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Pulsatile electrical stimulation creates
predictable, correctable disruptions in
neural firing

Cynthia R. Steinhardt 1,2 , Diana E. Mitchell1,3, Kathleen E. Cullen 1,4 &
Gene Y. Fridman 1,4

Electrical stimulation is a key tool in neuroscience, both in brain mapping
studies and in many therapeutic applications such as cochlear, vestibular, and
retinal neural implants. Due to safety considerations, stimulation is restricted
to short biphasic pulses. Despite decades of research and development, neural
implants lead to varying restoration of function in patients. In this study, we
use computational modeling to provide an explanation for how pulsatile sti-
mulation affects axonal channels and therefore leads to variability in restora-
tion of neural responses. The phenomenological explanation is transformed
into equations that predict induced firing rate as a function of pulse rate, pulse
amplitude, and spontaneous firing rate. We show that these equations predict
simulated responses to pulsatile stimulation with a variety of parameters as
well as several features of experimentally recorded primate vestibular afferent
responses to pulsatile stimulation. We then discuss the implications of these
effects for improving clinical stimulation paradigms and electrical stimulation-
based experiments.

Electrical stimulation has a long history in neuroscience research as a
pivotal tool for advancingourunderstandingofboth the functional roles
of localizedneuronal populations and the connectivity of neural circuits.
Invasive electrical stimulation has also become an increasingly popular
clinical intervention to treat a wide range of neurological disorders1,2.
Applications include restoration of sensory function3–5 and treatment of
diseases, including Parkinson’s disease6, seizures, and even psychiatric
disorders7. Across these invasive applications, neural implant-based
treatments all rely on biphasic, charge-balanced pulses to interact with
the impaired neural system in order to keep current delivery safe for the
target tissue at the stimulation site8. As a result, electrical stimulation has
become synonymous with pulsatile stimulation.

While pulsatile stimulation-based treatments have successfully
aided in a range of restorative and suppressive treatments1,2, patient
recovery typically remains significantly below normal levels of func-
tion; in each case, system-specific explanations have been offered,

ranging from unnatural recruitment of neurons and, therefore,
network-level adaptation9, to local interference based on
physiology10,11. Neural engineers have explored the factors that impair
neural implant performance using detailed biophysical models that
include neuron-specific channels, ion densities, and physiology12; such
modeling has been especially pertinent because stimulation artifacts
and technological limitations often prevent direct observation of
neural responses during therapeutic intervention. Particularly, the
deep brain stimulation (DBS) field has used this approach to under-
stand the impact of parameters such as pulse waveform, electrode
orientation, and tissue properties on neural activation13. Successes in
this field have led to the use of patient-specific modeling as a popular
clinical approach for finding patient-specific stimulation parameters
that improve the performance of a variety of implants11,14,15. These
parameterizations, however, do not account for another essential
feature of neural responses: the neuronal firing pattern over time.
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Producing consistent, interpretable neuronal firing patterns in
real-time is a critical factor in restoring function, particularly in sensory
systems, where the natural firing patterns carry information about
time-varying sensory input signals to the brain. Neural implants,
therefore, employ algorithmic mappings that determine the stimula-
tion parameters needed to evoke the desired neuronal firing pattern.
Standard stimulation strategies include fixed-amplitude pulse rate
modulation16,17 and fixed-rate pulse amplitudemodulation18, where the
fixed parameter is set at a high level in both cases. An assumption
inherent to these fixed-parameter strategies is a consistent linear
mapping between the number of stimulation pulses and neuronal
firing19. However, experimental observations and mathematical
modeling10,20–22 have identified effects that can lead to time-varying
differences in firing rate, including facilitation and blocking10,20, espe-
cially when combined with ongoing spontaneous (natural) firing
activity. We propose that these effects, which lead to complex rela-
tionships between pulse parameters and neural activation, are a
common reason for the limited restorative efficacy of neural implants.

One approach for accounting for these complicating effects is to
include detailed biophysical simulations within the neural implant
algorithms and models; however, this approach is computationally
intensive and presently intractable. Here, we take a different approach
to this question: we use a detailed biophysical model to investigate
factorsof spontaneous activity andpulse parameterization that impact
firing rate and extract general principles of pulsatile interactions from
the simulation. We use these rules to generate time-independent
equations that can estimate the inducedfiring rate in response to pulse
parameters and could be parameterized for various neuronal systems
based onmeasurable observations of the system. An advantage of this
approach is that resulting equations can be inverted and integrated
into real-time devices to correct for complex effects of pulses on firing
rate in a computationally efficient way, improving our ability to pre-
cisely control neural firing rate over time.

In this paper, we work towards these goals by studying the range
of effects of pulsatile stimulation on vestibular afferents. We choose
vestibular afferents because they have a large range of spontaneous
activity and neural firing regularity that can be used to probe the
causes of variability in response to pulsatile stimulation23. We use a
validated vestibular afferent model24–26 that can be tuned to capture
vestibular afferent-specific properties to explore the effects of pulse
rate, pulse amplitude, and spontaneous activity on induced neural
firing. We find a diversity of effects that can be understood as two
phenomenological categories of interactions: pulse-pulse interactions
and pulse-spontaneous interactions. We create time-independent
equations that capture these effects and show that they fit the simu-
lations and align with re-analyzed experimental data. Finally, we assess
the applicability of these equations to pulsatilemodulation paradigms.

Results
Identifying complex effects of pulsatile stimulation
Previous experimental recordings of vestibular afferents indicate that
electrical stimulation pulses produce variable numbers of action
potentials under standard experimental and clinical conditions
(Fig. 1)9,27. To understand the complexities of pulsatile stimulation, we
use a detailed biophysical model of the vestibular afferent to simulate
afferents with different spontaneous firing rates and the effect of
pulses of varying pulse amplitude and pulse rate on their firing rate (F).
Throughout the text, we use the term spontaneous to distinguish
naturally occurring activity,meaning excitatory post-synaptic currents
(EPSCs) and ESPC-induced spiking, from pulse-induced spiking. Based
on these observations, we show that pulses have two categories of
interactions: pulse-pulse interactions, effects on channels that change
the probability of other pulses producing action potentials (APs), and
pulse-spontaneous interactions, effects on channels that change the
probability of spontaneous EPSCs making APs and vice versa. We

develop time-independent equations that capture the facilitation,
additive, and blocking effects within each category of interaction. The
equations are fit to simulate afferent responses to fixed-rate, fixed-
amplitude pulsatile stimulation across all stimulation parameters. We
show these equations comply with observations from re-analyzed
experimental vestibular afferent recordings and that they can be
extended to predict responses to modulated waveforms of pulsatile
stimulation on the millisecond timescale.

In Mitchell et al.9, extracellular recordings of individual vestibular
afferents were made in response to one-second blocks of fixed-pulse
rate (R), fixed-pulse amplitude (I) extracellular stimulation. Pulse rates
were varied between 25 and 300 pps, while pulse amplitude was fixed.
Based on the intuition that a suprathreshold pulse (80% of the level of
facial twitch) will induce an AP, at suprathreshold Is, the pulse rate-
firing rate relationship (PFR) is expected to be F = R at all Rs. Instead,
thebest linearfit of the PFRhas a slope less than 1 across afferents,with
the highest PFR slope being F =R/2 in an afferent with a spontaneous
rate(S) of 43 sps (Fig. 1a–c black).

We simulate individual vestibular afferents using a modified ver-
sion of the biophysicalmodel developed byHight andKalluri whichwe
used in previous studies25,26. The channel conductances are tuned to
match firing regularity, and the inter-EPSC interval (μ) is tuned to
match the recorded spontaneous firing rate (Fig. 1b). At 230μΑ, the
simulated afferent produces a PFR that closely matches experimental
observations from the afferent with the highest PFR slope (N = 50,
rms= 11.4 ± 4.6 sps, Fig. 1b red). We use this model to explore the
variety of PFRs produced with different pulse parameters, under the
assumption it will exhibit the largest range of PFRs.

We conduct a full sweep of Is from 0 to 350μΑ and Rs from 0 to
360 pps in steps of 12μΑ and 1 pps and simulate responses to one-
second blocks of pulseswith each combination of parameters (Fig. 1d).
Instead of the PFR linearly increasing with R (black), multiple bends
occur in the PFR. Only for a small subset of parameters is F = R. The
maximum increase in firing rate is lower with higher Ss and the highest
Rs. Additionally, I did not only have a strong additive effect above a
threshold level. At higher Is, even spontaneous activity was blocked in
afferents of all Ss (Fig. 1e). Based on our previous work26, we hypo-
thesize that the non-linearities derive from two simultaneous interac-
tions that occur during pulsatile stimulation at any axon: pulse-pulse
and pulse-spontaneous interactions. To isolate the contribution of
each type of interaction, we perform simulations with no EPSC activity
and characterize the effects of pulses alone on the axon (pulse-pulse
interactions). Then, we reintroduce EPSCs into the model and char-
acterize pulse-spontaneous interactions.

Pulse-pulse interactions
Once all EPSCs are removed from themodel, we introduce the same set
of fixed-rate fixed-amplitude pulsatile stimulation blocks and observe a
smooth transition between three stages of effects as pulse amplitude
increases: facilitation, addition, and suppression (Fig. 2a–c). These
effects result from the fact that pulses produce unnatural perturba-
tions to the channel states of the voltage-gated ion channels by creat-
ing changes inmembrane potential of atypical amplitude andduration.

The pulse-induced changes in membrane potential produce
effects analogous to EPSCsbut over different length timewindows that
depend on pulse parameters. Pulse-pulse facilitation (PPF) is analo-
gous to natural facilitation. At a subthreshold pulse amplitude, Rmust
exceed some rate for pulses to additively increase the membrane
potential and produce anAP (Fig. 2d1). As the I increases, the pulse rate
at which a pulse is sufficient to create APs (Rppfacil) shifts towards 1 pps,
and the number of pulses required to produce APs shifts to one
(Fig. 2a). This can be modeled with a sigmoid function of height and
center dependent on I (“Methods” section; Eq. 14).

Once I exceeds a threshold amplitude, all pulses cause pulse-pulse
addition (PPA) and pulse-pulse blocking (PPB; Fig. 2b). In this pulse
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amplitude range, pulses produce changes inmembrane potential large
enough to create APs but also create significant artificial after-
hyperpolarizations that can block following pulses from producing
APs. We call the length of time after a pulse in which a following pulse
would be prevented from making an AP tb, or the block time. Due to
the refractory effects, at low R, the F falls on the line F =R (Fig. 2d2),
but, as R increases past Rb = 1/tb, the inter-pulse interval becomes less
than tb. At R > Rb, after a pulse makes an AP, the next pulse delivered
arrives within tb, preventing an AP or the full refractory period that
would followanAP frombeing formed (Fig. 2d3.1). As a result, the third
pulse in the sequence produces an AP again. This pattern repeats
throughout the stimulation time, leading to a relationship of F =R/2.
Throughout the additive pulse amplitude range, the PFR starts as F = R
anddrops from the line F =R/n to F = R/(n + 1) asR increases above n/tb,
where n = 1,2,3… is the number of pulses blocked before another AP is
made (Fig. 2b). We model the resulting firing rate as R

dtbRe =
R

dR=Rbe.
The PFR does not transition directly from F = R/n to F = R/(n + 1) at

Rn
b =n=tb. Instead, the PFR has a bend, where the slope of the PFR

decreases smoothly from 1 sps/pps, starting at Rpb (open circle), a R
less than Rb, to 0.5 sps/pps at Rb (closed circle, Fig. 2e). In this range of
R, pulse-pulse partial block occurs. This effect resembles facilitation.
Inter-pulse intervals are short enough for refractory effects to build,
but these interactions build to one pulse in a sequence of three or
more pulses being blocked instead of one in the sequence producing
an AP (Fig. 2f, lime green). Pulse-pulse effects arise from voltage
changes affecting the opening and closing of a combination of axonal

voltage-gated channels, but a correlate of the effect on the axon state
can be observed in the sodium channel dynamics. Here, the m-gate
reducing with each pulse (gray), shows the building-blocking effect
(Fig. 2f circles). Although a sequence of pulses producing partial block
may produce a complex pattern of blocked and added APs, we can
estimate the effect on average as the probability of the next pulse in
the sequence arriving and being blocked gradually decreasing from 0
to 1 between Rpb and Rb (Fig. 2e).

We incorporate the partial block effect in theψ(I, S, R) term, which
captures how the length and falloff of this partial-block window
changes with pulse parameters. The ongoing spontaneous activity
creates additional resistance to the pulse, changing the membrane
potential so ψ has an additional dependence on S (as discussed in the
next section). This leads to our estimate of the firing rate produced by
pulse-pulse effects (excluding the facilitation window), Fpp:

Fpp =
R

dR=Rbe +ψðI, S,RÞ
ð1Þ

ψðI, S,RÞ=
XN
n= 1

ψnðtb,kn
pb,t

n
pbÞ ð2Þ

whereψ(I, S, R) is a sumof partial-elimination effects per bendψn in the
PFR where n is the bend number that shows PPB at nRb. ψn transitions
from 0 to 1 creating the smooth falloff between Rpb and Rb. Scaling of
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Fig. 1 | Demonstration of Pulsatile Effects. a In the Mitchell et al. experiment,
individual vestibular afferents were recorded in response to biphasic pulse blocks
of 1 s of pulse rates from 25 pps to 300pps. b Individual afferents were simulated
with a Hodgkin-Huxley style model of axonal channels and membrane potential
changing with EPSCs of a given amplitude and rate, where inter-EPSC interval μ is
tuned to match spontaneous firing rate. The model was tuned to match the irre-
gularity and spontaneous rate of the experimental afferent. c The pulse rate-firing
rate relationship (black) at a fixed pulse amplitude of a recorded afferent with a
spontaneous firing rate of 43 sps (yellow). At a simulated pulse amplitude of
230μΑ, the pulse rate-firing rate relationship closely matched experimental data

(red, N = 50 stochastic simulations with I = 230μΑ). d A full sweep of pulse para-
meters from 0 to 350 pps and 0 to 360μΑ in steps of 1 for 1-second blocks was
simulated on models of afferents with different spontaneous rates, as controlled
by varying μ. e This revealed a complex relationship between pulse parameters,
spontaneous rate, and firing rate. Maximum change in firing rate is shown for the
model of afferents with different spontaneous firing rates in the same colors as d.
Conventional assumptions of pulse parameter relationships to change in firing rate
are shown in black. Maximum response is significantly lower than expected as
pulse rate (left) and pulse amplitude (right) vary. Data are plotted as mean ± SEM
across simulations in c and e.
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blocking at the bends kpbn and ppbn, where Rpbn = ppbnRb, the fraction of
Rb from which partial-block beginning on the PFR are the driving
parameters that depend on I, S, and R. This effect is bend-specific
because the partial elimination zone becomes shallower and narrower
at higher firing rates. For details, see Methods Eqs. 10–13.

Undermost conditions,ψ(I, S, R) represents a smooth transition in
the likelihood of pulses creating APs from 1/n to 1/(n + 1) at every bend
(Fig. 2b) that we refer to as the standard pulse-pulse blocking effect.
However, as the pulse amplitude increases from the one-to-one addi-
tive zone into the suppression zone, blocking effects extend beyond
blocking individual pulses, leading to two exceptional versions of the
ψn term: pulse dynamic loop (PDL, ψ’1) and suppression of future
pulses (SFP, ψ’2) (Fig. 2c, “Methods” section; Eqs. 12–13). SFP occurs
when R > 2/tb =Rb

2. Instead of every third pulse creating an AP, the
afterhyperpolarization effects compound and hold channel dynamics
in a state where they cannot reopen, which causes the firing rate to
quickly drop to zero (Fig. 2c, d). As I increases, the second bend (2Rb)
moves towards 0pps, until all activity is suppressed and Fpp =0 (Fig. 2c
right, d3.3). PDL is a version of this effect that occurs around R= tb in
which pulse timing is aligned to harmonics of the channel dynamics so
that the channels cannot recover until many pulses occur, but, at
higher Rs, this loop is broken and F =R/2 holds (Fig. 2c right, d3.2).

Transitions through each of these effects at different Is can be
seen in Fig. 2a–c as well as how parameters Rppfacil, Rb, and Rpb

1/2,
change with I. Each of these effects can be visualized over time in
Fig. 2d for a single I from Fig. 2a–c and a single R. They are shown
compared to tb and the dynamic gates of the sodium channel, where
the timewhere h-gate is at an intermediate value is highly correlated to
the axon dynamics becoming blocked. It is important to note that

these effects result from the dynamics of a system of non-linear
dynamics equations, but, due to the regularity of pulse timing and the
perturbation to the channels by the fixed pulse amplitude, these
effects can be estimated over time with time-independent parameters
tb and ppbn, resulting in equations that can capture each of these
effects. Figure 2g shows the prediction equation for each of the
blocking effects with equivalent parameters.With eachof these effects
characterized and parameterized, we turn to the pulse-spontaneous
interaction. For a summary of how each parameter changes with pulse
amplitude and affects the PFR see the left side of Supplementary Fig. 1.

Pulse-spontaneous interactions
To characterize how PFRs change with pulse parameters and sponta-
neous rate, we test the response of simulated irregular vestibular
afferents with spontaneous rates from 6 to 132 sps (the full span of
natural spontaneous rates observed) to the same pulse parameters
used during pulse-pulse interaction testing(0–360μA, 0–350 pps). We
create afferents with six different spontaneous rates within the natural
range and test their response to pulses across 10 trials with each
combination of pulse parameters. This allows us to account for varia-
bility across simulations due to the stochastic EPSC timing.

To capture how pulsatile stimulation produces non-monotonic
PFRs in the presence of spontaneous activity, we create equations that
estimate the contribution of pulse-pulse interactions to firing rate (Fpp)
andpulse-spontaneous interactions tofiring rate (Fps). These termscan
also be re-arranged to estimate the contribution of spontaneous APs
and pulse-induced APs to F separately (see “Methods” section). Prior
work by our group and others has attempted to capture these inter-
actions using simplifying equations26,28, but those attempts do not
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provide a complete description of the effects observed in our simu-
lation described below.

For a fixed I, as R increases, the presence of pulse-induced and
spontaneous APs changes (Fig. 3a). Although EPSC timing and thus
the subset of EPSC events that generate APs are stochastic, because
of their frequency compared to pulses, interactions can be esti-
mated to occur with approximately uniformly distributed EPSCs
(Fig. 3b yellow line, histogram). For a given I, there is some tpxs(I,S)
after a pulse for which a pulse blocks EPSCs from becoming
APs(purple), an analogue of tb. As R increases, the ratio of tpxs(I,S) to
the inter-pulse interval (1/R) linearly increases to 1; we capture this
effect with ppxs(I,S), the probability that a pulse blocks spontaneous
APs, where once ppxs(I,S) = 1, each pulse blocks all spontaneous APs
in between (Fig. 3c top).

At the same time, the ever-present EPSCs create a constant
resistance of the axon to pulses, captured by pp|s, the probability that a
pulse produces an AP given the spontaneous activity level. When I is
low, ppxs = 0 and pp|s =0. As I increases, pulses are sufficient to

overcome the EPSC activity and eventually block all spontaneous APs,
so ppxs and pp|s go to 1 (Fig. 3c, d and Supplementary Fig. 2 for changes
with I and S). This picture of increasing interaction as R increases
(Fig. 3b) can be used to visualize why ppsfacil, the probability of facil-
itation between pulses and EPSCs, also increases linearly with R at low
Is. A similar picture applies for psxp the probability that EPSCs block
pulses from becoming APs. Pulses segment time into inter-pulse
intervals, and there is a probability within those intervals of EPSC
activity capable of blocking pulses occurring just preceding the pulse,
leading to the pulses being blocked. These blocking effects that line-
arly increase with R co-occur for a majority of Is, making them difficult
to isolate in the PFR plots. As such, we show the relevant combination
of parameters and their scale below plots in Fig. 3d, e and the line
graphs below to elucidate how I and S affect those parameters sepa-
rately. Additionally, in Supplementary Fig. 1, right, we highlight the
effects ofppsfacil,ppxs,psxp, andpp|son features of the PFR as S increases.
Each isolated effect is plotted in red over a PFR trace in insets to the
right of the main plots for clarity.
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between pulses spontaneous activity is approximately normally distributed (gray).
Thus, it is estimated as uniformly distributed(yellow). As pulse rate increases for
the same pulse amplitude stimulating the same afferent, the same length of
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pulses. c Thus, the probability of a spontaneous AP being blocked by a prior
pulse (ppxs) increases linearly with R until it reaches 1, all pulses blocked (top).
Meanwhile, for a given amplitude the probability of a pulse being blocked due to
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combination leading to histograms in b. The level of blocking plottedwith changes
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spontaneous-pulse block, and pulse-spontaneous block zone as pulse amplitude
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tions in d and e.
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All these effects sum to produce Fps, the contribution of pulse-
spontaneous interactions to firing rate:

Fps =ppsf acilR+maxf�Sppjs,� ppjspsxpRg+maxf�S,� ppxsðR� RpxsÞg ð3Þ

Spontaneous-pulse(SP) blocking is only observed to block up to
onepulse per spontaneousAP in thispulse parameter range, leading to
themax{-Spp|s} term in Eq. 3, where at pp|s = 1, S pulses are blocked. The
SP blocking term is scaled by pp|s because the presence of blockable
pulses is scaled down but evenly distributed throughout time, leading
to a scaled reduction in pulses for all R. We also observe that, during
pulse-spontaneous (PS) blocking, pulses self-facilitate and initially start
blocking spontaneous APs only at high R. So, we add the term Rpxs that
shifts theR atwhichPSblocking starts (Eq. 3 andSupplementary Fig. 1).

Similar to the pulse-pulse interactionswithwhich these effects co-
occur, pulse-spontaneous interactions smoothly transition through
three stages as I increases. At low I, only facilitation occurs, so ppsfacil
increases. Once I is large enough, pp|s approaches 1, and ppsfacil goes to
0, while spontaneous-pulse blocking begins, reflected by psxp growing.
Then, at high I, pulse-spontaneous blocking dominates, captured by
psxp growing (Fig. 3d). As I increases, Rpxs shifts left and psxp increases
until F = 0 at all R (Fig. 3d, e and Supplementary Figs. 1 and 2).

These effects also depend on S, as shown in Fig. 3e–e1. The
dominant effect is that as S increases the axon becomesmore resistant
to pulses. So, at S = 132 sps, we observe almost no facilitation, nearly no
pulse-pulse addition, and a blocking effect that starts at a largerRpxs for
the same I and requires larger I to drive F to zero (Fig. 3e darkpurple on
line graphs). Facilitation is a slight exception in that ppsfacil increases
with S until a threshold level of spontaneous activity (S > 60 sps) above
which primarily SP blocking occurs (Fig. 3d left green vs. blue traces
and circles, Supplementary Fig. 1). Atmidrange I (center),psxpR reaches
S, the maximal effect, for all S cases (Fig. 3e middle). This leads to a
bend in the PFR (Rknee) which is the lowest R that satisfies psxpRknee = S.
At R >Rknee, the PFR is shifted down by S, leading to almost no ΔF at
higher S because Fpp < S at most Rs (Fig. 3d middle). The point where
Rkneewouldhavebeen visiblemaynot bepresent in PFRs at high S (as in
at S = 132 sps, I = 108μΑ). This is due to the combination of the low
increase in firing rate with pulses (Fpp) and the strong blocking effects
blocking all addition of pulses. Mathematically, this is captured in the
max {-Spp|s} term that described the observed limitation to blocked
APs. Rknee could still be predicted as it is in Fig. 3e. At high I, the
combination of high Ipulses and EPSCs together add to create SFP that
blocks pulses, so pp|s returns to 0, and psxp goes to 1. In this I range
(right), as S increases, PS blocking starts at a higher Rpxs and reduces F
less, because it requires higher I pulses to cause equivalent levels of
blocking as with lower S afferents (Fig. 3e right, Supplementary Fig. 1).

Finally, S also affects the partial block window of pulse-pulse
effects. EPSCs act as a level of noise correlated to S, which extends
recovery of the axon after pulses, increasing ppbn (Fig. 3e middle).
Spontaneous activity also prevents PDL by causing toomuch noise for
channels to remain in a dynamic loop so that ψ1 never exceeds 1 (Fig.
3e.1). Example traces of the pulse-pulse effects occurring in afferents
with different S are shown, like in Fig. 2d, in Supplementary Fig. 3.

The induced firing rate (F) can be estimated as the combination of
Fpp. Fps, and S:

F =maxf0,ppjsFpp + Fps + Sg ð4Þ

where pp|s scales down Fpp during SP blocking. For a visualization of
how each variable changes with pulse parameters and spontaneous
rate, see Supplementary Fig. 1.

Applications of pulsatile interaction rules
We test the accuracy of these equations by parameterizing them with
values that best minimize the rms error between the PFR of the

simulation at fourteen current amplitudes across the seven sponta-
neous firing rate cases. The parameters are then interpolated for the
thirty held-out current amplitude conditions across afferents. We find
that the equations (red) closely approximate the complexity of the
PFRs across conditions (Fig. 4a blues). The rms error averages 5.77 ±
1.19 sps across all fits (N = 44, Supplementary Table 2), and there is no
significant difference in the fit of the parameterized and interpolated
conditions, indicating smooth, precise parameterizations could be
found (Fig. 4b and Supplementary Fig. 2).Wenote relative variability in
fits at low S compared to high. One source of variability is an accu-
mulation of error at the sharp drops during PP blocking (Fig. 2c), due
to the parameters of our equations being bounded to keep parameter
exploration reasonable. While, at high S, pulses contribute few APs so
non-monotonic blocking effects (PPB, SFP, etc.) are lowamplitude, and
linear PS and SP blocking effects dominate, which are easily fit with
linear rules. Still, this rms level is also less than the standard deviation
across 10 simulation runs with different seeds for some afferent con-
ditions (Fig. 4c). We assess sensitivity of fit to each parameter,
revealing that, although each parameter influences the PFR (Supple-
mentary Fig. 1), particularly tb, ppb1/2, and pp|s have strong influence on
error in the PFR (Supplementary Fig. 4); the pulse-pulse parameters
affect rmsmorewith no spontaneous activity. However, as S increases,
the various pulse-spontaneous parameters have similar levels of
influence to other parameters (Supplementary Fig. 4).

We then test whether these equations reflect observable features
of experimentally recorded vestibular afferents. We reanalyze
recordings from six afferents from the Mitchell et al.9 study, which
focused on central adaptation but recorded vestibular afferent
responses to pulsatile stimulation at multiple amplitudes. This pro-
vided5 afferent recordings at themaximumsafepulse amplitude and4
afferent recordings at 18 pulse amplitudes from25% to 100%of the safe
pulse amplitude range for that electrode position (see “Methods”
section, all data in Supplementary Fig. 5). The PFRs show non-
monotonicities that could be explained by PPB effects, SFP at high Rs,
and changes in PFRwith I that reflect results of the simulations (Fig. 4d
and Supplementary Fig. 5a, b).

The experimental PFRs could fit with the equations described
above. However, the sparsity of pulse rate and pulse amplitude sam-
pling causes multiple parameterizations of our equations to result in a
low rms fit, making it unclear which rules shown led to the result.
Instead,weuse twometrics to assess thepresenceof thepulse effects in
the data that allow data to be pooled across afferents, increasing the
sample size for statistical comparisons. The slope between sampled
combinations of pulse rate and firing rate (gray dash and circle) (Fig. 4d
left) is used as the main metric for assessing the presence of blocking
effects. The normalized area under the curve (AUC) for the PFR (Fig. 4d
gray filled) is used as a metric of the level of activation (see “Methods”
section). Due to PPB, we expect a higher frequency of slopes of 1,1/2,1/3,
particularly at low R, and higher frequencies of slopes close to or less
than zero due to pulse-spontaneous block, spontaneous-pulse block,
andSFP.Wefirst compare thepresenceof all slopes in thedata to slopes
in the model. To make a fair comparison to the model, we sparsely
sample the simulated PFRs and slopes (see “Methods” section), pro-
ducing PFRs and pulse rate-slope plots that closely resemble those
sampled from experimental afferents of matched spontaneous rates
(Fig. 4b right and Supplementary Figs. 5 and 6). The probability density
functions of the simulated and experimental data show similar clus-
tering around slopes of0withpeaks formingnear0.5 and 1 sps/pps that
occurred at similar pulse rates (Fig. 4e andSupplementary Figs. 5 and6).
The simulated and experimental distributions are not statistically sig-
nificant (Welch t-test: (t(622) =0.31, p=0.75; Kolmogorov-Smirnov test:
pKS =0.16). A Wasserstein distanceW(Pexp,Psim) = 0.239 indicates curves
are close to each other. The Kolmogorov-Smirnov and Wasserstein
distance statistics are significantly different than those between the
experimental data and slopes derived from 5000 permutations of the
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pulse rate-firing rate pairings across recordings, further supporting the
similarities in the structure of the experimental and simulated PFRs
(p =0, p =0.007, Supplementary Fig. 4d).

We also investigate pulse rate and pulse amplitude effects in the
data.Data cannot be pooled by the Idelivered at the electrode because
the distance between an afferent and the electrode (which is not
known in our experiments) affects the current level received by the
afferent. We observed that experimental I values were only increased
in a range that led to increasing activation(Supplementary Fig. 5b, c),
so we assume the maximum I (Imax) used would be equivalent in our
simulation mapping to 250μΑ > I > 70μΑ. With this assumption, we
split PFRs into low R (R < 150 pps) and high R sections and compare
their slopes at low I (I≤0.5Imax) and high I to look for pulse amplitude-
related effects (see Fig. 4f, g for all statistics). At low I, low R slopes are

<0.8, primarily clustering close to zero in the violin plot, which would
be expected from both types of facilitation and SP-blocking and not
significantly different than at high R (Fig. 4f left). At high I, we expect
low R slopes to mostly range from 0–1 (excluding the downswing of
the bend thatmay be captured) and highR slopes to cluster at negative
or 0 sps/pps. We see this significant difference in the distribution of
slopes (t(78) = 3.32, p = 0.0014): positive-valued low R slopes (orange)
with clustering around 1, 0.5, 0.25–0.33. and0 that reflects slopes from
PPB and primarily zero and negative valued high R slopes with some
samples around 0.5 and 0.3 (purple; Fig. 4f right). The differences in
slope at higher I for the low R region of the PFR are highly significant
(t(75) = 3.23, p =0.0028). At low I, the normalizedAUCof the PFR is not
significantly different at low R or high R, but, at high R, both halves of
the PFR show significantly more activation, and the high R portion of
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f Violin plots of distribution of slopes at low R (orange) versus high R (R > 150 pps,
purple) for stimulation with high Is (I >0.5Imax) versus low Is per afferent. At low I,
slopes are not significantly different between low R(N = 23) and high R(N = 17)
(t(38) = 0.237, p =0.81). At high I, slopes are significantly different between low
R(N = 54) and high R(N = 26)(t(78) = 3.32, p =0.0014). Mean marked with black line
and color-matched semicircle. Median and quartiles markedwith gray lines. At low
versus high I, slopes at low R are significantly different but not at high R
(t(75) = 3.23, p =0.0028; t(41) = 1.19, p =0.24). g Violin plots of normalized AUC in
lowR and high R section of the PFR for stimulation at low I(red) and high I(blue). At
low I(N = 8), AUCs in the low and high R region of the PFR are not significantly
different, but at high I(N = 15) the AUCs are significantly different (t(14) = 0.654,
p =0.523; t(28) = 1.79, p =0.0083). All the significances reported are for two-tailed
t-tests. Significance in f-g is shown as *p <0.1;**p <0.05;***p <0.01 (Supplementary
Table 3).
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the graph reaches a range of significantly higher activation levels
(Fig. 4g, see for statistics). These results reflect changes in the PFRs for
I < 70μΑ versus 250μΑ > I > 70μΑ in simulations (Fig. 4a). There were
not enough afferents to test for spontaneous rate effects, but dis-
tributions are shown in Supplementary Fig. 6b.

Next, we assess how the pulsatile stimulation effects shown in
this paper could alter the fidelity of desired firing patterns during
standard stimulation paradigms. We take the case of vestibular
prostheses where, standardly, the natural head velocity to firing rate
mapping (black dash) is used to generate a target firing rate from
detectedmotion; then, a one-to-onemapping betweenpulse rate and
desired firing rate is used in a pulse rate modulation (PRM) strategy,
under the assumption that at a high pulse amplitude, here 250μΑ,
each pulse will produce an AP19 (Fig. 5a–c). With present stimulation
algorithms, impaired vestibular ocular reflexes (VORs) are partially
restored in the direction of increasing firing rate and less so in the
direction of decreasing firing rate from baseline29. These results
occur in afferents that have some residual spontaneous activity. We
simulate this case in an afferentwith spontaneous activity (S = 31 sps),
receiving PRM to encode a sinusoidal eye velocity (Fig. 5a–c). The
predicted head velocity to induced firing rate mapping can plotted
by remapping based on the PFRs at these parameters. Using the one-
to-one mapping (purple), the firing rate should not reach the max-
imum or minimum desired firing rate, and it shows a relative bias

towards being able to excite compared to inhibit (Fig. 5b). These
responses reflect limitations in VOR observed in animals and humans
with vestibular implants29.

The equations described above can also be inverted to predict the
optimal pulse rate -in this case the minimum pulse rate- for inducing a
desired firing rate (see “Methods” section). Under the idealized
assumption of similar neuronal activity across neurons, we see a
monotonic encoding of head velocity can be restored using the same
range of pulse amplitude and rate parameters (Fig. 5b, blue); it only
requires a more complex but achievable modulation strategy
(Fig. 5c–d blue). We then simulate the afferent response to each sti-
mulation paradigm and see the predicted limitations in induced firing
rate with the one-to-one mapping and the desired firing rate response
from the corrected paradigm (Fig. 5c, d and Supplementary Fig. 7).
Although the equations were derived from 1-s fixed-rate fixed-
amplitude pulse trains, we see the rules explain the limitations of the
one-to-onemapping and consistently predict stimulation patterns that
can produce sinusoids and more complex mixtures of sines with high
fidelity from individual afferents of various spontaneous rates with
PRM and PAM paradigms (Fig. 5c, d and Supplementary Fig. 7c, d).

Our results indicate both potential improvements and limitations
to using a pulsatile electrical stimulation paradigm. Accounting for
pulsatile stimulation effects, stimulation paradigms could be modified
to produce firing patterns closer to the desired patterns, and the
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describedmechanismof pulsatile stimulation indicates that thosefiring
patterns will be achieved with high fidelity. Additionally, we find that
these rules hold for afferentswith regular and irregular spike timingbut
proceed at different rates with increased pulse amplitude (Fig. 5e, f and
Supplementary Fig. 8). In the case of triggering errors, as simulated by
jitteringpulse timingby 1–2ms, the rules alsohold, butpulse effects are
smoothed due to a similar effect to having on-going EPSC activity
(Fig. 5g). At the same time, we find that pulse-spontaneous interactions
createmultiple sources of variability in induced firing rate. The range of
induciblefiring ratesdiffers across afferentswithdifferent spontaneous
rates (Fig. 5e and Supplementary Fig. 7), and afferents with different
spontaneous rates or even different channel densities in the axon
undergo different levels of additive and blocking effects in response to
pulses of the same pulse amplitude (Fig. 5h and Supplementary Figs.
8 and 9). These sources of individual afferent variability lead to mixed
effects on local population responses to pulsatile stimulation.

Discussion
We use detailed biophysical models of vestibular afferents to investi-
gate the sources of variability in producing desired firing patterns
using pulsatile stimulation. Our simulations show a number of effects
of pulsatile stimulation on axon channel dynamics that can prevent
other pulses from producing APs and override spontaneous activity.
The resulting PFRs resemble pulse effects demonstrated across neural
systems: high-frequency facilitation (row 1) has been observed in
auditory nerve fibers27,30; the PPB effect that leads to a bend in PFR
(row 2) has been observed auditory nerve fibers25 and dorsal column
axons22,27,30; high amplitude block is observed in the sciatic nerve
(row 3)31; amplitude-dependent growth of firing rates has been
observed in the auditory nerve32; experiments on hippocampal
neurons33, auditory fibers28 and spinal cord proprioceptive fibers21

demonstrate pulse-spontaneous additive and blocking effects
(Fig. 4a). These similarities further support our hypothesis that there is
a large source of shared variability in effects of pulses in clinical
applications due to pulses driving axonal channel dynamics to unna-
tural states. A positive outcome of this hypothesis is that producing
algorithms that are capable of accounting for complex pulsatile
interactions at the axon should be applicable across use cases and be
able to improve a variety of neural implant algorithms.

In this paper, we demonstrate one way of transforming our
understanding of pulse effects at the axon into equations. A beneficial
attribute of present methods of electrical stimulation is that the reg-
ularity of fixed-parameter stimulation produces a consistent effect on
the axon that can be fitted with computationally efficient, analytical
equations. We show equations fitted to one-second blocks of fixed
rate-fixed amplitude stimulation can predict responses to pulse rate
andpulse amplitudemodulation sequences and correct them for pulse
effects with modulation on the 5-50ms timescale (Fig. 5 and Supple-
mentary Fig 7c, d). Corrections produce firing patterns in silico that
under healthy neurological conditions could fully restore the VOR
where previous parameterizations could not (Fig. 5). The modification
of neural implant algorithms predicted with these equations can be
tested with experiments in Fig. 5 for improvements in driving desired
firing patterns.

In post-damage and implanted systems, lower levels of activity are
expected, as in the implanted vestibular afferents in the data analyzed
in this paper9; reduced responsiveness to stimulation may occur, as in
explanted vestibular afferents compared to in vivo25, or rate of spike-
recovery may change as in post-deafness auditory nerve fiber under
cochlear implant stimulation34. Whichever case, healthy and damaged
neuron parameterizations could bemade using the experiments in the
text and with a measurement or estimate of spontaneous activity.
Reduced responsiveness to stimulation could be captured in the
parameterization of the pulse-spontaneous interaction parameters
(psxp, pp|s), and differences in temporal channel dynamics due to

damage or natural physiological differences in channels used to drive
APs in other systems could be captured with adjustments of pulse-
pulse parameters (tp, ppb, etc.).

Additionally, understanding the source of pulse effects, as we do
for biphasic pulsatile stimulation here, may help to design novel sti-
mulationwaveformswith beneficial effects. For example, we show that
the cathodic phase of pulses leads to the blocking effects, and
the anodic recovery phase can affect the duration of the evoked spike
afterhyperpolarization; using this information, the shape of the
recovery phase of a pulse could be designed to sensitize the axon so
that when the next pulse is delivered one-to-one AP induction occurs
(Supplementary Fig. 10).We canuse a similar analysis to that in the text
to create equations that capture effects of these pulses.

Another important conclusion of this paper is that afferents with
different spontaneous rates and even channel densities produce dif-
ferent levels of additive and blocking effects in responses to pulses of
the sample pulse rate and pulse amplitude35. These results imply that
our present uses of pulsatile stimulation are not producing coherent
local excitation in most cases, due to the diversity of baseline neural
activation levels. They produce a consistent but unnatural combina-
tion of local excitation and inhibition, where the response of a neuron
is based on its ongoing level of activity and distance from the
electrode site.

Our findings suggest several possible improvements to neural
implants, even considering the mixed effects of pulses on neuronal
populations with natural levels of diversity. A hardware solution that is
already under development35 would be to use high-density electrode
devices and small amplitude stimuli that are capable of targeting
individual neurons. Our study of pulse parameter effects also indicates
a number of algorithmic improvements. One inference observable
from low pulse amplitude simulations (i.e. Fig. 4a I < 45μΑ) is that the
PFRwould be highly linear for all spontaneous activity levels but with a
low slope. Thus, a high-rate low-amplitude stimulation parameteriza-
tion may induce nearly linear modulation that can induce the upper
range of firing rates seen in the system (i.e. 1000 pps producing
500 sps). Additionally, using more complex optimization strategies to
find parameters that best co-activate neurons with a range of sponta-
neous activity levels may be another useful way to use our equations.
Still, characterizing a large number of densely packed neurons may be
intractable presently, and, especially in highly interconnected areas,
such as parts of cortex, time-varying inputsmay be difficult to account
for. Another potential solution indicated by our study would be to
eliminate spontaneous activity or inputs from other areas. For exam-
ple, one could use site-specific channel blockers or other neuronal
silencing techniques36. This would make neurons easier to drive with
consistency throughout the population because it eliminates pulse-
spontaneous interactions and leads to a larger inducible firing range
(Figs. 4a and 5h). Highly interconnected regionsmay remaindifficult to
characterize and isolate in this way.

These findings also raise questions about ongoing practices
involving electrical stimulation. First, it calls into question whether
electrical stimulation-based mapping studies unveil natural functional
connectivity and behavioral relevance as opposed to some level of
anatomical connectivity and functions of the most excitable local
neurons. Additionally, despite these seemingly inconsistent and
unnatural changes in population firing, the brain processes the
stimulation-induced signals sufficiently to make significant clinical
improvements. For example, cochlear implants effectively restore
speech perception37,38, although cochlear implant users5,7 have
remaining deficits like other types of implantees5,7, such as lack of tone
discrimination or the ability to hear speech-in-noise39. Theseoutcomes
suggest a potentially exciting direction for improving stimulation
algorithms is to focus on neural signatures of coherent population-
level encoding as opposed to producing a high-fidelity single-neuron
response in targeted neurons in the population.
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Using equations like those in this paper, or reduced forms of
them,we can now begin to build larger-scale populationmodels of the
effects of pulsatile stimulation on local and interconnected popula-
tions performing functional tasks40. By exploring the effects of pulsa-
tile stimulation in more realistic population models, we can not only
improve our use of pulsatile stimulation but also gain insight into the
unidentified and seemingly system-wide population-level computa-
tions in the brain that underlie successful pulsatile stimulation-based
treatments today.

Methods
Biophysical modeling of vestibular afferents
Vestibular afferents were simulated using a biophysicalmodel that has
been used previously by several groups including our own to study the
effects of electrical stimulation on vestibular afferents24–26. Past work
from the lab showed this model can replicate experimental firing
rates and changes in firing rate with pulsatile and direct current
stimulation25,26.

We use an adapted version of the Hight and Kalluri model24–26. In
brief, Hight & Kalluri showed that vestibular firing can be simulated
accurately by assuming cells have the same shape and size. Type I and
Type II vestibular afferents are modeled as differing only in channel
expression and EPSC magnitude (K). Spontaneous rate can be set by
changing the average inter-EPSC arrival interval (µ).

The membrane potential (V) varies as:

dV
dt

=
1

ðCmSÞ
ð�INa � IKL � IKH � Ileak + Iepsc + IstimÞ ð5Þ

where in addition to the current from each channel type, the mem-
brane potential is influenced by the EPSCs arriving at the axon (Iepsc)
and the injected current (Istim). The overall current through the mem-
brane in the denominator is dependent on individual membrane
voltage-gated channel conductances: Na (gNa, m, h), KH (gKH, n, p), KL
(gKL, w, z). We simulate the electrode at 2mm from the simulated
afferent which causes the firing threshold to be around 56μΑ for a
typical neuron.

For this study, we adjust simulation parameters to reflect the
irregularity and baseline firing rate of a vestibular afferent recorded in
previously published findings9. Out of the dataset, we fit the afferent
that showed the largest diversity in PFR functions in response to pulses
of different pulse amplitudes, expecting it would show the most
diversity in pulse effects. We find that conductance values of gNa =
13 mS/cm2, gKH = 2.8 mS/cm2, and gKL = 1 mS/cm2 and EPSCs with K = 1
and m = 1.3ms match previously published experimental findings at
pulse rates from 25 to 300pps. We keep these conductance values for
all irregular afferent simulations in the main body of the text.

For studies of the effects of spontaneous rates on firing, the
channel conductance values are kept the same but the inter-EPSC
arrival interval µ is set to 0.25, 0.5, 1, 2, 4, and 8. Tomodel the axonwith
no spontaneous activity, Iepsc was set to 0.

Additionally, we assess the effect of firing regularity on induced
firing rate. The irregular neuron (F = 36.6 ± 0.9 sps, CV =0.57, where CV
is the Coefficient of Variance), is modeled with K = 1, and µ = 1.65ms. A
conductance matched regular neuron (F = 33.8 ± 0.4 sps, CV = 0.09)
is also modeled with gNa = 13 mS/cm2, gKH = 2.8 mS/cm2, and
gKL = 0 mS/cm2, K = 0.025, and µ = 0.09ms.

The effects of channel conductance values on the PFR are tested
while repeating the sample pulse block experiments. We use a biolo-
gically realistic case by using lower conductance values and changing
parameters to produce firing rates and regularities similar to
those observed in a previous in vitro experiment with and without
exposure to direct current41: gNa = 7.8 mS/cm2, gKH = 11.2mS/cm2, and
gKL = 1.1 mS/cm2, K = 1. µ was again varied from 0.25 to 8ms.

We find no evidence of pulsatile stimulation affecting the hair cell,
so all direct current-related hair cell effects (adaptation, the non-
quantal effect, etc.) are not activated in these simulations25. The
simulation is run using the Euler method to update all variables
through each of the channels.

Simulated pulsatile stimulation experiments
We replicate the experiments fromMitchell et al.9 in silico with a finer
sampling of pulse amplitudes and pulse rates. In addition to the pulse
rates used experimentally, pulse rates from 1 to 350pps in steps of
1 pps are delivered for 1 second. Ten repetitions are performed for
each current amplitude, spontaneous rate, and pulse rate combina-
tion. Pulse amplitude is varied from 0 to 360μΑ in steps of approxi-
mately 12μΑ and used to parameterize equations values. Around
transitions in the level of pulse effects, PFRs are simulated in finer
detail to capture the change in effect sizes. We interpolated between
these values to create a smooth function for predicting induced
firing rates.

This combination of experiments is repeated on the irregular
neuron, regular neuron, and low conduction/in vitro neuron. It is also
repeated for all values of μ to map how pulse effects change with
different levels of spontaneous activity.

Jitter experiment
To assess the effect of jittered pulse delivery time on induced firing
rate, we perform the same simulation but include jitter in pulse timing.
Instead of delivering perfectly timed pulses, we add a Gaussian noise
termwith a standarddeviation of 1msor 2ms to the exactpulse timing
to simulate delay or advancement in the delivery of regularly sched-
uled pulses.

Pulse rate and amplitude modulation
To test how the pulse rules apply to sinusoidal modulation, as used in
various prosthetic algorithms, PRM and PAM were simulated with
pulse parameters restricted to the range commonly used in vestibular
prostheses: pulse amplitudes 0 to 350μΑ and pulse rates between 0
and 360 pps5,19,42. We use a simple optimization strategy, as a demon-
stration of the applicability of these equations. For PRM, the common
vestibular prosthetic strategy, a PFR is generated at the chosen pulse
amplitude based on the equations. Then, the lowest pulse rate that
produces the target firing rate desired (or the closed firing rate
achievable using rms) is selected (Fig. 5a). For PAM, in an analogous
manner, the chosen pulse rate is selected, and the pulse amplitude-
firing rate mapping is used to select the lowest pulse amplitude that
produces the desired firing rate (or the closed firing rate achievable
using rms). Potential pulse amplitudes and rates were sampled in steps
of 1μΑ and 1 pps. This solution was a simple approach for minimizing
energy consumption in either stimulation paradigm. For a moving
firing rate prediction in the text, the target firing rate trajectory is
sampled at 0.1ms sampling frequency, and optimal pulse parameters
are chosen at each time step.

In the main text, we simulate a vestibular afferent with a low level
of residual activity, S = 31 sps responding to PRM encoding a pure
sinusoid with a fixed-amplitude of 250μΑ. We use a standard one-to-
one mapping strategy, as used in vestibular prostheses16,19, trans-
forming head velocity into the desired firing rate into the delivered
pulse rate. We compare to the optimal PRM using the strategy
described above. In Supplementary Figs., we also use afferents of dif-
ferent spontaneous rates and target firing patterns that aremixtures of
sinusoids within the range of velocities experienced by the human
vestibular system, less than 10Hz. We use PRM sequences with a fixed
amplitude of 150μΑ, the largest firing range observed as pulse rates
vary. In the PAM cases, the pulse rate is fixed at 100pps, themaximum
observed firing rate for PAM, while pulse amplitudes are varied. We
assess the PAM optimization described above.
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Experimental data
We reanalyze 6 afferents recorded from rhesus monkeys during the
experiments forMitchell et al.9. All procedures were approved by both
the McGill University Animal Care Committee and the Johns Hopkins
Animal Care and Use Committee, in addition to following the guide-
lines of the Canadian Council on Animal Care and the National Insti-
tutes of Health. See Mitchell et al.9 for experimental details and spike-
sorting information. For each afferent, the current amplitude that
produced facial twitch was found. The 100% pulse amplitude was 80%
of the level that produced facial twitch for a given electrode site. PFRs
are sampled at 25–300pps in steps at 25%, 50%, 75%, 87.5%, and 100%
pulse amplitude. For some afferents, only 100% amplitude trials were
recorded. Therewere 3-5 repetitions per pulse amplitude. Sorted spike
times were used to calculate the average firing rate during each block.
Pulse delivery times were analyzed in the equivalent way to get the
pulse rate per session. The firing rate between blocks was used as the
spontaneous rate per afferent.

Comparison of experimental and simulated afferent responses
Slopes between sequential pulse rate-firing rate experiments are cal-
culated for each experimentally recorded afferent, revealing a trend of
change in slope as the pulse rate increases. A similar analysis is per-
formed on simulated afferents. The simulated experiments are sam-
pled every 30 pps to compare the PFRs. The slopes are sampled every
60pps. The pdfs of the simulated and experimental slopes are com-
pared.We expect peaks at 1/n and changes in the distribution of slopes
as pulse amplitudes increase. A Welch t test, Wasserman distance, and
Kolmogorov-Smirnov test are used to compare the similarity between
distributions. Significance is also assessedwith a permutation test. The
matching of experimental firing rates to experimental pulse rates is
shuffled across afferents. Then, the slopes per simulated afferent set
are recalculated 5000 times to find the probability of these statistics
occurring by chance. Afferents are grouped by spontaneous rate clo-
sest to simulated levels into 3 groups. The same comparisons aremade
with simulated data at these same pulse rates (Supplementary Fig. 5b).

Experimental data is further compared to itself in two ways. The
PFR is split into two sections: low versus high pulse rate (R) at
R = 150 pps. Slope distributions are compared under these conditions
with a Welch t-test at the maximum I tested per recording (n = 9),
expecting significant difference due to simulations above I = 75μΑ,
showing strong PPB and SFP. Additionally, effects of pulse amplitude
are assessed, by comparing the low R versus high R PFRs at low I
(I < 0.5Imax) versus high I. This comparison was made for slopes and
normalized area under the curve (AUC) of the PFR:

dAUC =
XN�1

i= 1

ðFi + Fi + 1ÞðRi+ 1 � RiÞ
2ðRi+ 1 � RiÞ

ð6Þ

A Welch t-test was used for comparisons of these parameters,
as well.

Parameterizing fits
The optimal parameterization of the equations is found using pat-
ternsearch in Matlab in the “classic” generalized pattern search algo-
rithmmodewhich requires parameter initializations and the bounds to
be set for each parameter. For a subset of fourteen of the PFRs at
simulated pulse amplitudes, the starting parameterizations were
found by hand for each of the spontaneous rate cases. At S =0 and
S = 56, three additional Is were sampled, focusing on the transition
points to capture the rule transitions accurately (I ∈[30–100] and
I ∈[150–250]). The maximum and minimum I cases were included in
this group. These fits are referred to as hand-fitted. For the remaining
Is, linear interpolation between the fitted Is followed by optimization is
used to obtain optimal parameters. This technique was done to
increase the chance of optimization finding solutions involving

smooth changes in parameter values that reflect the observed
mechanism of AP generation. For fitting details of the parameters, see
Supplementary Table 1, and for observation of the parameterization
across I and S conditions, see Supplementary Fig. 2.

Standard rms error is used for optimizing the best fit at each
amplitude. Data are fit to the mean of across simulations. The fit is
reported for error across each of the ten simulated runs per model.
The difference between error levels of fitted and interpolated PFRs is
assessed with a paired t-test. Data is all reported as mean rms across
repetitions ± sem.

A sensitivity analysis was performed on the optimized para-
meterization of the fitted I cases. All optimized parameters were held
fixed except for one which was jittered 100 times within a Gaussian
range of 10% of the optimized value. The effect on rms between pre-
dicted and simulated PFR was then assessed and reported in Supple-
mentary Fig. 4.

Predictive equation
The observed effects at the axon are transformed into equations that
depend on measurable or controllable variables: pulse amplitude (I)
delivered from the electrode, pulse rate (R), and spontaneous rate (S).
We find that due to the fixed pulse rate and pulse amplitude of a train
of pulses, we can transform the effect of pulses on the complex system
of channels driving an action potential into equations that capture
the observed effects of pulses and their mechanisms without depen-
dence on time.

We find that I has the strongest effect on the type of interactions
pulses have, but S also affects most of the parameters of that control
pulse effects. All variables that depend on I and S are bold below
and written the first time with their dependencies. In most cases, S
acts to either deepen the blocking or shallow the additive effect
of pulses.

Pulse-pulse interaction equations. The main pulse-pulse effects rely
on pulses having refractory effects on channel opening and closing
that will affect following pulses.

A pulse-pulse blocking effect begins with a period in which
another pulse would be blocked with 100% certainty tb(I,S). If
the interpulse interval (1/R) is longer than that window, then no
blocking occurs. If the pulse rate is high enough, more pulses fall into
tb and are blocked. We model the resulting firing rate with a ceil
function:

Fpp =
R

R=Rb
, whereRb = 1=tb ð7Þ

Instead of changing from producing one AP to every other pulse
making anAP, there is an intermediate set of Rs starting at Rpb atwhich
sequences of pulses build towards a block effect for a pulse in a
sequence of at least three pulses. This effect resembles facilitation but
where the result is a pulse being blocked instead of producing an AP.
This effect always begins at a lower R than Rb, so it can be para-
meterized in a bounded way as a fraction of Rb, which simplifies
optimization:

Rn
pb = ðn� pn

pbÞRb ð8Þ
For an intuitive picture, we can say that, on average, the axon

experiences an extended refractory period in which the probability of
a pulse being blocked by a previous pulse is 1 until tbms after the pulse
and returns to zero when the inter-pulse interval exceeds tpb =

1
Rn
pb
:We

observe that partial block at Rpb <R < Rb, which on average is like time
tb < t < tpb, where t = 1/R. Under most conditions, the partial block
period takes a simple form, transitioning from 0 to 1 with increasing R,
but under special cases, the window extends as the pulse creates
harmonics in the voltage-gated channels opening and closing. In all
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cases, it can be defined as an added probability of a pulse getting
eliminated, ψ.

Fpp =
R

dR=Rbe +ψðI, S,RÞ
ð9Þ

ψ is the sum of the effects of each of the n bends:

ψðI, S,RÞ=
XN
n = 1

ψn

In most cases,ψn takes the form of a linear increase in the prob-
ability of a pulse surviving the refractoryperiod as the timeof initiation
is closer to tnpb than tnb. This effect scales with kn

pbðI, SÞ

ψn =
min 1,ð1 +κn

pbðI, SÞÞ 1
1
R�

tb
n

ðtnpb�
tb
n Þ

� �� �
,tnpb <

1
R < tb

n

0 ,else

8<: ð10Þ

Wemade the simplifying assumption that for the 2nd to nth bend,
all refractory effects are the same. So, we only parameterize p1

pb, p
2
pb,

k1
pb, and k2

pb, where the second, p2
pb tends to be larger.

Suppression of future pulses. When the pulse amplitude is suffi-
ciently high, in these simulations >180μΑ, pulses can prevent all firing
for extendedperiods of time. So, for theR afterwhich the secondpulse
would be blocked a very steep refractory effect with scaling κpbðI, SÞ
occurs:

f or
1
R
≥ t2pb,

ψ0
2 = κ

2
pb 1

1
R �

tb
2

ðt2pb � tb
2 Þ

 !3

ð11Þ

In this same range of pulse amplitudes, there is a small window in
which pulses can prevent firing for a number of pulses, as channels
enter an extended dynamic loop, but, once R exceeds 1/t1pb, the stan-
dard F =R/2 PFR is restored, until 1/R > t2pb.

Pulse dynamic loop (PDL).

f or t1pb < 1=R< tb,

ψ0
1 = κ1

pb
1=R� tb
t1pb � tb

 !& ’
ð12Þ

Then,

Fpp =
R

minf2,dtbReg+ψ1 +ψ2Þ
ð13Þ

An additional special case is at low pulse amplitudes and when
S =0. Pulses only facilitate themselves at sufficiently high pulse rates.
This was represented as a sigmoid function with a scaling, slope, and
center that depended on I:

F =
1

ð1 + expðmfacilðR+Rppf acilÞÞÞ
Fpp ð14Þ

Pulse-spontaneous interaction equations. Spontaneous activity has
additional blocking and facilitation effects in the presence of pulses as
described in the term Fps. There is a probability that a pulse can make
an action potential given the presence of enough EPSC activity to
produce a given spontaneous rate S, pp|s. We model these effects

proportional to S. So, the final firing rate will be a combination of the
natural activity S, the contribution of pulse-spontaneous interaction
effects, and the contribution of pulses to firing, scaled by this resis-
tance to pulse effects pp|s:

F = maxf0,ppjsFpp + Fps + Sg ð15Þ
Then, there are two linearly increasing blocking effects. First,

spontaneous activity blocks pulses at a set level because it is
approximately normally distributed between pulses (Fig. 3b yellow).
Conversely, pulses block a linearly increasing number of spontaneous
action potentials, as the pulse rate increases, and create a longer and
longer window tpxs after a pulse in which all EPSCs are blocked from
becoming action potentials (Fig. 3b purple). This results in two linear
functions of R. One difference is that the blocking of spontaneous
activity by pulses is not ever present, so there is some pulse rate, Rpxs

after which the pulses can block spontaneous action potentials. This
value decreases to 0 as current amplitude increases and all pulses can
disrupt natural action potentials.

Fps =ppsf acilR+ maxf�Sppjs ,� ppjspsxpRg+ maxf�S,ppxsðR� RpxsÞg ð16Þ
Finally, at low current amplitudes, facilitation occurs between

pulses and spontaneous activity. This effect is most easily observed in
the range when the afferents with no spontaneous activity show no
firing. Facilitation ends when pp|s approaches 1, as pulses transition
from needing facilitation to being sufficient to produce action poten-
tials to producing refractory effects that create pulse-spontaneous
blocking.

These equations can also be rewritten to estimate the contribu-
tion of pulses versus spontaneous activity to the final PFR as:

FP =ppjsFpp +ppsf acilR+ maxf�Sppjs ,� ppjspsxpRg ð17Þ

FS = S+ maxf�S,ppxsðR� RpxsÞg

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets generated in this study have been deposited in the
Zenodo database (https://doi.org/10.5281/zenodo.11387800) and
within the provided Source Data file. Source data are provided with
this paper.

Code availability
The custom code used to generate simulations, implement the pulse
prediction rules, and fit the data during the current study are available
from the corresponding author on request. A version of the code is
available on https://github.com/CSteinhardt153/pulsatile-prediction-
code.
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