for the thermistor recordings). CNNs with an HRNet 
architecture were trained on ~1,000 hand-labeled frames each for the 
overhead and below-floor cameras and ~3,000 hand-labeled frames 

for the side-view cameras. The same keypoints were used as the ones 
for the Microsoft Azure dataset.

3D pose inference
Using 2D keypoint detections from six cameras, 3D keypoint coordi-
nates were triangulated and then refined using GIMBAL, a model-based 
approach that leverages anatomical constraints and motion continu-
ity29. To fit GIMBAL, we computed initial 3D keypoint estimates using 
robust triangulation (that is, by taking the median across all camera 
pairs, as in 3D-DeepLabCut46) and then filtered to remove outliers 
using the EllipticEnvelope method from sklearn; we then fit the skel-
etal parameters and directional priors for GIMBAL using expecta-
tion maximization with 50 pose states. Finally, we applied the fitted 
GIMBAL model to each recording, using the following parameters 
for all keypoints: obs_outlier_variance = 1e6, obs_inlier_variance = 10, 
pos_dt_variance = 10. The latter parameters were chosen based on 
the accuracy of the resulting 3D keypoint estimates, as assessed from 
visual inspection. Camera calibration and initial triangulation were 
performed using a custom library (https://github.com/calebweinreb/
multicam-calibration/tree/main/multicam_calibration/).

Keypoint change score
We defined the keypoint ‘change score’ as the total velocity of key-
points after egocentric alignment. The goal of the change score is to 
highlight sudden shifts in pose. It was calculated by: (1) transforming 
keypoints into egocentric coordinates; (2) smoothing the transformed 
coordinates with Gaussian kernel (sigma = 1 frame); (3) calculating total 
change in coordinates across each frame; and (4) z-scoring. Formally, 
the score can be defined as:

Change score (t) = z score(| yt − yt−1|)

where yt are the keypoint coordinates after Gaussian smoothing.

Spectral analysis of keypoint jitter
To analyze keypoint jitter, we quantified the magnitude of fluctuations 
across a range of frequencies by computing a spectrogram for each 
keypoint along each coordinate axis. Spectrograms were computed 
using the python function scipy.signal.spectrogram with nperseg = 128 
and noverlap = 124. The spectrograms were then combined through 
averaging: each keypoint was assigned a spectrogram by averaging 
over the two coordinate axes, and the entire animal was assigned a 
spectrogram by averaging over all keypoints.

We used the keypoint-specific spectrograms to calculate 
cross-correlations with −log10 (neural network detection confidence), 
as well as the ‘error magnitude’ (Fig. 1g). Error magnitude was defined as 
the distance between the detected 2D location of a keypoint (based on a 
single camera angle) and a re-projection of its 3D position (based on con-
sensus across six camera angles; see ‘3D pose inference’ above). We also 
computed the cross-correlation between nose and tail-base fluctuations 
at each frequency, as measured by the overhead and below-floor cam-
eras, respectively. Finally, we averaged spectral power across keypoints 
to compute the cross-correlation with model transition probabilities 
(Fig. 1g). The model transition probabilities were defined for each frame 
as the fraction of N = 20 model fits in which a transition occurred on that 
frame. Formally, if z(i) denotes the syllable sequence learned by model 
fit i, then the transition probability at time t is calculated as

1
N

N

∑
i=1
δ (z(i)t ≠ z(i)t−t)

Applying keypoint-MoSeq
Datasets were modeled separately and multiple models with different 
random seeds were fit for each dataset (see Supplementary Table 1 for 
number of fits per dataset).
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Modeling consisted of two phases: (1) fitting an AR-HMM to a fixed 
pose trajectory derived from PCA of egocentric-aligned keypoints; and 
(2) fitting a full keypoint-MoSeq model initialized from the AR-HMM. 
References in the text to ‘MoSeq applied to keypoints’ or ‘MoSeq (key-
points)’, for example, in Figs. 1 and 2, refer to output of step 1. Both steps 
are described below, followed by a detailed description of the model 
and inference algorithm in the ‘mathematical notation’ section. In all 
cases, we excluded rare states (frequency < 0.5%) from downstream 
analysis. We have made the code available as a user-friendly package 
via https://keypoint-moseq.readthedocs.io/en/latest/. With a con-
sumer GPU, keypoint-MoSeq requires 30–60 min of computation 
time to model 5 h of data. The computation time scales linearly with 
dataset size.

Fitting an initial AR-HMM
We first modified the keypoint coordinates, defining keypoints with 
confidence below 0.5 as missing data and in imputing their values via 
linear interpolation, and then augmenting all coordinates with a small 
amount of random noise; the noise values were uniformly sampled 
from the interval [−0.1, 0.1] and helped prevent degeneracy during 
model fitting. Importantly, these preprocessing steps were only applied 
during AR-HMM fitting—the original coordinates were used when fit-
ting the full keypoint-MoSeq model.

Next, we centered the coordinates on each frame, aligned them 
using the tail–nose angle, and then transformed them using PCA with 
whitening. The number of principal components (PCs) was chosen for 
each dataset as the minimum required to explain 90% of total variance. 
This resulted in four PCs for the overhead-camera 2D datasets, six PCs 
for the below-floor camera 2D datasets and six PCs for the 3D dataset.

We then used Gibbs sampling to infer the states and parameters 
of an AR-HMM, including the state sequence z, the autoregressive 
parameters A, b and Q, and the transition parameters π and β. The 
hyperparameters for this step, listed in ‘mathematical notation’ 
below, were generally identical to those in the original depth MoSeq 
model. The one exception was the stickiness hyperparameter κ, which 
we adjusted separately for each dataset to ensure a median state  
duration of 400 ms.

Fitting a full keypoint-MoSeq model
We next fit the full set of variables for keypoint-MoSeq, which include 
the AR-HMM variables mentioned above, as well as the location v and 
heading h, latent pose trajectory x, per-keypoint noise level σ2 and 
per-frame/per-keypoint noise scale s. Fitting was performed using 
Gibbs sampling for 500 iterations, at which point the log joint prob-
ability appeared to have stabilized.

The hyperparameters for this step are enumerated in ‘mathemati-
cal notation’. In general, we used the same hyperparameter values 
across datasets. The two exceptions were the stickiness hyperparam-
eter κ, which again had to be adjusted to maintain a median state dura-
tion of 400 ms, and s0, which determines a prior on the noise scale. 
Because low-confidence keypoint detections often have high error, 
we set s0 using a logistic curve that transitions between a high-noise 
regime (s0 = 100) for detections with low confidence and a low-noise 
regime (s0 = 1) for detections with high confidence:

s0 = 1 + 100(1 + e20(confidence−0.4))
−1

The κ value used for each dataset is reported in Supplementary Table 2.

Trajectory plots
To visualize the modal trajectory associated with each syllable (Fig. 2e), 
we (1) computed the full set of trajectories for all instances of all sylla-
bles, (2) used a local density criterion to identify a single representative 
instance of each syllable and (3) computed a final trajectory using the 
nearest neighbors of the representative trajectory.

Computing the trajectory of individual syllable instances
Let yt, vt and ht denote the keypoint coordinates, centroid and heading 
of the mouse at time t, and let F(v, h; y) denote the rigid transformation 
that egocentrically aligns y using centroid v and heading h. Given a 
syllable instance with onset time T, we computed the corresponding 
trajectory XT by centering and aligning the sequence of poses 
(yT−5,… , yT+15) using the centroid and heading on time T. In other words

XT = [F (vT,hT;yT−5) ,… , F (vT,hT;yT+15)]

Identifying a representative instance of each syllable
The collection of trajectories computed above can be thought of as a 
set of points in a high dimensional trajectory space (for K keypoints 
in 2D, this space would have dimension 40K). Each point has a sylla-
ble label, and the segregation of these labels in the trajectory space 
represents the kinematic differences between syllables. To capture 
these differences, we computed a local probability density function 
for each syllable, and a global density function across all syllables. 
We then selected a representative trajectory X for each syllable by 
maximizing the ratio:

Local density(X)
Global density(X)

The density functions were computed as the mean distance from each 
point to its 50 nearest neighbors. For the global density, the nearest 
neighbors were selected from among all instances of all syllables. For 
the local densities, the nearest neighbors were selected from among 
instances of the target syllable.

Computing final trajectories for each syllable
For each syllable and its representative trajectory X, we identified the 
50 nearest neighbors of X from among other instances of the same 
syllable and then computed a final trajectory as the mean across these 
nearest neighbors. The trajectory plots in Fig. 2e consist of ten 
evenly-space poses along this trajectory, that is, the poses at times 
T − 5,T − 3,… ,T + 13.

Testing robustness to missing data
To test the ability of keypoint-MoSeq to infer syllables and sequences 
in the face of missing data, we artificially ablated random subsets of 
keypoints at randomly timed intervals and then modeled the ablated 
data (Extended Data Fig. 2c–f). The ablation intervals began on every 
10th second of the recording and lasted between 33 ms and 3 s (uni-
formly at random). For each interval, anywhere between 1 and 8 
keypoints were selected (uniformly at random). Ablation entailed 
(1) erasing the keypoint coordinates and then filling the gap by linear 
interpolation; (2) setting the corresponding confidence values to 0. 
We then applied keypoint-MoSeq 20 times with different random 
seeds, using a single, fixed set of parameters derived previously 
from standard model fitting on the unablated dataset. Fixing the 
parameters ensured that syllable labels would be comparable across 
repeated model fits.

Cross-syllable likelihoods
We defined each cross-syllable likelihood as the probability (on aver-
age) that instances of one syllable could have arisen based on the 
dynamics of another syllable. The probabilities were computed based 
on the discrete latent states zt, continuous latent states xt and autore-
gressive parameters A, b and Q output by keypoint-MoSeq. The 
instances I(n) of syllable n were defined as the set of all sequences 
(ts,… , te) of consecutive timepoints such that zt = n for all ts ≤ t ≤ te and 
zts−1 ≠ n ≠ zte+1. For each such instance, one can calculate the probability 
P (xts ,… , xte ||Am,bm,Qm) that the corresponding sequence of latent states 
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arose from the autoregressive dynamics of syllable m. The cross-syllable 
likelihood Cnm is defined in terms of these probabilities as

Cnm = 1
|I(n)| ∑

(ts ,…,te)∈I(n)

(xts ,… , xte ||Am,bm,Qm)
(xts ,… , xte ||An,bn,Qn)

Generating synthetic keypoint data
To generate the synthetic keypoint trajectories used for Extended Data 
Fig. 2h, we fit a linear dynamical system (LDS) to egocentrically aligned 
keypoint trajectories and then sampled randomly generated outputs 
from the fitted model. The LDS was identical to the model underlying 
keypoint-MoSeq (see ‘mathematical notation’), except that it only had 
one discrete state, lacked centroid and heading variables and allowed 
separate noise terms for the x and y coordinates of each keypoint.

Expected marginal likelihood score
Because keypoint-MoSeq can at best produce point estimates of the 
model parameters—which will differ from run to run—users typically 
run the model several times and then rank the resulting fits. For ranking 
model fits, we defined a custom metric called the expected marginal 
likelihood score. The score evaluates a given set of autoregressive 
parameters (A, b, Q) by the expected value of the marginal log likeli-
hood: Ex∼P(x| y) logP (x|A,b,Q) . In practice, given an ensemble of pose 
trajectories x(i) and parameters θ(i) = (A,b,Q) derived from N separate 
MCMC chains, the scores are computed as:

Score (θ(i)) = 1
1 − N ∑

j≠i
logP (x (j )|θ(i))

The scores shown in Extended Data Fig. 3j–m were computed using 
an ensemble of N = 20 chains. We chose this custom score instead of a 
more standard metric (such as held-out likelihood) because computing 
the latter is intractable for the keypoint-MoSeq model.

Environmental enrichment analysis
We fit a single keypoint-MoSeq model to the environmental enrichment 
dataset, which included recordings in an enriched home cage and con-
trol recordings in an empty cage. The transition graph (Extended Data 
Fig. 8b) was generated with keypoint-MoSeq’s analysis pipeline (https://
keypoint-moseq.readthedocs.io/en/latest/analysis.html# 
syllable-transition-graph/) using node positions from a force directed 
layout. Detection of differentially used syllables was also performed 
using the analysis pipeline, which applies a Kruskal–Wallis test for sig-
nificant differences in the per-session frequency of each syllable (https://
keypoint-moseq.readthedocs.io/en/latest/analysis.html# 
compare-between-groups/). Syllables were clustered into three  
groups by applying community detection (networkx.community.lou-
vain_communities) to a complete graph where nodes are syllables and 
edges were weighted by the bigram probabilities bij = P(zt = i, zt+1 = j)).

Applying published methods for behavior analysis
We applied B-SOiD, VAME and MotionMapper using default param-
eters, except for the parameter scans in Extended Data Fig. 5 (see Sup-
plementary Table 3 for a summary for all parameter choices). In general, 
we were unable to uniformly improve the performance of any method 
by deviating from these default parameters. For example, switching 
VAME’s state-partition method from hidden Markov model (HMM) to 
k-means led to higher change score alignment (Extended Data Fig. 5a) 
but caused a decrease in alignment to supervised behavior labels 
(Fig. 5e,f shows performance under an HMM; performance under 
k-means is not shown). Our application of each method is described 
in detail below.

B-SOiD is an automated pipeline for behavioral clustering that: (1) 
preprocesses keypoint trajectories to generate pose and movement 

features; (2) performs dimensionality reduction on a subset of frames 
using uniform manifold approximation and projection; (3) clusters 
points in the uniform manifold approximation and projection space; 
and (4) uses a classifier to extend the clustering to all frames12. We 
fit B-SOiD separately for each dataset. In each case, steps 2–4 were 
performed multiple times with different random seeds (see Supple-
mentary Table 1 for number of fits per dataset), and the pipeline was 
applied with standard parameters; 50,000 randomly sampled frames 
were used for dimensionality reduction and clustering, and the min_
cluster_size range was set to 0.5–1%. Because B-SOiD uses a hardcoded 
window of 100 ms to calculate pose and movement features, we reran 
the pipeline with falsely inflated frame rates for the window-size scan 
in Extended Data Fig. 5a. In all analyses involving B-SOiD, rare states 
(frequency < 0.5%) were excluded from the analysis.

VAME is a pipeline for behavioral clustering that: (1) preprocesses 
keypoint trajectories and transforms them into egocentric coordi-
nates; (2) fits a recurrent neural network; (3) clusters the latent code 
of the recurrent neural network13. We applied these steps separately to 
each dataset, in each case running step 3 multiple times with different 
random seeds (see Supplementary Table 1 for number of fits per data-
set). For step 1, we used the same parameters as in keypoint-MoSeq—
egocentric alignment was performed along the tail–nose axis, and we 
set the pose_confidence threshold to 0.5. For step 2, we set time_win-
dow = 30 and zdims = 30 for all datasets, except for the zdim-scan in 
Extended Data Fig. 5a. VAME provides two different options for step 
3: fitting an HMM (default) or applying k-means (alternative). We fit 
an HMM for all datasets and additionally applied k-means to the initial 
open dataset. In general, we approximately matched the number of 
states/clusters in VAME to the number identified by keypoint-MoSeq, 
except when scanning over state number in Extended Data Fig. 5a. 
In all analyses involving VAME, rare states (frequency < 0.5%) were 
excluded from analysis.

MotionMapper performs unsupervised behavioral segmentation 
by: (1) applying a wavelet transform to preprocessed pose data; (2) 
nonlinearly embedding the transformed data in 2D; and (3) cluster-
ing the 2D data with a watershed transform17. We applied these steps 
separately to each dataset, in each case running steps 2–3 multiple 
times with different random seeds (see Supplementary Table 1 for 
number of fits per dataset). There are several published implementa-
tions of MotionMapper, which perform essentially the same set of 
transformations but differ in programming language. We obtained 
similar results from a recent Python implementation from the Berman 
laboratory (https://github.com/bermanlabemory/motionmapperpy/) 
and a published MATLAB implementation30. All results in the paper are 
from the Python implementation, which we applied as follows. Data 
were first egocentrically aligned along the tail–nose axis and then 
projected into eight dimensions using PCA. Ten log-spaced frequencies 
between 0.25 Hz and 15 Hz were used for the wavelet transform, and 
dimensionality reduction was performed using t-distributed stochastic 
neighbor embedding. The threshold for watershedding was chosen to 
produce at least 25 clusters, consistent with keypoint-MoSeq for the 
overhead-camera data. Rare states (frequency < 0.5%) were excluded 
from analysis. For the parameter scan in Extended Data Fig. 5a, we var-
ied each of these parameters while holding the others fixed, including 
the threshold for watershedding, the number of initial PCA dimensions, 
and the frequency range of wavelet analysis. We also repeated a subset 
of these analyses using an alternative autoencoder-based dimension-
ality reduction approach, as described in the motionmapperpy tuto-
rial (https://github.com/bermanlabemory/motionmapperpy/blob/ 
master/demo/motionmapperpy_mouse_demo.ipynb/).

Predicting kinematics from state sequences
We trained decoding models based on spline regression to predict 
kinematic parameters (height, velocity and turn speed) from state 
sequences output by keypoint-MoSeq and other behavior segmentation 
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methods (Fig. 3e and Extended Data Fig. 5c). Let zt represent an unsu-
pervised behavioral state sequence and let B denote a spline basis, where 
Bt,i is the value of spline i and frame t. We generated such a basis using 
the ‘bs’ function from the Python package ‘patsy’, passing in six 
log-spaced knot locations (1.0, 2.0, 3.9, 7.7, 15.2 and 30.0) and obtaining 
basis values over a 300-frame interval. This resulted in a 300-by-5 basis 
matrix B. The spline basis and state sequence were combined to form a 
5N-dimensional design matrix, where N is the number of distinct behav-
ioral states. Specifically, for each instance (ts,… , te)  of state n (see 
‘Cross-syllable likelihoods’ for a definition of state instances), we 
inserted the first te − ts frames of B into dimensions 5n,… , 5n + 5 of the 
design matrix, aligning the first frame of B to frame ts in the design 
matrix. Kinematic features were regressed against the design matrix 
using Ridge regression from scikit-learn and fivefold cross-validation. 
We used a range of values from 10−3 to 103 for the regularization param-
eter α and reported the results with greatest accuracy.

Rearing analysis
To compare the dynamics of rear-associated states across methods, 
we systematically identified all instances of rearing in our initial  
open field dataset. During a stereotypical rear, mice briefly stood 
on their hind legs and extended their head upwards, leading to a  
transient increase in height from its modal value of 3–5 cm to a peak 
of 7–10 cm. Rears were typically brief, with mice exiting and then 
returning to a prone position within a few seconds. We encoded  
these features using the following criteria. First, rear onsets were 
defined as increases in height from below 5 cm to above 7 cm that 
occurred within the span of a second, with onset formally defined 
as the first frame where the height exceeded 5 cm. Next, rear offsets 
were defined as decreases in height from above 7 cm to below 5 cm 
that occurred within the span of a second, with offset formally defined 
as the first frame where the height fell below 7 cm. Finally, we defined 
complete rears as onset–offset pairs defining an interval with length 
between 0.5 s and 2 s. Height was determined from the distribution 
of depth values in cropped, aligned and background-segmented 
videos. Specifically, we used the 98th percentile of the distribution 
in each frame.

Accelerometry processing
From the IMU, we obtained absolute rotations ry, rp and rr (yaw, pitch and 
roll) and accelerations ax, ay and az (dorsal/ventral, posterior/anterior 
and left/right). To control for subtle variations in implant geometry 
and chip calibration, we centered the distribution of sensor readings 
for each variable on each session. We defined total acceleration as the 
norm of the three acceleration components:

|a| = √a2x + a2y + a2z

Similarly, we defined total angular velocity as the norm |ω| of rotation 
derivative:

ω = (
dry
dt

,
drp
dt

, drr
dt )

Finally, to calculate jerk, we smoothed the acceleration signal with a 
50-ms Gaussian kernel, generating a time series ã, and then computed 
the norm of its derivative:

Jerk = |||
dã
dt

|||

Aligning dopamine fluctuations to behavior states
For a detailed description of photometry data acquisition and pre-
processing, see ref. 22. Briefly, photometry signals were: (1) normal-
ized using ΔF/F0 with a 5-s window; (2) adjusted against a reference to 

remove motion artifacts and other non-ligand-associated fluctuations; 
(3) z-scored using a 20-s sliding window; and (4) temporally aligned to 
the 30-Hz behavioral videos.

Given a set of state onsets (either for a single state or across all 
states), we computed the onset-aligned dopamine trace by averaging 
the dopamine signal across onset-centered windows. From the result-
ing traces, each of which can be denoted as a time series of dopamine 
signal values (d−T,… ,dT), we defined the total fluctuation size (Fig. 4d) 
and temporal asymmetry (Fig. 4e) as

Temporal asymmetry = 1
15

15
∑
t=0

dt −
1
15

0
∑

t=−15
dt

Total fluctuation size =
15
∑

t=−15
||dt||

A third metric—the average dopamine during each state (Extended 
Data Fig. 7b)—was defined simply as the mean of the dopamine signal 
across all frames bearing that state label. For each metric, shuffle distri-
butions were generated by repeating the calculation with a temporally 
reversed copy of the dopamine times series.

Supervised behavior benchmark
Videos and behavioral annotations for the supervised open field behav-
ior benchmark (Fig. 5a–c) were obtained from ref. 31. The dataset 
contains 20 videos that are each 10–20-min long. Each video includes 
frame-by-frame annotations of five possible behaviors: locomote, rear, 
face groom, body groom and defecate. We excluded ‘defecate’ from the 
analysis because it was extremely rare (<0.1% of frames).

For pose tracking, we used DLC’s SuperAnimal inference API that 
performs inference on videos without the need to annotate poses in 
those videos47. Specifically, we used SuperAnimal-TopViewMouse 
that applies DLCRNet-50 as the pose estimation model. Keypoint 
detections were obtained using DeepLabCut’s API function deep-
labcut.video_inference_superanimal. The API function uses a pre-
trained model called SuperAnimal-TopViewMouse and performs video 
adaptation that applies multi-resolution ensemble (that is, the image 
height resized to 400, 500 and 600 with a fixed aspect ratio) and rapid 
self-training (model trained on zero shot predictions with confidence 
above 0.1) for 1,000 iterations to counter domain shift and reduce 
jittering predictions.

Keypoint coordinates and behavioral annotations for the super-
vised social behavior benchmark (Fig. 5d–f) were obtained from the 
CalMS21 dataset32 (task1). The dataset contains 70 videos of resident–
intruder interactions with frame-by-frame annotations of four pos-
sible behaviors: attack, investigate, mount or other. All unsupervised 
behavior segmentation methods were fitted to 2D keypoint data for 
the resident mouse.

We used four metrics13 to compare supervised annotations and 
unsupervised states from each method. These included NMI, homo-
geneity, adjusted rand score and purity. All metrics besides purity 
were computed using the Python library scikit-learn (that is, with the 
function normalized_mutual_info_score, homogeneity_score, adjusted_
rand_score). The purity score was defined as in ref. 13.

Thermistor signal processing
During respiration, the movement of air through a mouse’s nasal cavity 
generates fluctuations in temperature that can be detected by a ther-
mistor; temperature decreases during inhalations (because the mouse 
is warmer than the air around it) and rises between inhalations. Below 
we refer to the between-inhalation intervals as ‘exhales’ but note that 
they may also contain pauses in respiration—pauses and exhales likely 
cannot be distinguished because warming of the thermistor occurs 
whether or not air is flowing.

To segment inhales and exhales using the thermistor signal, we first 
applied a 60-Hz notch filter (scipy.signal.iirnotch, q = 10) and a low-pass 
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filter (scipy.signal.butter, order = 3, cutoff = 40 Hz, analog = false) to 
the raw signal, and then used a median filter to subtract the slow DC 
offset component of the signal. We then performed peak detection 
using scipy.signal.find_peaks (minimium inter-peak distance of 50 ms, 
minimum and maximum widths of 10 ms and 1,500 ms, respectively). To 
distinguish true peaks (inhalation onsets) from spurious peaks (noise), 
we varied the minimum prominence parameter from 10−4 to 1 while 
keeping other parameters fixed, and then used the value at which the 
number of peaks stabilized. Using the chosen minimum prominence, 
the signal was then analyzed twice—once at the chosen value, and again 
with a slightly more permissive minimum prominence (1/8 of the chosen 
value). Any low-amplitude breaths detected with the more permissive 
setting that overlapped with periods of breathing between 1 Hz and 6 Hz 
were added to the detections. This same process was then repeated to 
find exhale onsets but with the thermistor signal inverted. Finally, inhales 
and exhales were paired, and any instances of two inhales/exhales in a 
row were patched by inserting an exhale/inhale at the local extremum 
between them. Detections were then inspected manually, and any 
recordings with excessive noise, unusually high breathing rates (>14 Hz), 
or unusual autocorrelation profiles were removed from further analyses.

Classifying sniff-aligned syllables
To test whether syllables were significantly sniff aligned, we com-
pared the probability of inhalation in the 50 ms before versus 50 ms 
after syllable onset. Specifically, for each syllable, we quantified the 
pre-inhalation versus post-inhalation fraction across all instances 
of that syllable, and then compared the pre-distribution and 
post-distribution values using a paired t-test. Syllables with P < 0.001 
were considered significant.

Fly gait analysis
For the analysis of fly behavior, we used a published dataset of keypoint 
coordinates39, which were derived from behavioral videos originally 
reported in ref. 17. The full dataset contains 1-h recordings (100 fps) 
of single flies moving freely on a backlit 100-mm-diameter arena. Key-
points were tracked using LEAP (test accuracy ~2.5 px). MotionMapper 
results (including names for each cluster) were also included in the 
published dataset. We chose four 1-h sessions (uniformly at random) for 
analysis with keypoint-MoSeq. All results reported here were derived 
from this 4-h dataset.

The analysis of syllable probabilities across the stride cycle 
(Fig. 6i–k) was limited to periods of ‘fast locomotion’, as defined by 
the MotionMapper labeling (state label 7). To identify the start and end 
of each stride cycle, we applied PCA to egocentric keypoint coordinates 
(restricted to fast locomotion frames). We found that the first PC oscil-
lated in a manner reflecting the fly’s gait, and thus smoothed the first 
PC using a one-frame Gaussian filter and performed peak detection 
on the smoothed signal. Each inter-peak interval was defined as one 
stride. Stances and swings (Fig. 6j and Extended Data Fig. 10g) were 
defined by backward and forward motion of the leg tips, respectively 
(in egocentric coordinates).

Mathematical notation

1. χ−2(ν, τ2) denotes the scaled inverse Chi-squared distribution.
2. ⊗ denotes the Kronecker product.
3. ΔN is the N-dimensional simplex.
4. IN is the N × N identity matrix.
5. 1N × M is the N × M matrix of ones.
6. xt1∶t2 denotes the concatenation [xt1 ,xt1+1,… ,xt2 ] where t1 < t2.

Generative model
Keypoint-MoSeq learns syllables by fitting an SLDS model48, which 
decomposes an animal’s pose trajectory into a sequence of stereotyped 
dynamical motifs. In general, SLDS models explain time-series 

observations y1, …, yT through a hierarchy of latent states, including 
continuous states xt ∈ ℝM  that represent the observations yt in a 
low-dimensional space, and discrete states zt ∈ {1, …, N} that govern the 
dynamics of xt over time. In keypoint-MoSeq, the discrete states cor-
respond to syllables, the continuous states correspond to pose, and 
the observations are keypoint coordinates. We further adapted SLDS 
by (1) including a sticky hierarchical Dirichlet prior (HDP); (2) explicitly 
modeling the animal’s location and heading; and (3) including a robust 
(heavy-tailed) observation distribution for keypoints. Below we review 
SLDS models in general and then describe each of the customizations 
implemented in keypoint-MoSeq.

SLDSs
The discrete states zt ∈ {1, …, N} are assumed to form a Markov chain, 
meaning

zt+1|zt ∼ Cat (πzt )

where πi ∈ ΔN is the probability of transitioning from discrete state i to 
each other state. Conditional on the discrete states zt, the continuous 
states xt follow an L-order vector autoregressive process with Gaussian 
noise. This means that the expected value of each xt is a linear function 
of the previous L states xt−L∶t−1, as shown below

xt|zt, xt−L∶t−1∼𝒩𝒩 (Azt xt−L∶t−1 + bzt ,Qzt )

where Ai ∈ ℝM×LM is the autoregressive dynamics matrix, bi ∈ ℝM is the 
dynamics bias vector, and Qi ∈ ℝM×M  is the dynamics noise matrix for 
each discrete state i = 1, …, N. The dynamics parameters Ai, bi and Qi 
have a matrix normal inverse Wishart (MNIW) prior

[Ai|bi] ,Qi ∼ MNIW (ν0, S0,M0,K0)

where ν0 > M − 1 is the degrees of freedom, S0 ∈ ℝM×M is the prior covari-
ance matrix, M0 ∈ ℝM×(LM+1)  is the prior mean dynamics matrix, and 
K0 ∈ ℝ(LM+1)×(LM+1) is the prior scale matrix. Finally, in the standard for-
mulation of SLDS (which we modify for keypoint data, as described 
below), each observation yt ∈ ℝD is a linear function of xt plus noise:

yt|zt,xt∼𝒩𝒩 (Cxt + d, S)

Here we assume that the observation parameters C, d and S do not 
depend on zt.

Sticky HDP
A key feature of depth Moseq is the use of a sticky-HDP prior for the 
transition matrix. In general, HDP priors allow the number of distinct 
states in a HMM to be inferred directly from the data. The ‘sticky’ variant 
of the HDP prior includes an additional hyperparameter κ that tunes 
the frequency of self-transitions in the discrete state sequence zt, and 
thus the distribution of syllable durations. As in depth MoSeq, we 
implement a sticky-HDP prior using the weak limit approximation49, 
as shown below:

β ∼ Dir (γ/N,… , γ/N)

πi|β ∼ Dir (αβ1,… ,αβv + κ…,αβN)

where κ is being added in the ith position. Here β ∈ ΔN  is a global  
vector of augmented syllable transition probabilities, and the hyper-
parameters γ, α and κ control the sparsity of states, the weight of the 
sparsity prior and the bias toward self-transitions, respectively.

SLDS for postural dynamics
Keypoint coordinates reflect not only the pose of an animal, but also 
its location and heading. To disambiguate these factors, we define a 
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canonical, egocentric reference frame in which the postural dynamics 
are modeled. The canonically aligned poses are then transformed into 
global coordinates using explicit centroid and heading variables that 
are learned by the model.

Concretely, let Yt ∈ ℝK×D represent the coordinates of K keypoints 
at time t, where D ∈ {2, 3} . We define latent variables vt ∈ ℝD  and 
ht ∈ [0, 2π] to represent the animal’s centroid and heading angle. We 
assume that each heading angle ht has an independent, uniform prior 
and that the centroid is autocorrelated as follows:

ht ∼ Unif(0, 2π)

vt|vt−1 ∼ 𝒩𝒩 (vt−1,σ2loc)

At each time point t, the pose Yt is generated via rotation and translation 
of a centered and oriented pose Ỹt that depends on the current continu-
ous latent state xt:

Yt = ̃YtR(ht) + 1Kv
⊤
t where vec( ̃Yt) ∼ 𝒩𝒩((Γ ⊗ ID)(Cxt + d), St)

where R(ht) is a matrix that rotates by angle ht in the xy plane, and 
Γ ∈ RK×(K−1) is defined by the truncated singular value decomposition 
ΓΔΓ⊤ = IK − 1K×K/K . Note that Γ encodes a linear transformation that 
isometrically maps ℝ(K−1)×D to the set of all centered keypoint arrange-
ments in ℝK×D, and thus ensures that 𝔼𝔼 (Ỹt) is always centered50. The 
parameters C ∈ ℝ(K−1)D×M  and d ∈ ℝ(K−1)D  are initialized using PCA  
applied to the transformed keypoint coordinates Γ TỸt . In principle  
C and d can be adjusted further during model fitting, and we describe 
the corresponding Gibbs updates in the inference section below. In 
practice, however, we keep C and d fixed to their initial values when 
fitting keypoint-MoSeq.

Robust observations
To account for occasional large errors during keypoint tracking, we 
use the heavy-tailed Student’s t-distribution, which corresponds to a 
normal distribution whose variance is itself a random variable. Here, 
we instantiate the random variances explicitly as a product of two 
parameters: a baseline variance σk for each keypoint and a time-varying 
scale st,k. We assume:

σ2k ∼ χ−2 (νσ,σ20)

s2t,k ∼ χ
−2 (νs, s0,t,k)

where νσ > 0 and νs > 0 are degrees of freedom, σ20 > 0 is a baseline scal-
ing parameter, and s0,t,k > 0 is a local scaling parameter, which encodes 
a prior on the scale of error for each keypoint on each frame. Where 
possible, we calculated the local scaling parameters as a function of 
the neural network confidences for each keypoint. The function was 
calibrated using the empirical relationship between confidence values 
and error sizes. The overall noise covariance St is generated from σk and 
st,k as follows:

St = diag (σ21 s
2
t,1,… ,σ2Ks

2
t,K) ⊗ ID

Related work
Keypoint-MoSeq extends the model used in depth MoSeq16, where 
a low-dimensional pose trajectory xt (derived from egocentrically 
aligned depth videos) is used to fit an AR-HMM with a transition 
matrix π, autoregressive parameters Ai, bi and Qi and discrete states 
zt like those described here. Indeed, conditional on xt, the models for 
keypoin-MoSeq and depth MoSeq are identical. The main differences 
are that keypoint-MoSeq treats xt as a latent variable (that is, updates 
it during fitting), includes explicit centroid and heading variables, and 
uses a robust noise model.

Disambiguating poses from position and heading is a common task 
in unsupervised behavior algorithms, and researchers have adopted a 
variety of approaches. VAME13, for example, isolates pose by centering 
and aligning data ahead of time, whereas B-SOiD12 transforms the key-
point data into a vector of relative distances and angles. The statistical 
pose model GIMBAL29, on the other hand, introduces latent heading 
and centroid variables that are inferred simultaneously with the rest 
of the model. Keypoint-MoSeq adopts this latter approach, which can 
remove spurious correlations between egocentric features that can 
arise from errors in keypoint localization.

Inference algorithm
Our full model contains latent variables v, h, x, z and s and parameters 
A, b, Q, C, d, σ, β and π. We fit each of these variables—except for C and 
d—using Gibbs sampling, in which each variable is iteratively resampled 
from its posterior distribution conditional on the current values of all 
the other variables. The posterior distributions P(π, β∣z) and P(A, b, 
Q∣z, x) are unchanged from the original MoSeq paper and will not be 
be reproduced here (see ref. 16, pages 42–44, and note the changes of 
notation Q → Σ, z → x and x → y). The Gibbs updates for variables C, d, σ, 
s, v and h are described below.

Resampling P(C, d∣s, σ, x, v, h, Y). Let ̃xt represent xt with a 1 appended 
and define

̃St = (Γ⊤diag(σ21 st,1,… ,σ2K st,K)Γ ) ⊗ ID

The posterior update is (C,d) ∼𝒩𝒩 (vec (C,d) |μn,Σn) where

Σn = (σ−2C I + Sx,x)
−1andμn = ΣnSy,x

with

Sx,x =
T
∑
t=1

̃xt ̃x⊤t ⊗ Γ
⊤ ̃S−1t Γ ⊗ ID and Sy,x =

T
∑
t=1

( ̃x⊤t ⊗ ̃S−1Γ ⊗ ID) vec( ̃Yt)
⊤

Resampling P(s∣C, d, σ, x, v, h, Y). Each st,k is conditionally independ-
ent with posterior

st,k|C,d,σk,x,Y ∼ χ−2 (νs + D, (νss0 + σ−2k ∥ (Γ (Cxt + d) )
k
− Ỹt,k∥

2) / (νs + D))

Resampling P(σ∣C, d, s, x, v, h, Y). Each σk is conditionally independ-
ent with posterior

σ2k ∼ χ
−2 (νσ + DT, (νσσ20 + Sy) (νσ + DT)

−1)

where Sy = ∑N
t=1‖Γ (Cxt + d)k − ̃Yt,k‖

2/st,k

Resampling P(v∣C, d, σ, s, x, h, Y). Because the translations v1, …, vT 
form an LDS, they can be updated by Kalman sampling. The observation 
potentials have the form 𝒩𝒩 (vt|μ, γ2ID) where

μ = ∑
k

γ2t
σ2kst,k

[Yt,k − R(ht)
⊤
Γ (Cxt + d)k],

1
γ2t

= ∑
k

1
σ2kst,k

Resampling P(h∣C, d, σ, s, x, v, Y). The posterior of ht is the von-Mises 
distribution vM(θ, κ) where κ and θ ∈ [0, 2π] are the unique parameters 
satisfying [κ cos (θ) , κ sin (θ)] = [S1,1 + S2,2, S1,2 − S2,1] for

S = ∑
k

1
st,kσ2k

Γ (Cxt + d)k(Yt,k − vt)
⊤

Resampling P(x∣C, d, σ, s, v, h, Y). To resample x, we first express its 
temporal dependencies as a first-order autoregressive process, and 
then apply Kalman sampling. The change of variables is
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A′ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

I

I

I

A1 A2 … AL b

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Q′ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0

0

0

Q

⎤
⎥
⎥
⎥
⎥
⎥
⎦

C′ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0

⋮ ⋮

0 0

C d

⎤
⎥
⎥
⎥
⎥
⎥
⎦

x′
t =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

xt−L+1

⋮

xt

1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Kalman sampling can then be applied to the sample the conditional 
distribution

P(x′
1∶T| ̃Y1∶T) ∝

T
∏
t=1

𝒩𝒩(x′
t|A′

(zt)x′
t−1,Q′(zt))𝒩𝒩(vec( ̃Yt)|C′x′

t, St).

(Assume x′ is left-padded with zeros for negative time indices.)

Hyperparameters
We used the following hyperparameter values throughout the paper.

Transition matrix. 

N = 100

γ = 1,000

α = 100

κ fit to each dataset

Autoregressive process. 

M set using PCA explained variance curve

L = 3

ν0 = M + 2

S0 = 0.01IM
M0 = [0M×(L−1) IM 1M×1]

K0 = 10IM(L+1)

Observation process. 

σ20 = 1

νσ = 10
5

νs = 5

s0,t,k set based on neural network confidence

Centroid autocorrelation. 

σ2loc = 0.4

Derivation of Gibbs updates
Derivation of C, d updates. To simply notation, define

̃St = diag(σ21 st,1,… ,σ2Kst,K), ̃xt = (xt, 1), ̃C = (C,d)

The likelihood of the centered and aligned keypoint locations ̃Y  
can be expanded as follows

P ( ̃Y| ̃C, ̃x, ̃S) =
T
∏
t=1

𝒩𝒩 (vec ( ̃Yt) | (Γ ⊗ ID) ̃C ̃xt, ̃St ⊗ ID)

∝ exp [− 1
2

T
∑
t=1

( ̃x⊤t ̃C⊤ (Γ⊤ ̃S−1t Γ ⊗ ID) ̃C ̃xt − 2vec( ̃Yt)
⊤ ( ̃S−1t Γ ⊗ ID) ̃C ̃xt)]

∝ exp [− 1
2

T
∑
t=1

(vec( ̃C)⊤ ( ̃xt ̃x⊤t ⊗ Γ
⊤ ̃S−1t Γ ⊗ ID) vec ( ̃C))

(−2vec( ̃C)⊤ ( ̃x⊤t ⊗ ̃S−1t Γ ⊗ ID) vec ( ̃Yt)) ]

∝ exp [− 1
2
(vec( ̃C)⊤Sx,xvec ( ̃C) − 2vec( ̃C)⊤Sx,y)]

where

Sx,x =
T
∑
t=1

̃xt ̃x⊤t ⊗ Γ
⊤ ̃S−1t Γ ⊗ ID and Sx,y =

T
∑
t=1

( ̃x⊤t ⊗ ̃S−1Γ ⊗ ID) vec ( ̃Yt)

Multiplying by the prior vec ( ̃C) ∼𝒩𝒩 (0,σ2CI) yields

P( ̃C| ̃Y, ̃x, ̃S) ∝ 𝒩𝒩(vec( ̃C)|μn,Σn)

where

Σn = (σ−2C I + Sx,x)
−1
and μn = ΣnSy,x

Derivation of σk, st,k updates. For each time t and keypoint k, let 
̄Yt,k = Γ (Cxt + d). The likelihood of the centered and aligned keypoint 

location ̃Yt,k  is

P( ̃Yt,k| ̄Yt,k, st,k,σk) = 𝒩𝒩( ̃Yt,k| ̄Yt,k, σ2kst,kID) ∝ (σ2kst,k)
−D/2 exp [−

‖ ̃Yt,k − ̄Yt,k‖
2

2σ2kst,k
]

We can then calculate posteriors P (st,k|σk)  and P (σk|st,k)  as 
follows

P (st,k|σk, ̃Yt,k, ̄Yt,k) ∝ χ−1 (st,k|νs, s0)𝒩𝒩 ( ̃Yt,k| ̄Yt,k, σ2kst,kID)

∝ s−1−(νs+D)/2t,k exp [ −νss0
2st,k

− ∥ ̃Yt,k− ̄Yt,k∥
2

2σ2kst,k
]

∝ χ−2 (st,k|νs + D, (νss0 + σ−2k ∥ ̃Yt,k − ̄Yt,k∥
2) (νs + D)

−1)

P (σk|{st,k, ̃Yt,k, ̄Yt,k}
T
t=1) ∝ χ

−1 (σ2k |νσ,σ
2
0)

T
∏
t=1

𝒩𝒩 ( ̃Yt,k| ̄Yt,k,σ2kst,kID)

∝ σ−2−νσ−DTk exp [ −νσσ
2
0

2σ2k
− 1

2σ2k

T
∑
t=1

∥ ̃Yt,k− ̄Yt,k∥
2

st,k
]

∝ χ−2 (σ2k |νσ + DT, (νσσ
2
0 + Sy) (νσ + DT )

−1)

where Sy = ∑t ∥ ̃Yt,k − ̄Yt,k∥
2/st,k

Derivation of vt update. We assume an improper uniform prior on 
vt, hence

P (vt|Yt) ∝ P (Yt|vt)P (vt) ∝ P (Yt|vt)

∝𝒩𝒩 (vec ((Yt − 1Kv
⊤
t )R(ht)

⊤) |Γ (Cxt + d) , St)

= ∏
k
𝒩𝒩 (R (ht) (Yt,k − vt) |Γ (Cxt + d)k, st,kσ

2
kID)

= ∏
k
𝒩𝒩 (vt|Yt,k − R(ht)

⊤
Γ (Cxt + d)k, st,kσ

2
kID)

=𝒩𝒩 (vt|μt, γ2t ID)

where

μ = ∑
k

γ2t
σ2kst,k

(Yt,k − R(ht)
⊤
Γ (Cxt + d)k) ,

1
γ2t
= ∑

k

1
σ2kst,k

Derivation of ht update. We assume a proper uniform prior on ht, hence

P (ht|Yt) ∝ P (Yt|ht)P (ht) ∝ P (Yt|ht)

∝ exp [∑k
(Yt,k−vt)

⊤
R(ht)Γ (Cxt+d)k
st,kσ2k

]

= exp [
tr[R(ht)Γ (Cxt+d)k(Yt,k−vt)

⊤]

st,kσ2k
]

∝ exptr [R (ht) S] where S = ∑
k
Γ (Cxt + d)k(Yt,k − vt)

⊤/ (st,kσ2k)

∝ exp [cos (ht) (S1,1 + S2,2) + sin (ht) (S1,2 − S2,1)]
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Let [κ cos (θ) , κ sin (θ)]  represent [S1,1 + S2,2, S1,2 − S2,1]  in polar coordi-
nates. Then

P (Yt|ht) ∝ exp [κ cos (ht) cos (θ) + sin (ht) sin (θ)]

= exp [κ cos (ht − θ)] ∝ vM (ht|θ, κ)

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
This study used the following publicly available datasets: CalMS21 
(https://data.caltech.edu/records/s0vdx-0k302)32; DeepEthogram 
benchmark data31 (https://github.com/jbohnslav/deepethogram/); 
Rat7M (https://doi.org/10.6084/m9.figshare.c.5295370.v3)51; and fly 
keypoint tracking (https://doi.org/10.1038/s41592-018-0234-5). Other 
data raw data generated in this study have been deposited in Zenodo 
(https://doi.org/10.5281/zenodo.10636983)52. The thermistor record-
ings generated for this study are not publicly available at this time as 
they are being used for a follow-up paper. We plan to make these data 
publicly accessible upon publication of the follow-up study and in the 
meantime will provide them upon reasonable request.

Code availability
Software links and user support for both depth and keypoint data are 
available at http://www.moseq4all.org/. Data loading, project configu-
ration and visualization are enabled through the keypoint-moseq53 
Python library (https://github.com/dattalab/keypoint-moseq/). We 
also developed a stand-alone library called jax-moseq54 for core model 
inference (https://github.com/dattalab/jax-moseq/). Both libraries 
are freely available to the research community under an academic 
and non-commercial research use license. This license permits free 
academic and non-commercial use, explicitly prohibits redistribution 
and commercial use, and requires users to agree to terms including 
limitations on liability and indemnity. Full license details can be viewed 
on the respective GitHub repository pages.
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Extended Data Fig. 1 | Markerless pose tracking exhibits fast fluctuations 
that are independent of behavior yet affect MoSeq output. a) Example of a 
5-second interval during which the mouse is still yet the keypoint coordinates 
fluctuate, as shown in Fig. 1e, but here for SLEAP and DeepLabCut respectively. 
Left: egocentrically aligned keypoint trajectories. Right: path traced by each 
keypoint during the 5-second interval. b) Cross-correlation between the spectral 
content of keypoint fluctuations and either error magnitude (left) or a measure 
of low-confidence keypoint detections (right). c) Magnitude of fast fluctuations 
in keypoint position for three different tracking methods, calculated as the 
per-frame distance from the detected trajectory of a keypoint to a smoothened 
version of the same trajectory, where smoothing was performed using a gaussian 
kernel with width 100ms (N=4 million keypoint detections). d) Inter-annotator 

variability, shown as the distribution of distances between multiple annotations 
of the same keypoint. Annotations were either crowd-sourced or obtained from 
experts (N=200 frames and N=4 labelers). e) Train- and test- error distributions 
for each keypoint tracking method (N=800 held out keypoint annotations). 
f ) Top: position of the nose and tail-base over a 10-second interval, shown for 
both the overhead and below-floor cameras. Bottom: fast fluctuations in each 
coordinate, obtained as residuals after median filtering. g) Cross-correlation 
between spectrograms obtained from two different camera angles for either 
the tail base or the nose, shown for each tracking method. h) Cross-correlation 
of transitions rates, comparing MoSeq applied to depth and MoSeq applied to 
keypoints with various levels of smoothing using a low-pass, Gaussian, or median 
filter (N=1 model fit per filtering parameter).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Keypoint-MoSeq is robust to noise and missing data. 
a) Mean change score values at syllable transitions. Syllables were either derived 
from keypoint-MoSeq applied to (unfiltered) keypoints from our custom neural 
network, or from traditional MoSeq applied to several versions of the keypoint 
data, including keypoints inferred from Lightning Pose, or keypoints from 
our custom neural network followed by low-pass filtering, median filtering, or 
no filtering. Error bars show standard deviation across N=20 model fits. The 
change scores are highest for keypoint-MoSeq (P < 10−4 over N=20 model fits, 
Mann-Whitney U test). b) Correlations of transition probabilities (that is, the 
probability of a new syllable starting at each frame), comparing depth MoSeq 
with each of the keypoint models shown in (a). c) Example of model responses 
to a one-second-long ablation of keypoint observations, shown for keypoint-
MoSeq (right) and traditional AR-HMM-based MoSeq (left). Top: Change in 
syllable sequences. Each heatmap row represents an independent modeling 
run and each column represents a frame. The set of labels on each frame define 
a distribution, and the Kullback-Leibler divergence (KL div.) between the 
ablated and unablated distributions is plotted below. Bottom: Change in low-
dimensional pose state. Estimated pose trajectories derived from unablated 
(black) or ablated (blue) data. Each dimension of the latent pose space is plotted 
separately. Lines reflect the mean across modeling runs. d) Cross-correlation 

of transition probabilities for ablated vs. unablated data (computed over 
frames that were included in an ablation), shown for keypoint-MoSeq (red) 
and traditional AR-HMM-based MoSeq (red), Shading shows bootstrap 95% 
confidence intervals for N=20 model fits. Solid line shows cross-correlation using 
all N=20 models (without bootstrapping). e) Mean Kullback-Leibler divergence 
[as described in (c)] across all ablation intervals, stratified by number of ablated 
keypoints (left) or duration of the ablation (right). Shading represents the 99% 
confidence interval of the mean. f ) Mean distance between pose states estimated 
from ablated vs. unablated data, with colors and shading as in (e). g) Syllable 
cross-likelihoods, defined as the probability, on average, that time-intervals 
assigned to one syllable (column) could have arisen from another syllable (row). 
Cross-likelihoods were calculated for keypoint-MoSeq and for depth MoSeq. The 
results for both methods are plotted twice, using either an absolute scale (left) or 
a log scale (right). h) Modeling results for synthetic keypoint data with a similar 
statistical structure as the real data but lacking in changepoints. Left: example of 
synthetic keypoint trajectories. Middle: autocorrelation of keypoint coordinates 
for real vs. synthetic data, showing similar dynamics at short timescales. Right: 
distribution of syllable frequencies for keypoint-MoSeq models trained on real 
vs. synthetic data.
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Extended Data Fig. 3 | Convergence and model selection. a) Probabilistic 
graphical model (PGM) for keypoint-MoSeq highlighting the discrete syllable 
state. b) Number of syllables identified by keypoint-MoSeq as a function of 
fitting iteration, shown for multiple independent runs of fitting (referred to as 
‘chains’). c) Confusion matrices depicting closer agreement between syllables 
from the same chain at different stages of fitting (left) compared to syllables from 
different chains at the final stage of fitting (right). d) Distributions of syllable 
sequence similarity [quantified by normalized mutual information (NMI)], either 
within chains at different iterations (N=20) or across chains (N=190). e) PGM 
highlighting pose state. f ) Left: within- and between- chain variation in pose 
state, shown for each dimension of pose (rows) across an example 10-second 
interval. Gray lines represent the variation across fitting iterations within each 
chain, and black lines represent the total variation across chains and fitting 
iterations. Right: zoom-in on a 2-second interval showing close agreement in the 
final pose trajectory learned by each chain. g) Distribution of the Gelman-Rubin 
statistic (ratio of within-chain variance to total variance) across timepoints and 
dimensions of the pose state. h) Expected marginal likelihood (EML) scores 

(defined as a mean over marginal likelihoods) for the final model parameters 
learned by each chain. Vertical bars represent standard error based on N=20 
chains. i) The scores shown in (h) correlate with mean NMI for each model, 
which is low when a model’s syllable sequences are dissimilar from those of 
other models (P=0.005, Pearson test). j) EML scores are higher for models fit 
with an autoregressive-only (AR-only) initialization stage (left) compared to 
those without (right; P = 0.004, N=20 fits for each method, Mann-Whitney U 
test). Plotted as in (h). k) EML scores (bottom) plateau within 500 iterations of 
Gibbs sampling and have a similar trajectory as the model log joint probability 
(top). Black lines represent the median across N=20 chains and shaded regions 
represent inter-quartile interval. l) Illustration of uncertainty in syllable sequence 
given a fixed set of syllable definitions. Top: syllable sequences derived from 
Gibbs sampling (conditioning on fixed autoregressive parameters and transition 
probabilities), shown for an example 10-second window. Bottom: per-frame 
marginal probability estimates for each syllable. Each line is one syllable, with 
colors as in the heatmap above.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-024-02318-2

Extended Data Fig. 4 | Behaviors captured by keypoint-MoSeq syllables. 
a) Average pose trajectories for syllables identified by keypoint-MoSeq. Each 
trajectory includes ten evenly timed poses from 165ms before to 500ms after 
syllable onset. b) Kinematic and morphological parameters for each syllable. 

Left: Average values of five parameters (rows) for each syllable (column). Middle: 
Mean and interquartile range of each parameter for one example syllable. Right: 
cartoons illustrating the computation of the three morphological parameters.
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Extended Data Fig. 5 | Method-to-method differences in sensitivity to 
behavioral changepoints are robust to parameter settings. a) Output of 
unsupervised behavior segmentation algorithms across a range of parameter 
settings, applied to 2D keypoint data from two different camera angles  
(N=1 model fits per parameter set). The median state duration (left) and the 
average (z-scored) keypoint change score aligned to state transitions (right) 

are shown for each method and parameter value. Gray pointers indicate default 
parameter values used for subsequent analysis (see Supplementary Table 3 for 
a summary of parameters). b) Distributions showing the number of transitions 
that occur during each rear. c) Accuracy of kinematic decoding models that were 
fit to state sequences from each method.
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Extended Data Fig. 6 | Accelerometry reveals kinematic transitions at the onsets of keypoint-MoSeq states. a) IMU signals aligned to state onsets from several 
behavior segmentation methods. Each row corresponds to a behavior state and shows the average across all onset times for that state. A single model fit is shown for 
each method.
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Extended Data Fig. 7 | Striatal dopamine fluctuations are enriched at 
keypoint-MoSeq syllable onsets. a) Derivative of the dopamine signal aligned 
to the onsets of high velocity or low velocity behavior states. States from each 
method were classified evenly as high or low velocity based on the mean centroid 
velocity during their respective frames. Plots show mean and inter-95% range 
across N=20 model fits. b) Distributions capturing the average absolute value of 

the dopamine signal across states from each method. c) Relationship between 
state durations and correlations from Fig. 5f. d) Average dopamine fluctuations 
aligned to state onsets (left) or aligned to random frames throughout the 
execution of each state (middle), as well as the absolute difference between 
the two alignment approaches (right), shown for each unsupervised behavior 
segmentation approach.
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Extended Data Fig. 8 | Changes in behavior caused by environmental 
enrichment. a) Example frames from conventional 2D videos of the empty bin 
(left), and enriched environment (middle), as well as depth video of the enriched 
environment (right). b) Graph showing changes in syllable-to-syllable transition 
statistics across environments. Edge color and width indicate the sign and 

magnitude of change in the frequency of each syllable pair. c) Right: changes 
in syllable frequency across environments, with stars indicating significant 
differences (P < 0.05, N=16, Mann-Whitney U test). Error bars show standard 
error of the mean. Left: Syllable groupings defined by clustering of the transition 
graph shown in (b).
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Extended Data Fig. 9 | Supervised behavior benchmark. a) Distribution of 
state durations from each behavior segmentation method for the open field 
benchmark (top) and the CalMS21 social behavior benchmark (bottom).  
b) Three different similarity measures applied to the output of each unsupervised 
behavior analysis method, showing the median (gray bars) and inter-quartile 
interval (black lines) across independent model fits (N=20; * P < 10−5, for keypoint-
MoSeq vs. each other method, Mann-Whitney U test). c) Number of unsupervised 
states specific to each human-annotated behavior in the CalMS21 dataset, shown 
for 20 independent fits of each unsupervised method. A state was defined as 
specific if > 50% of frames bore the annotation. d) Left: Keypoints tracked in 

2D (top) or 3D (bottom) and corresponding egocentric coordinate axes. Right: 
example keypoint trajectories and transition probabilities from keypoint-
MoSeq. Transition probability is defined, for each frame, as the probability of a 
syllable transition occurring on that frame. e) Cumulative fraction of explained 
variance for increasing number of principal components (PCs). PCs were fit to 
egocentrically aligned 2D keypoints, egocentrically aligned 3D keypoints, or 
depth videos respectively. f ) Cross-correlation between the 3D keypoint change 
score and change scores derived from 2D keypoints and depth respectively 
(based on N=20 model fits).
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Extended Data Fig. 10 | Keypoint-MoSeq identifies behavioral motifs across 
timescales. a-b) Alignment of mouse behavior motifs to respiration. Figure 
created with SciDraw under a CC BY 4.0 license. a) Left: Keypoints used for model 
fitting. Middle: Median motif durations for models fit with a range of stickiness 
hyperparameters. Right: Proportion of significantly respiration-aligned motifs, 
stratified by stickiness hyperparameter, showing mean and standard deviation 
across N=5 model fits. b) As (a), but restricted to upper spine, neck, head, and 
nose keypoints. c-h) Keypoint-MoSeq partitions fly behavior across timescales. 
c) Fly keypoints used for fitting keypoint-MoSeq and MotionMapper. d) Motif 
durations (left) and number of motifs (right) for models trained with a range 
of target timescales. Ten separate models were fit for each timescale. For motif 
durations, we pooled the duration distributions from all 20 models and plotted 
the median duration in black and interquartile range in gray. For motif number, 

we counted the number of motifs with frequency above 0.5% for each of the  
20 models and plotted the mean of this count in black and the standard deviation 
in gray. e) Density of points in 2D ‘behavior space’ generated by MotionMapper. 
Each white-line delimited region corresponds to a MotionMapper state label. 
f) Confusion matrices showing the frequency of each MotionMapper state 
during each keypoint-MoSeq motif. g) Example of swing and stance annotations 
over a 600ms window. Lines show the egocentric coordinate of each leg tip 
(anterior-posterior axis only). Gray shading denotes the swing phase, defined 
as the interval posterior-to-anterior limb motion. h) Cross-correlation between 
the spectrograms of keypoints and motif labels respectively. Heatmap rows 
correspond to frequency bands of the spectrograms and columns correspond to 
models with different target timescales.
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