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Astrocytes enhance plasticity response
during reversal learning
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Astrocytesplay a key role in the regulation of synaptic strength and are thought to orchestrate synaptic
plasticity and memory. Yet, how specifically astrocytes and their neuroactive transmitters control
learning andmemory is currently an openquestion. Recent experiments have uncovered anastrocyte-
mediated feedback loop in CA1 pyramidal neurons which is started by the release of
endocannabinoids by active neurons and closed by astrocytic regulation of the D-serine levels at the
dendrites. D-serine is a co-agonist for the NMDA receptor regulating the strength and direction of
synaptic plasticity. Activity-dependent D-serine release mediated by astrocytes is therefore a
candidate for mediating between long-term synaptic depression (LTD) and potentiation (LTP) during
learning. Here, we show that the mathematical description of this mechanism leads to a biophysical
model of synaptic plasticity consistent with the phenomenological model known as the BCM model.
The resulting mathematical framework can explain the learning deficit observed in mice upon
disruption of the D-serine regulatory mechanism. It shows that D-serine enhances plasticity during
reversal learning, ensuring fast responses to changes in the external environment. Themodel provides
new testable predictions about the learning process, driving our understanding of the functional role of
neuron-glia interaction in learning.

Synaptic plasticity, the modification of neuronal connections over time, is a
fundamental brain process underlying learning and memory. Since its
conceptualization, the study of synaptic plasticity has primarily focused on
neurons’ activity and interactions1. This neuron-centric view has been
instrumental in understanding the basic mechanisms underlying synaptic
changes.However, a growing body of experiments has started to unravel the
critical role of glial cells, particularly astrocytes, in learning2–4. Traditionally
viewed asmere support cells, astrocytes are now recognized as key players in
a variety of neuronal functions, including synaptic transmission, synaptic
plasticity, and memory formation5–10. See also the recent review by Linne11.
Despite this emerging importance, a significant gap persists in our under-
standing of the precise mechanisms through which astrocyte-neuron
interactions influence synaptic plasticity. This gap represents a critical area
for exploration, as bridging it could significantly enhanceourunderstanding
of the cellular and molecular underpinnings of learning processes.

The field of synaptic plasticity has greatly benefited from the develop-
ment of theoretical models. These models serve as essential tools for syn-
thesizing experimental data, generating hypotheses, and guiding research.

Among them,phenomenologicalmodels like theBCM(Bienenstock,Cooper,
and Munro) theory stand out12,13. Built on a concise set of assumptions, this
theory accurately describes the development of pattern selectivity in cortical
neurons14,15 and predicted phenomena that were yet to be observed16–18.
However, while phenomenological models are of great use in studying the
brain’s functions, they provide a limited understanding of the underlying
biological mechanisms19,20. To fill this gap, it is necessary to develop detailed
biophysical models capable of explaining the phenomenology.

The core postulate of the BCM theory is the existence of a threshold for
long-term potentiation (LTP) which is dynamically regulated by the history
of post-synaptic activity. Several hypotheses were proposed in the last
decades to give a physiological justification for this postulate18,21–24. Many of
them involve intracellular calcium dynamics in the post-synaptic neuron.
However, none of the hypotheses have found a clear experimental con-
firmation yet, and theunderlyingmechanismremains amatter ofdebate13,25.
At the same time, recent experiments point at the extracellular regulation of
D-serine, mediated by astrocytes, as a previously overlooked candidate for
connecting BCM theory with the intricate biology of the brain.
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D-serine is a co-agonist for the N-methyl-D-aspartate receptor
(NMDAR)26,27, and its synaptic levels determine NMDAR tone and
NMDA-dependent plasticity6,28–30. D-serinewas shown to affect the activity-
dependence of long-term synaptic changes, in a manner similar to the
shifting of a potentiation threshold, resembling that of the BCM theory31.
More recently32, described a newmechanism for the astrocytic regulation of
synaptic available D-serine, characterized by a bell-shaped dependence on
the frequency of the post-synaptic activity. The mechanism exhibits
remarkable similarities to the core postulates of BCMtheory and is shown to
impact behavioral choices in mice when it is disrupted.

In this work, we tackle the following research questions: (1) what is the
functional role of astrocyte-mediated regulation of D-serine gliotransmitter
in learning? (2) What are the biophysical mechanisms underlying BCM
plasticity and its phenomenology? In particular, we explore the hypothesis
that the astrocytic regulation of D-serine represents the physiological
implementation of the BCM dynamic threshold; we refer to this as the “D-
serine hypothesis”. To support it, we present a formal derivation of theBCM
rule, starting from the mathematical description of the astrocytic mechan-
ism observed in ref. 32. Building upon the hypothesis, we develop a
mathematical model capable of explaining precise behavioral effects
resulting from astrocytic manipulation, as observed in experiments, and
produce new testable predictions on the learning process and the functional
role of D-serine in the brain. Overall, our results contribute to reducing the
gap between our theoretical understanding of plasticity and the experi-
mental knowledge of neuron-glia interactions in learning.

Results
The D-serine hypothesis: astrocytes orchestrate BCM plasticity
Recent experiments onmiceCA1hippocampalneuronshave shed light ona
novel molecular mechanism, forming a feedback loop through which the
activity of pyramidal neurons influences their future dynamics and
plasticity32. The feedback loop is mediated by astrocytes and is enacted by
two main molecules: endocannabinoids released by neurons upon activa-
tion, which bind to the cannabinoid receptors (CBRs) of astrocytes33,34, and
D-serine, released into the extracellular environment in response to astro-
cytic calcium signaling triggered by CBRs activation6,28,35,36 (Fig. 1a).

Let ν represent the average firing rate of a neuron population, and d
denote the concentration of D-serine in the extracellular environment.
Based on previous observations, we describe the dynamics of d so that it
follows a given function of the post-synaptic activity, denoted asD(ν), with a
time constant τd:

_d ¼ � 1
τd

d � DðνÞð Þ ð1Þ

The right-hand side of Eq. (1) can be interpreted as the sum of a
D-serine degradation/uptake term and a term that describes activity-
dependent D-serine supply. The functionD(ν) describes how post-synaptic
activity influences D-serine concentration levels. The dependence of the
D-serine release on the post-synaptic activity has been studied by mon-
itoring D-serine-dependent dendritic integration during the axonal

Fig. 1 | The D-serine hypothesis. a, b The astrocytes-mediated feedback loop
observed in ref. 32 shows remarkable similarities with the BCM postulate of a
synapticmodification threshold θ sliding as a function of the post-synaptic activity y.
The feedback loop is described in three steps: (1) endocannabinoids are released by
the post-synaptic neuron upon activation, (2) they bind with astrocytic cannabinoid
receptors and trigger an intracellular calcium signaling, which results in (3) the
release of D-serine at the neuron dendrites. c The increase (decrease) of D-serine

concentration at the synapse promotes LTP (LTD), which can be interpreted as the
shifting of a threshold for LTP, like the BCMone (figure adapted from ref. 31). dThe
astrocytic regulation of D-serine presents a peculiar bell-shaped dependence on the
frequency of post-synaptic stimulation, analogous to the super-linear dependence of
the BCM's threshold on the post-synaptic activity. Changes in the D-serine level are
indirectly measured through changes in the amplitude of dendritic spikes' slow
component (figure adapted from ref. 32).
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stimulation of CA1 pyramidal neurons at different frequencies32. Notably,
the D-serine concentration level exhibits a bell-shaped dependence on the
frequency of stimulation, with a peak at 10Hz (Fig. 1d). Based on this, we
choose the simple mathematical form:

DðνÞ ¼ D0 � aðν � ν0Þ2 ð2Þ

whereD0 is the maximum level of D-serine concentration, occurring when
ν = ν0, and a is a constant with the appropriate dimensions
([a] = [D] ⋅ [ν]−2 = [N] ⋅ [L]−3 ⋅ [T]2, where N, L and T are the amount of
substance, length, and time dimensions respectively).

The importance of D-serine stems from its interaction with synaptic
NMDARs, which play a key role in the induction of synaptic plasticity37.
D-serine is an essential endogenous ligand for the co-agonist site of synaptic
NMDARs in the brain26,27,31. Consequently, its presence is required for the
activation of NMDARs. Consistent with these findings, alterations in
D-serine levels have been unequivocally associated with changes in the
properties of activity-dependent long-term plasticity31. In particular, the
same stimulation protocol induced LTP or longterm depression (LTD)
dependingon the level ofD-serine. In the presence of a high (low) level ofD-
serine, LTP (LTD) is facilitated, and the same effect is equally seenwith three
different stimulation protocols. Such observation suggests that the effect of
D-serine alterations can be interpreted as a shifting of a threshold for LTP
induction (Fig. 1c).Wedenotewithw a vectorof synaptic strengths andwith
x a vector of pre-synaptic activities. We define the integration of the input
vector with the synaptic strengths to track the neural activity with respect to
the reference value ν0, thus y = ν− ν0 =w ⋅ x. The operating regime of our
model will be above ν0, y > 0 because this is best supported by the available
experimental data. Let us mention that firing rates below this regime could
be described by other plasticity mechanisms that are outside of our model
framework. Finally, we define an update rule for the synaptic strengths in
such a way that the direction of plasticity depends on the level of D-serine
through a function θ(d):

τw _w ¼ xyðy � θðdÞÞ ð3Þ

where τw is a time constant. The proportionality of the update to the pre-and
post-synaptic firing realizes the Hebbian principle, while the quadratic
dependence on the post-synaptic rate has been suggested by experimental
measurements (Ref. 16,31) andhas beenderived from spikes-based learning
rules (STDP38,39, calcium-based plasticity40). The equation is formally
equivalent to the BCMupdate rule12, with the important difference that here
the threshold is no more a postulated dynamical variable but a function of
the D-serine concentration. We show now that, choosing the function θ(d)
according to experimental observations and considering the dynamics of
D-serine described by Eq.s (1) and (2), we obtain a dynamical system
equivalent to BCM.

According to the fact that a higher level of D-serine facilitates LTP, we
choose the threshold function to be linearly decreasing with respect to the
D-serine concentration:

θðdÞ ¼ bðD0 � dÞ ð4Þ

where b is a constant with the appropriate dimensions
([b] = [y] ⋅ [d]−1 = [T]−1 ⋅ [N]−1 ⋅ [L]3). The threshold is 0 when d is at its
maximum value D0, and it increases as d decreases. We define the new
variable θ = b(D0− d), and substitute it in Eq.s (1) and (3), obtaining:

τw _w ¼ xyðy � θÞ
τd

_θ ¼ �θ þ ab � y2
y ¼ w � x

ð5Þ

which is equivalent to the BCM plasticity rule12. To minimize the
number of free parameters and be as consistent as possible with respect to

previous parameter settings in the BCM model we set ab = 1 for all our
subsequent model simulations. However, during the model formulation
stage, we thought it could be helpful to think of a as a proportionality factor
between firing rate andD-serine amount and of b as a proportionality factor
mediating the transformation between threshold and D-serine, since both
could be altered individually in future studies or modified experimentally.

Testing the D-serine hypothesis within a behavioral context
The biological interpretation of BCM proposed above allows us to explore
how the disruption of the D-serine feedback loop changes learning per-
formance. In mice, this intervention has been shown to affect learning
performance during a place avoidance task32. The original experiment
(Fig. 2) consisted of a mouse freely exploring an O-shapedmaze, triggering
an air puff each time it passed through a fixed position; after the mouse
learned to avoid that position, the puff was moved to the opposite side.
Learning was assessed by measuring the number of visits to each position.
The disruption of the D-serine feedback loop corresponded to a deletion of
astrocytic type 1CBRs in a group ofmice (mutantmice). In the initial phase
of the task, mutant mice learned to avoid the air puff correctly, en par with
the control mice (Fig. 2b). However, when the puff position was switched,
the mutant showed slower learning with respect to control mice. The
mutation thus has a significant and specific impact on behavior, which
cannot be described as a generic learning impairment, offering an ideal test
bench for our hypothesis.

To approach this problem within the theoretical learning framework
described in section, we model a simplified version of the task with a two-
state environment, S1 and S2 (Fig. 3). Such a description is suitable because
the only relevantmeasurements in the original experimentwere the number
of visits to the puff position. The decision process of the mouse is described
by a single action unit (Fig. 3, bottom). Each state Si is associated with a one-
hot encoding vector xi serving as input for the action unit. The agent-mouse
decides to switch state with a probability directly proportional to the acti-
vation y(xi) of the action unit. For a detailed description of how the agent
moves between the states refer to the section Methods. The simulation is
divided into two phases. At the beginning, a punishing signal is associated
with S2 (Phase 1); the agent has to learn to avoid the punishing state. After a
given amount of timehas elapsed, thepunishing signal ismoved toS1 (Phase
2), so that the agent needs to learn the new configuration, reverting the
previously learned behavior. Learning emerges from the adaptation of the
synaptic weights of the action unit, which is implemented with the BCM
plasticity model, andmodified in order to account for the punishing signal.

Extending BCM to solve a reinforcement-driven task
The original BCM model, as presented by Bienenstock, Cooper, and
Munro12, is a purely unsupervised learning rule. Consequently, it is insuf-
ficient for behavioral learning tasks that require distinguishing between
neural activities associated with positive or negative outcomes. It is widely
acknowledged that such distinction is mediated in the brain through the
actions of neuromodulators, such as dopamine41,42. In the realm of theore-
tical modeling, neuromodulation has been described by extending two-
factor learning rules (where the factors are pre- and post-synaptic activities)
to three-factor learning rules, with the third factor being a reinforcement-
signaling variable43. While this problem has been addressed for general
Hebbian learning and Spike Timing Dependent Plasticity44–47, it has not
been explored for BCM. Here, we propose a tractable mathematical model
that allows for studying the punishment-driven place avoidance task
described in the previous section.

To this aim, we first rewrite the system (5) for discrete time steps, in
consistency with the literature on reinforcement learning20; for each tran-
sition fromstate St to state St+1, the unitwith an activity ytdetermined by the
weights wt and the input xt = x(St), the BCM update rule reads:

Δwt ¼
1
τw

xtytðyt � θtÞ ð6aÞ
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Δθt ¼ � 1
τθ

θt � y2t
� �

: ð6bÞ

Following the ideas discussed above, we introduce a third, reinforcement
factor in Eq. (6a):

Δwt ¼ �RðStþ1Þxtytðyt � θtÞ: ð7Þ

Note that the value of the reinforcement factor− R(St+1) depends on the
destination state, providing information about the outcome of the action
which was taken at time t43,45.

We refer to the resulting plasticity rule as ‘Reinforcement-BCM’ (R-
BCM). From a functional perspective, BCMplasticity allows the action unit

to develop selectivity with respect to the incoming stimuli, thus making the
agent select one of the two states. The extension to the R-BCM allows the
agent to select one specific state according to the values of the reinforcement
factor, and to change selection when the values are switched. Thus, the new
rule can solve the behavioral task described in the previous section. Further
details and the analysis of stability are provided inMethods.

Simulations reproduce learning deficit in mutant mice
The learning deficit observed in ref. 32 following the disturbance of neuron-
astrocyte communication exhibits distinct characteristics, which present
challenges in directlymapping it to astrocytic and neuronal activity. Naively
incorporating the effect of the disruption of D-serine regulation as a generic
learning impairment (for example by linking it to a larger time scale of the
weight dynamics)wouldnot alignwith the experimentalfindings, asmutant

State 1
(1, 0)

State 2
(0, 1)

Phase 2Phase 1

Time Step

I will switch with 
probability

Fig. 3 | Simulation of the passive place-avoidance task. In our simulation of the
experiment, we simplify the movement of the mouse as a transition between two
locations (State 1 and State 2 in the figure), one of which is associated with a
punishment (red background). The simulation is divided into two phases. During
the first phase, State 2 is punishing, while in the second phase, the punishment is
moved to State 1. At each time step, the agent mouse decides whether to stay in the

current state or to switch. The decision is based on the current state, represented by a
one-hot encoding state vector, and on the information the agent-mouse has about
the states, encoded in theweightsw1 andw2 of a single action unit. The integration of
the state vector with the synaptic weights determines the activity y of the unit, which
in turn determines the probability p of switching state.

Fig. 2 | Learning impairment of mutant mice during a place-avoidance. a The
learning ability of the mouse was experimentally tested with a place-avoidance task
driven by an aversive stimulus. The mouse was free to explore an O-shaped maze,
triggering an air puff each time it passed through a fixed location; after the mouse
learned to avoid that position, the puff was moved to another location. The test is
repeated with two groups of mice: a control group, and a group in which the
astrocytic type 1 cannabinoid receptors had been knocked out (mutant). bMutant
mice showed slower learning with respect to control mice, only during reverse
learning (Day 4). On each day, the mouse is free to explore the maze for a single
session of 10 minutes, and the number of visits to the puff position is recorded. The

box plots represent the statistics from 15 (control) and 17 (mutant) animals. There is
no significant difference between the groups onDay 1, 2, and 3 (Day 1: 6.59 ± 0.73 vs.
6.13 ± 0.62, p = 0.62; Day 2: 1.41 ± 0.21 vs. 1.40 ± 0.34, p = 0.73; Day 3: 6.00 ± 1.50 vs.
7.27 ± 1.45, p = 0.45; two-sided Mann-Whitney U-test), while there is a very sig-
nificant difference onDay 4 (Day 4: 3.65 ± 0.50 vs. 5.93 ± 0.61, p = 0.0066, two-sided
Student’s t-test). The inset axis shows the same data for Day 4, binned into two
5-minute intervals. Each point is computed as the average over all the animals, and
the error bar is the standard error. In the first 5 minutes, the mutant mice visited the
puff position significantly more than the control mice, showing a learning deficit. In
the lastfiveminutes, the difference is nomore observed. Figures adapted from ref. 32.
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mice exhibited a deficit only in the second phase of learning, when the puff
position is switched. Importantly, our biological interpretation of BCM
allows us to give amore precise description of the disruption of theD-serine
feedback loop, by modifying the dynamics of D-serine. Experiments show
that, after the deletion of astrocytic type 1 CBRs, the D-serine levels are not
affected anymore by neuronal stimulation. The concentration ofD-serine is
thus constant (non-zero because this would completely prevent NMDA-
dependent plasticity). This aspect is described by Eq.(2) by setting a zero
value of the activity Dð0Þ ¼ D0 � aν20. In practice, this corresponds to a
constant value for the LTP threshold θ = θ0.

The mice moving in the two-state environment and utilizing R-BCM
for synaptic weight updates learn to avoid the state associated with the
negative reinforcement (Fig. 4, top). In the initial phase of the simulation,
states S1 and S2 are linked to positive and negative reinforcement signals,
respectively. Consequently, the frequency of state visits S1 increases,
occurring approximately 9 out of 10 times. The same behavioral pattern
occurs when the LTP threshold is fixed, simulating the disruption of the
D-serine feedback loop in mutant mice. This behavior aligns with the
experimental findings in ref. 32 since both control and mutant mice
developed place-avoidance behavior.

The frequency at which each state is visited is determined by the
synaptic weights of the action unit, as described in theMethods section.We
plot the weights’ evolution throughout learning in Fig. 4, bottom graph.
DuringPhase 1, theweightw1, which represents the probability of switching
state from S1 to S2 (the punishing state), correctly converges to a value close
to zero. The weight w2, which represents the probability of switching state
fromS2 to S1, converges to ahigher value, but lower than0.5.Thismeans that
the probability of leaving the punishing state is not close to 1, as might be
intuitively expected from a probabilistic agent who learned to avoid this
situation.However, this property can be justified and interpreted as proof of
the coherence of the model. The avoidance behavior can be conceptually
divided into two sub-behaviors: going away from the aversive situation and
not going back to it. Such a distinction is important because the two beha-
viors are unlikely to arise from the same neurobiological processes. For

instance, the not going back to behavior requires memory of past experi-
ences, while the going away from does not since the aversive stimulus is
present and can drive the behavior directly. Coherently, because we are only
modeling one mechanism (synaptic plasticity), the model captures the not
going back to behavior (P(stay∣no punishment) ≈ 1) but not the going away
from (P(change∣punishment) ≈ 0.5).

After switching the reinforcement signals associated with the states
(second phase of the simulation), the control mice quickly adapt their
behavior to avoid the other state. In contrast, the mutant mice learn sig-
nificantly slower (Fig. 4, top). Strikingly, such difference in the two phases of
learning is again in agreementwithwhathas beenobserved in ref. 32 (Fig. 2).

An inspection of the evolution of the weights reveals interesting
insights into the deficit (Fig. 4, bottom). The weight associated with the
previously punishing state drops down without significant difference in
both classes of mice. However, the weight associated with the newly pun-
ishing state risesmuch slower in themutantmice. The reason for that lies in
the blockade of the D-serine regular dynamics, as seen by looking at the
D-serine levels during reverse learning (Fig. 5, left). In control mice, reverse
learning is accelerated by a temporary increase in the D-serine levels, which
results in a lower LTP threshold.

Next, we testedwhether increasing the intensity of the punishing signal
(by modulating the values Ri, see the sectionMethods) for the mutant mice
could restore the learning speed. In Fig. 5, right side, we plot the rate of the
visit to state S1 during the second phase of learning for control mice with
R1 =− 1, and formutantmicewithR1 =− 1,− 1.2,− 1.5. Themutantmice
learn faster as the magnitude of the R1 increases, and it reaches the speed of
the healthy mice for R1 =− 1.5.

Discussion
We presented a mathematical model of synaptic plasticity incorporating a
molecular interaction mechanism between astrocytes and CA1 pyramidal
neurons.Themechanism, recently described in ref. 32, consists of a feedback
loop that is initiated by the release of endocannabinoids by post-synaptic
neurons and terminating with astrocytic regulation of synaptic D-serine

Fig. 4 | The model reproduces learning deficit in
mutant mice. The figure shows the results of the
simulated place-avoidance experiment (described in
Fig. 3) for control mice and mutant mice. The top
graph shows the rate of visit to the state S1, computed
as the relative number of visits to state S1 in the last
1000 time steps. The bottom graph shows the evo-
lution of the synaptic weights. All the curves are
averages over 50 simulated mice. During the first
phase of the simulation (left of the black line) the
states S1 and S2 are associated with a positive and
negative reinforcement signal, respectively. Coher-
ently, the frequency of visits of the agent-mouse to
state S1 increases to about 9 times out of 10. Both
weights converge to a finite value, one of them close
to zero, the other close to 0.4. There is no difference
in learning between control mice and mutant mice.
During the second phase (right of the black line), the
reinforcement signals are switched. Both groups of
mice learn to avoid the state S1, with a visit frequency
of about 1 time out of 10. However, mutant mice
show a significant delay during this phase of reverse
learning. During this phase, the weights switch their
values. The switching is faster in control mice (top)
than in mutant mice (bottom). More precisely, the
higher weight decays with the same speed in both
groups, reflecting the initial drop in the visiting
frequency (top figure, second phase). However, the
low weight increases earlier and faster in control
mice than in mutant mice.
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levels. We showed that the firing rate-dependence of the feedback loop
(Fig.1c, d), can be translated into a plasticity rule equivalent to the well-
known Bienstock-Cooper-Munro learning rule. Bohmbach et al.32 investi-
gated the functional role of the feedback loop by testing how amouse learns
to avoid an aversive stimulus and then changing the position of the stimulus
and observing the re-learning dynamics. The experiment showed that mice
in which the astrocyte-neuron interaction is genetically disrupted present a
specific learning deficit: they learn to avoid the aversive stimulus just like
control mice, but they are significantly slower to reverse learning and learn
anew after the position of the stimulus is changed. To test the ability of our
model to capture the experimentally reported learning curves, we simulated
an analogous place-avoidance task with a learning phase and a relearning
phase. Our biophysical form of BCM allowed us to quantify the disruption
of the astrocytic feedback loop. We found that our model simulations
correctly reproduced the specific learning deficit observed in the experi-
ments with the mutant mice showing a slow-down only during the reverse
phase of learning Fig. 4.

The most important contributions of this work can be summarized in
three points. First, we proposed a novel hypothesis for the molecular
mechanisms underlying BCM-like plasticity in the brain. The BCM theory
received multiple experimental confirmations and predicted phenomena
thatwere yet to beobserved13.However, being aphenomenological theory, it
provides a limited understanding of the biological mechanisms underlying
learning. Ourwork contributes to the development of a detailed biophysical
model explaining BCM’s phenomenology in CA1. Second, our model
proposes a theoretical description of the astrocyte-neuron interactions to
synaptic plasticity. Specifically, it points to a specific functional role for the
astrocytic regulation of synaptic D-serine levels, i.e. ensuring a fast plasticity
response to changes in the external environment (Fig. 5, left). The invol-
vementofD-serine in synaptic plasticity and itspossible relation to theBCM
rule was already suggested in experimental literature31,48, but it has been
previously considered in theoretical frameworks. Finally, our model gen-
erated a number of testable predictionswhich can guide future experiments.
For example, the learning curves depicted in Fig. 5 predict that an increase in

the extracellular D-serine level should be observed during the reverse
learning phase. If confirmed by future experiments, this result points to an
interesting functional role for theD-serine regulatory system, i.e. ensuring a
fast plasticity response to changes in the external environment. Also the
evolution of the synaptic weights during reversal learning in the mutant
mice (Fig. 4, bottom) suggests that the learning impairment is due to the
inhibition of LTP caused by astrocytic CBR knockout. The inhibition is not
homogeneous across the range of synaptic strength however: in the first
phase of learning, when the synaptic strength starts from an intermediate
value, controlmice andmutantmice do not show any difference in the LTP;
in the second phase, when synaptic strength starts from a highly depressed
value, LTP is slower in mutant mice compared with control mice.

Historically, the BCMmodel was designed to explain the development
of orientation selectivity in cortical pyramidal neurons. Our derivation of
the BCMrule, on the other hand, is based on experimentalmanipulations of
astrocytes and D-serine dynamics in the CA1 region of the hippocampus,
indicating that the establishment andperturbations of orientation selectivity
and learning and re-relearning of aversive cues could share mechanistic
similarities.

Integrating diverse plasticity models: exploring extracellular and
intracellular dynamics
The D-serine hypothesis for the adaption of the BCM threshold considers
the extracellular dynamics at the synapse, while the previously studiedBCM
mechanisms were built on the intracellular dynamics, usually of calcium22,
but also of other molecules like the kinase CamKII24,49. For this reason, our
hypothesis does not directly contradict the previous mechanisms but
illustrates that similar net effects can arise on extra and intracellular scales.
The interaction between the extracellular synaptic dynamics and the
intracellular dynamics which ismediated by theNMDARs dynamics, could
be considered in future studies andprovide amoregeneralmodel of synaptic
plasticity and extending the mathematical framework proposed in ref. 22.

From the computational point of view, the BCM theory has been
related to Spike-TimingDependentPlasticity (STDP) and it has been shown

Fig. 5 | (left) Increased D-serine levels during reverse learning. The blue lines are
the evolution of the two synaptic weights during reverse learning of normal
mice (same lines of Fig. 4, bottom graph, second phase). The D-serine con-
centration relative to its maximum value D0 is superposed (green line). The
scale for d−D0 is of course different from that of the synaptic weights, and it is
drawn on the right axis. The D-serine levels increase during reverse learning
and they return to the basal value when the switching is completed. This
prediction suggests that the astrocytic regulation of D-serine has the specific
function of enhancing plasticity response to changes in the external

environment (possibly via increasing the opening probability of NMDAR
channels). (right) Increasing the aversiveness of the stimulus recovers learning
speed for mutant mice. The rate of visit to state S1 during the second phase of
learning is plotted, for control mice with R1 =−1, and for mutant mice with
R1 =−1,−1.2,−1.5. The mutant mice show a significant delay with respect to
control, for the same values of the reinforcement variable (already discussed in
Fig. 4). However, the mutant mice learn faster as the magnitude of R1 increases,
and it reaches the speed of the control mice for R1 =−1.5.
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that a BCM-like rate-based plasticity can arise from STDP through an
averaging operation38. In this context, the threshold for synaptic potentia-
tion depends on the shape of the STDPwindow. According to the D-serine
hypothesis, the threshold is a function of the synaptic D-serine concentra-
tion. Tounderstand the relation and the compatibility of the twomodels it is
thus crucial to understand how different D-serine levels affect the STDP
window.This question couldbe tackled computationally in future studies by
modeling how NMDARs shape the STDP window. Interestingly, the
authors in ref. 50 have shown that an STDP model in which the synaptic
change window depends on the time of the last post-synaptic spike pre-
ceding the plasticity-inducing spikes pair (triplet STDP) can be linked to the
BCMrule. This suggests thatD-serine could be affecting the STDPwindows
and STDP learning rules involving multiple pre- and post-synaptic
spike times.

Exploring stability mechanisms in synaptic plasticity
The standardHebbian learning rule is known to generatemaximally strong
synaptic weights and lead to network instability51. High neural activity leads
to synaptic potentiation,which in turn amplifies future activity. This process
is sometimes referred to as the Hebbian positive feedback mechanism. The
BCM theory addresses the problem by introducing the sliding threshold
mechanism17,23, which can be implemented in the brain through the
D-serine feedback loop.However, it has beenobserved that learning can still
occur even when the D-serine feedback loop is disrupted, suggesting the
existence of alternative forms of stabilization. The reinforcement-BCM
model proposed in this work successfully reproduces the effects of D-serine
manipulation on learning and offers an alternative source of stability
through the zero-averaging of positive and negative reinforcement signals.
However, this solution has some inherent limitations. It is not easily
applicable in the absence of reinforcement orwhen only positive or negative
reinforcement is present. Additionally, it provides stability on average,
which restricts the learning speed as excessively rapid weight updates could
compromise the system’s averaging operation and lead to instability.

When the BCM mechanism of stabilization based on a sliding
potentiation threshold was initially proposed, experimental research was
conducted to investigate its biological plausibility17,52. The studies aimed to
determinewhether the recent history of synaptic activity could influence the
induction of LTP. It was observed that the induction of LTPunder a specific
stimulation protocol was not fixed but could indeed be strongly influenced
by the prior synaptic activity. However, the influence on LTP inductionwas
found to be specific to the stimulated synapses rather than generalized to all
inputs onto the postsynaptic neuron, as postulated by the BCM theory. A
similar contradiction arises from our reformulation of the BCMmodel.We
assumed that the D-serine level, represented by the variable d in Eq. (1), is
the same at all synapses, which led to a neuron-wide potentiation threshold
identical to BCM.However, considering the close proximity of astrocytes to
dendrites, it is possible that their regulatory action on D-serine can target

individual or specific groups of synapses, posing a contradiction to the
neuron-wide potentiation threshold assumption in the BCM model. This
possibility will be further explored when extending the D-serine hypothesis
to a network of neurons, possibly providing new insights into the intricate
interactions between neurons and glial cells.

Methods
Model of the place-avoidance task
We simulate a mouse performing a place avoidance test with an aversive
stimulus. The spatial environment is modeled as a discrete two-state space
S1, S2. At each time step, the agent chooses between two actions: staying in
the current state or moving to the other one. The states are represented by
one-hot encoding vectors x1 = (1, 0) and x2 = (0, 1). The vectors are used as
synaptic inputs for a single actionunit, describing the decisionprocess of the
agent-mouse. If at time step t the agent-mouse occupies the state St with
associated input vector xt, the activation of the action unit is given by the
scalar product of the input vector with its synaptic weights:

yt ¼ wt � xt ð8Þ

The initial values of the weights are (w1,w2) = (0.2, 0.2) and the agent starts
from a random state. The agent-mouse switches state at the next time step
with a probability pchange directly proportional to the firing rate of the action
unit, with a minimum value of 0.05:

pchange ¼ maxð0:05; ytÞ: ð9Þ

The lower bound of pchangewas introduced tomaintain a minimum level of
exploration. After each transition, the synaptic weights and the synaptic
threshold (i.e. the D-serine level) are updated:

wtþ1 ¼ wt þ Δwt

θtþ1 ¼ θt þ Δθt

The learning rule consists of the BCM plasticity rule modified in order to
account for the negative reinforcement (see section and the rest of the
Methods).

Learning rule
On each transition from state St to state St+1, the unit having an activity yt
determined by the weights wt and the input xt = x(St), the weights are
updated according to the following learning rule:

τwΔwt ¼ �RðStþ1Þxtytðyt � θtÞ
τθΔθt ¼ �θt þ y2t :

ð10Þ

This is the BCM learning rule with the addition of a multiplicative factor
depending on the final state. The equation for theweight change is dissected
into four possible cases (the four possible transitions) in Table 1.We refer to
the rule as “R-BCM”.

We compute the stationary points of R-BCMwith the same procedure
used for obtaining the stationary points of the original BCM25,53, i.e. repla-
cing the stochastic differential equation (7)with the same equation averaged
over the input environment:

E½Δw� ¼ �p1x1ðp11R1 þ p21R2Þy1ðy1 � θÞ
�p2x2ðp11R1 þ p21R2Þy1ðy1 � θÞ ð11Þ

where y1 =w ⋅ x1, y2 =w ⋅ x2, pi is the probability of being in state i, and pij is
the probability of the transition from state j to state i. The dynamics of the
agent canbe describedas aMarkov chainover the two-state space so that the
probabilities p = (p1, p2) obey p(t+ 1) =Πp(t), where Π is the transition
matrix.We recall that the probability of switching state is related to thefiring
rate of the action unit through Eq. (9). Thus, for a fixed weight vector, the

Table 1 | R-BCM dynamics

Transition Reinforcement Unit
activation

Δw

S1 ⟶S1 R1 w ⋅ x1 =w1 Δw1 =−R1w1(w1− θ)
Δw2 = 0

S1 ⟶S2 R2 w ⋅ x1 =w1 Δw1 =−R2w1(w1− θ)
Δw2 = 0

S2 ⟶S1 R1 w ⋅ x2 =w2 Δw1 = 0
Δw2 =−R1w2(w2− θ)

S2 ⟶S2 R2 w ⋅ x2 =w2 Δw1 = 0
Δw2 =−R2w2(w2− θ)

At each step, the agent performs one of the state transitions in the first column of the table. The
reinforcement signal is determined by the final state. The action unit activity is determined by the
initial state. The synaptic weights are updated according to Eq. (7). We note that since Δw is
proportional to the one-hot input vectors, only one of the weights changes at each transition.
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transition matrix reads:

Π ¼ p11 p12
p21 p22

� �
¼ 1�maxð0:05; y1Þ maxð0:05; y2Þ

maxð0:05; y1Þ 1�maxð0:05; y2Þ

� �
ð12Þ

The transition matrix is thus a function of the weight vector w (through
yi =w ⋅ xi). However, since we are looking for the stationary weight vec-
tors, we assume the transition matrix to be constant. In this case, the
probability vector p will converge to the eigenvector ofΠ with eigenvalue
1, which is:

ðp1; p2Þ ¼
p12

p12 þ p21
;

p21
p12 þ p21

� �
ð13Þ

The stationary points are computed by solving the equationE[Δw] = 0.
Assuming that the input vectors x1 and x2 are linearly independent (as itwas
in our simulations), this leads back to solving two equations independently:

ðp11R1 þ p21R2Þy1ðy1 � θÞ ¼ 0

ðp22R2 þ p12R1Þy2ðy2 � θÞ ¼ 0
ð14Þ

We obtain 7 distinct stationary points:

ð0; 0Þ; ð1; 1Þ; R1

R1 � R2
;

R2

R2 � R1

� �
0;

R2

R2 � R1

� �
;

R1

R1 � R2
; 0

� �
;

�

θ;
R2

R2 � R1

� �
;

R1

R1 � R2
; θ

� ��

ð15Þ

where the value of θ is the determined by the equation (valid in the “slow-
learning” approximation53, i.e. τw≫ τθ):

θ ¼ E½y2� ¼ p1y
2
1 þ p2y

2
2 ð16Þ

where p1 and p2 are given by Eq. (13). We note that the coincidence of the
stationary points of the deterministic equation (11) with the stationary
points of the stochastic equation (6a) has to be proven, by showing that the
solutions converge. This was done analytically for the BCM equation54, but
doing the same for the R-BCM is non-trivial. Instead, we check the
coincidence of the stationary points through numerical simulations.We use
numerical simulations also to check the stability properties of the points and
find that only one is stable, according to what we expected by looking at the
average vector field (Fig. 6). The stable point is:

ðw1;w2Þ ¼
R1

R1�R2
; θ

� 	
; if R1 ¼ �1;R2 ¼ 1:5

θ; R2
R2�R1

� 	
; if R1 ¼ 1:5;R2 ¼ �1

8><
>: ð17Þ

Importantly, as in the original BCM, this is a selective point, meaning
that the activity yi =w ⋅ xi is high for one input and low for the other.

Parameters
For the time constants of the system (10), we set τw = 100 and τθ = 50, with
intrinsic time units. Numerical simulations show that it must be τw≫ 1 in
order for the stationary points of Eq. (17) to be stable. This is due to the fact
that the value of R in Eq. (10) changes at every time step Δt = 1, and the
stability of the system relies on an averaging operation over the R (see Eq.
(14)). Concerning τθ, the derivation of the stationary points in the previous
section is valid under the assumption τw≫ τθ so that Eq. (16) holds.
However numerical simulations show that a stable point exists also for
greater values of τθ. Indeed, a stable point exists also when τθ→+∞, which
corresponds to the case of themutantmice. In this case, however, the stable
point is not given anymorebyEq. (16).Numerical simulations show that the
point is very close to the original one.

The function R can assume only two values, R1 = R(S1) and R2 = R(S2).
During the first training phase, we set R1 = 1.5 and R2 =− 1; the values are

Fig. 6 | Stability of the R-BCM system. The stationary points (Eq.(15)) and the
average vector field (Eq.(11)) are plotted in the weight space, during the first
phase of learning (left, R1 =− 1 and R2 = 1.5) and during the second phase
(right, the values of Ri are switched). The blue dots denote unstable stationary
points, the red dots denote stable stationary points. The average vector field
E[Δw] reveals that there is only one stable point (insets). A saddle point is
present close to the stable node, delimiting its basin of attraction to non-
negative values. The green area denotes the basin of attraction of the stable
point. The stability properties are checked also through simulations with

multiple initial conditions. An example trajectory is plotted, showing that the
weights tend towards the stable point during phase 1, and then correctly tend
towards the new stable point after the switching. We note that the stationary
points and the average vector field of phase 1 (before switching) and phase 2
(after switching) are related by a reflection across the identity line. It is
important that the initial stable point falls inside the basin of attraction of the
new stable point after the reflection. This is ensured by the fact that the positive
Ri is greater in magnitude than the negative one, as can be seen by substituting
the values in Eq. (15).
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switched during the second phase. With these values, the stable steady state
is such that the agent choices tend to avoid the state Si with Ri =− 1. Let us
mention that the need for having a positive signal is due to the form of the
R-BCM equation (7): if the value ofR for the unpunished state is set to zero,
the corresponding weight will not be able to increase after the switch from
phase one to phase two. One might thus be tempted to interpret− 1 as a
negative reinforcement and 1.5 as a positive or neutral reinforcement.
However, it is important to be aware that such interpretation is arbitrary: the
avoidant behavior is determined by the combination of the two values. The
fact that the values are opposite in sign ensures that the stationary points in
(15) lay in the positive quadrant. The fact that the positive value is greater in
magnitude than the negative value, ensures that, immediately after the
switching, the system is in the basin of attraction of the new stable point
(see Fig. 6).

When simulating the disruption of the D-serine feedback loop in
mutantmice, the LTP threshold is fixed at θ0 = 0.02. This value corresponds
to the average stationary value of the threshold obtained with normal mice,
far away from the switching time.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
No new datasets were generated. Any experimental data shown was
replotted by the authors of this article using visual information contained in
figures from ref. 32 and ref. 31. The corresponding citations of data sources
are included as “Figures adapted from” in this article.

Code availability
All the code used to simulate the experiments is publicly available(at
githubhttps://github.com/CompNeuroTchuGroup/TheDserineHypothesis)
with https://doi.org/10.5281/zenodo.115658701. An implementation of the
model and visualization of the experimental outcomes in Netlogo55 can
be found at: https://verzep.github.io/R-BCM.html.
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