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Learning to express reward prediction
error-like dopaminergic activity requires
plastic representations of time

Ian Cone 1,2,3, Claudia Clopath1 & Harel Z. Shouval 2,4

The dominant theoretical framework to account for reinforcement learning in
the brain is temporal difference learning (TD) learning, whereby certain units
signal reward prediction errors (RPE). The TD algorithm has been traditionally
mapped onto the dopaminergic system, as firing properties of dopamine
neurons can resemble RPEs. However, certain predictions of TD learning are
inconsistent with experimental results, and previous implementations of the
algorithm have made unscalable assumptions regarding stimulus-specific
fixed temporal bases. We propose an alternate framework to describe dopa-
mine signaling in the brain, FLEX (Flexibly Learned Errors in Expected
Reward). In FLEX, dopamine release is similar, but not identical to RPE, leading
to predictions that contrast to those of TD. While FLEX itself is a general
theoretical framework, we describe a specific, biophysically plausible imple-
mentation, the results of which are consistent with a preponderance of both
existing and reanalyzed experimental data.

The term reinforcement learning (RL) is used in machine learning1,
behavioral science2, andneurobiology3, to denote learning on the basis
of rewards or punishment. RL is necessary for animals and humans to
learnhow to obtain rewards such as food and to avoiddangers, such as
predators2. It is also necessary in order to learn efficient spatial navi-
gation towards areaswhere there are rewards and away fromareas that
are dangerous4.

The positive and negative reinforcers are often delayed in time
with respect to the time when decisions are made. For example, one
might need to turn right on Main in order to get to a restaurant that is
on Broad Street, but only arrives at the restaurant after a few more
turns and a few more minutes. Still, it is necessary to associate the
future reward with the specific decision to turn right on Main Street.
Although experiments show that the brain is able to associate a cue or
action with a delayed reinforcement signal5,6, the identity of the bio-
logicalmechanism tracking these temporal delays remains unresolved.

One type of RL algorithm is temporal difference (TD) learning,
which was designed for machine learning purposes7,8. It has the nor-
mative goal of estimating future rewards when rewards can be delayed

in time with respect to the actions or cues that engendered these
rewards1.

One of the variables in TD algorithms is called reward prediction
error (RPE), which is the difference between the discounted predicted
reward at the current state and the discounted predicted reward plus
the actual reward at the next state. TD learning theory gained traction
in neuroscience once it was demonstrated that firing patterns of
dopaminergic neurons in the ventral tegmental area (VTA) during
reinforcement learning resemble RPE5,9,10.

Implementations of TD using computer algorithms are straight-
forward, but are more complex when they are mapped onto plausible
neural machinery11–13. Current implementations of neural TD assume a
set of temporal basis-functions13,14, which are activated by external
cues. For this assumption to hold, each possible external cue must
activate a separate set of basis-functions, and these basis-functions
must tile all possible learnable intervals between stimulus and reward.

In this paper, we argue that these assumptions are unscalable and
therefore implausible from a fundamental conceptual level, and
demonstrate that some predictions of such algorithms are
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inconsistent with various established experimental results. Instead, we
propose that temporal basis functions used by the brain are them-
selves learned. We call this theoretical framework: Flexibly Learned
Errors in Expected Reward, or FLEX for short. We also propose a bio-
physically plausible implementation of FLEX, as a proof-of-concept
model. We show that key predictions of thismodel are consistent with
actual experimental results but are inconsistent with some key pre-
dictions of the TD theory.

Results
TD learning with a fixed feature-specific temporal-basis
Theoriginal TD learning algorithms assumed that agents canbe in a set
of discrete labeled states (s) that are stored inmemory. The goal of TD
is to learn a value function such that each state becomes associated
with a unique value (V sð Þ) that estimates future discounted rewards.
Learning is driven by the difference between values at two subsequent
states, and hence such algorithms are called temporal difference
algorithms. Mathematically this is captured by the update algorithm:
V sð Þ  V sð Þ+α r s0ð Þ+ γV s0ð Þ � V sð Þð Þ, where s0 is the next state and r s0ð Þ
is the reward in the next state, γ is an optional discount factor and α is
the learning rate.

The term in the brackets in the right-hand side of the equation is
called the RPE. It represents the difference between the estimated
value at the current state and the estimated discounted value at the
next state in addition to the actual reward at the next state. If RPE is
zero for every state, the value function no longer changes, and learning
reaches a stable state. In experiments that linke RPE to the firing pat-
terns of dopaminergic neurons in VTA, a transient conditioned sti-
mulus (CS) is presented to a naïve animal followedby a delayed reward
(also called unconditioned stimulus or US, Fig. 1a). It was found that
VTA neurons initially respond at the time of reward, but once the
association between stimulus and reward is learned, dopaminergic
neurons stop firing at the timeof the reward and startfiring at the time
of the stimulus (Fig. 1b). This response pattern is what one would
expect from TD learning if VTA neurons represent RPE5.

Learning algorithms similar to TD have been very successful in
machine learning8,15. In such implementations, the state (s) could, for
example, represent the state of the chess board, or the coordinates in
space in anavigational task. Eachof these states couldbe associatedwith
a value. The state space in such examples might be very large, but the
values of all these different states could be feasibly stored in a compu-
ter’s memory. In some cases, a similar formulation seems feasible for a
biological system as well. For example, consider a 2-D navigation pro-
blem, where each state is a location in space. One could imagine that
each state would be represented by the set of hippocampal place cells
activated in this location16, and that another set of neurons would
encode the value function, while a third population of neurons (the
“RPE”) neurons would compare the value at the current and subsequent
state. On its face, this seems to be a reasonable assumption.

However, in contrast to cases where a discrete set of states might
have a straightforward biological implementation, there are many
cases in which this machine learning-inspired algorithm cannot be
implemented simply in biological machinery. For example, in experi-
ments where reward is delivered with a temporal delay with respect to
the stimulus offset (Fig. 1), an additional assumption of a preexisting
temporal basis is required12.

Is it plausible to assume a fixed temporal-basis in the brain for
every possible stimulus?
Consider the simple canonical example of Fig. 1. In the time interval
between the stimulus and the reward, the animal does not change its
location, nor does its sensory environment change in any predictable
manner. The only thing that changes consistently within this interval is
time itself. Hence, in order to mark the states between stimulus and
reward, the brain must have some internal representation of time, an

internal clock that tracks the time since the start of the stimulus. Note
however that before the conditioning starts, the animal has no way of
knowing that this specific sensory stimulus hasunique significance and
therefore each specific stimulus must a priori be assigned its own
specific temporal representation.

This is the main hurdle of implementing TD in a biophysically
realistic manner - figuring out how to represent the temporal basis
upon which the association between cue and reward occurs (Fig. 1a).
Previous attempts were based on the assumption that there is a fixed
cue-specific temporal basis, an assumption which has previously been
termed “a useful fiction”12. The specific implementations include the
commonly utilized tapped delay lines5,10,17 (or the so-called complete
serial compound), which are neurons triggered by the sensory cue, but
that are active only at a specific delay, or alternatively, a set of cue-
specific neuronal responses that are also delayed but have broader
temporal support which increases with an increasing delay (the so
called “microstimuli”)12,14 (Fig. 1c).

For this class of temporal representations, the delay time
between cue and reward is tiled by a chain of neurons, with each
neuron representing a cue-specific time (sometimes referred to as a
“microstate”) (Fig. 1c). In the simple case of the complete serial com-
pound, the temporal basis is simply a set of neurons that have non-
overlapping responses that start responding at the cue-relative
times: tcue, tcue +dt, tcue +2dt, …, treward . The learned value function
(and in turn the RPE) assigned to a given cue at time t is then given by a
learned weighted sum of the activations of these microstates at
time t (Fig. 1d).

We argue that the conception of a fixed cue-dependent tem-
poral basis makes assumptions that are difficult to reconcile with
biology. First, since one does not know a priori whether presentation
of a cue will be followed by a reward, thesemodels assume implicitly
that every single environmental cue (or combination of environ-
mental cues) must trigger its own sequence of neural microstates,
prior to potential cue-reward pairing (Fig. 1e). Further, since one
does not know a priori when presentation of a cuemay ormay not be
followed by a reward, these models also assume that microstate
sequences are arbitrarily long to account for all possible (or a range
of possible) cue-reward delays (Fig. 1f). Finally, thesemicrostates are
assumed to be reliably reactivated upon subsequent presentations
of the cue, e.g., a neuron that represents tcue + 3dt must always
represent tcue + 3dt - across trials, sessions, days, etc. However,
implementation of models that generate a chain-like structure of
activity can be fragile to biologically relevant factors such as noise,
neural dropout, and neural drift, all of which suggest that the
assumption of reliability is problematic as well (Fig. 1g). The totality
of these observations implies that on the basis of first principles, it is
hard to justify the idea of the fixed feature-specific temporal basis, a
mechanism which is required for current supposedly biophysical
implementations of TD learning.

Although a fixed set of basis functions for every possible stimulus
is problematic, one could assume that it is possible to replace this
assumption with a single set of fixed, universal basis-functions. An
example of a mechanism that can generate such general basis func-
tions is a fixed recurrent neural network (RNN). Instead of the firing of
an individual neuron representing a particular time, here the entire
network state can be thought of as a representation of a cue-specific
time. This setup is illustrated in Fig. 2a.

To understand the consequences of this setup, we assume a
simple environment in which one specific stimulus (denoted as sti-
mulus C) is always followed 1000ms later by a reward; this stimulus is
the CS. However, it is reasonable to assume for the natural world that
this stimulus exists among many other stimuli that do not predict a
reward. For simplicity we consider 3 stimuli, A, B, and C, which can
appear at any possible order, as shown in Fig. 2b, but in which stimulus
C always predicts a reward with a delay of 1000ms.
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We simulated the responses of such a fixed RNN to different sti-
mulus combinations (see Methods). The complex RNN activity can be
viewed as a projection to a subspace spanned by the first two principal
components of the data. In Fig. 2c, d we show a projection of the RNN
response for two different sequences, A-B-C and B-A-C respectively,
aligned to the time of reward. In Fig. 2e we show the two trajectories
side by side in the same subspace, starting with the presentation of
stimulus C.

Note, that in the RNN (Fig 2c–e), every time stimulus C appears, it
generates a different temporal response, depending on the preceding

stimuli. These temporal patterns can also be changed by a subsequent
stimulus that may appear between the CS and the US. These results
mean that such a fixed RNN cannot serve as a universal basis function
because its responses are not repeatable.

There are potential workarounds, such as forcing the network
states representing the time since stimulus C to be the same across
trials. This is equivalent to learning the weights of the network such
that all possible “distractor” cues pass through the network’s null
space. This means that the stimulus resets the network and erases its
memory, but that other stimuli have no effect on the network.
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Fig. 1 | Structure and assumptions of temporal bases for temporal difference
learning. a Diagram of a simple trace conditioning task. A conditioned stimulus
(CS) such as a visual grating is paired, after a delay ΔT, with an unconditioned
stimulus (US) such as a water reward. b According to the canonical view, dopami-
nergic (DA) neurons in the ventral tegmental area (VTA) respond only to the US
before training, and only to the CS after training. c In order to represent the delay
period, temporal difference (TD) models generally assume neural “microstates”
which span the time in between cue and reward. In the simplest case of the com-
plete serial compound (left) the microstimuli do not overlap, and each one
uniquely represents a different interval. In general, though (e.g.: microstimuli,
right), these microstates can overlap with each other and decay over time. d A

weighted sumof thesemicrostates determines the learned value function V(t). eAn
agent does not know a priori which cue will subsequently be paired with reward. In
turn, microstate TDmodels implicitly assume that all N unique cues or experiences
in an environment each have their own independent chain of microstates before
learning. f Rewards delivered after the end of a particular cue-specific chain cannot
be paired with the cue in question. The chosen length of the chain therefore
determines the temporal window of possible associations. gMicrostate chains are
assumed to be reliable and robust, but realistic levels of neural noise, drift, and
variability can interrupt their propagation, thereby disrupting their ability to
associate cue and reward.
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Generally, one would have to train the RNN to reproduce a given
dynamical pattern representing C->reward, while also being invariant
to noise or task-irrelevant dimensions, the latter of which can be
arbitrarily high and would have to be sampled over during training.

However, this approach requires a priori knowledge that C is the
conditioned stimuli (sinceC-> reward is the dynamical patternwewant
to preserve) and that the other stimuli are nuisance stimuli. This leaves
us with quite a conundrum. In the prospective view of temporal
associations assumed by TD, to learn that C is associated with reward,
we require a steady and repeatable labeled temporal basis (i.e., the
network tracks the time since stimulus C). However, to train an RNN to
robustly produce this basis, we need to have previously learned that C
is associated with reward and that the other stimuli are not. As such,
these modifications to the RNN, while mathematically convenient, are
based on unreasonable assumptions.

Since we are considering the biophysical plausibility of these
methods, we omit the consideration of highly connected recurrent
networks which use training algorithms such as back propagation
through time (BPTT)18 or FORCE19,20, which are biophysically implau-
sible as they use credit assignment based on gradients which do not
preserve locality/causality. It is indeed possible to learn complex tasks
with plastic RNN’s without assuming an a priori temporal basis and the
resulting neuronal dynamics might resemble cortical dynamics21. Such
approaches indeed overcome biophysically implausible assumptions
about the network structure (i.e., a priori cue-specific chains, Fig. 1e)
but do so by using biophysically implausible learning rules.

Models of TD learning with a fixed temporal-basis show incon-
sistencies with data
Apart from making problematic assumptions about a pre-existing
temporal basis,models of TD learning alsomake somepredictions that

are inconsistent with experimental data. In recent years, several
experiments presented evidence of neurons with temporal response
profiles that resemble temporal basis functions22–27, as depicted sche-
matically in Fig. 3a. While there is indeed evidence of sequential
activity in the brain spanning the delay between cues and rewards
(such as in the striatum and hippocampus), these sequences are gen-
erally observed after association learning between a stimulus and a
delayed reward22,25,26. Some of these experiments have further shown
that if the interval between stimulus and reward is extended, the
response profiles either remap25, or stretch to fill out the new extended
interval22, as depicted in Fig. 3a. The fact that these sequences are
observed after training and that the temporal response profiles are
modified when the interval is changed supports the notion of plastic
stimulus-specific basis functions, rather than of a fixed set of basis
function for each possible stimulus. Mechanistically, these results
suggest that the naïve network might generate a generic temporal
response profile to novel stimuli before learning, resulting from the
network’s initial connectivity.

In the canonical version of TD learning (TD(0)), RPE neurons
exhibit a bump of activity that moves back in time from the US to the
CS during the learning process (Fig. 3b-left). Subsequent versions of
TD learning, called TDðλÞ, which speed up learning by the use of a
memory trace, have a much smaller, or no noticeable moving bump
(Fig. 3b, center and right), depending on the length of the memory
trace, denoted by λ:Most published experiments have not shown VTA
neuron responses during the learning process. In one prominent
example by Pan et al. in which VTA neurons are observed over the
learning process28, (depicted schematically in Fig. 2c) nomoving bump
is observed, prompting the authors to deduce that such memory tra-
ces exist. In a more recent paper by Amo et al. a moving bump is
reported29. In contrast, in another recently published paper, no
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and a sequence of presented stimuli A-B-C (red letter is displayed at the time of a
given stimulus’ presentation). d Same as c but for input sequence B-A-C. e Overlay
of the A-B-C and B-A-C network trajectories, starting from the state at the time of
the presentation of C (state sc). The trajectory of network activity differs in these
two cases, so the RNNstate doesnot provide a consistent temporal basis that tracks
the time since the presentation of stimulus C.
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moving bump is observed30. Taken together, these different results
suggest that at least in some cases a moving bump is not observed.
However, since a moving bump is not predicted in TDðλÞ for suffi-
ciently large λ, these results do not invalidate the TD framework in
general, but rather suggest that in some cases at least the TD(0) variant
is inconsistent with the data28.

While the moving bump prediction is parameter dependent,
another prediction common to all TD variants is that the integrated
RPE, obtained by summing response magnitudes over the whole trial
duration, does not exceed the initial US response on the first trial. This
prediction is robust because the normative basis of TD is to evaluate
expected reward or discounted expected reward. In versions of TD
where non-discounted reward is evaluated ðγ= 1Þ the integral of RPE
activity should remain constant throughout learning (see Supple-
mentary Material Appendix A for proof, Supplementary Fig. 1 for
simulations). Commonly TD estimates discounted rewards ðγ < 1Þ,

where the discount means that rewards that come with a small delay
are worth more than rewards that arrive with a large delay. With dis-
counted rewards, the integral of RPE activity will decrease with learn-
ing and become smaller than the initial US response. In contrast, we
reanalyzed data from several recent experiments29,31,32 and found that
the integrated response can transiently increase over the course of
learning (Fig. 3d, Supplementary Fig. 1).

An additional prediction of TD learning which holds across many
variants is that when learning converges, and if a reward is always
delivered (100% reward delivery schedule), the response of RPE neurons
at the time of reward is zero. Even in the case where a small number of
rewards are omitted (e.g., 10%), TD predicts that the response of RPE
neurons at the time of reward is very small, much smaller than at the
time of the stimulus. This seems to be indeed the case for several
example neurons shown in the original experiments of dopaminergic
VTA neurons5. However, additional data obtained more recently
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develop over training, shown here schematically. If, after training on a given
interval between the conditions stimulus (CS) and theunconditioned stimulus (US),
the interval is scaled, thebasis-functions also change. Recordings in striatum22 show
these basis-functions scale with the modified interval (top), while in recordings
from hippocampus25 (bottom), they are observed to redistribute to fill up the new
interval. b According to the TD 0ð Þ (temporal difference learning with no traces)
theory, RPE neuron activity (blue) during learning exhibits a backward moving
bump, from the time of the US to the time of the CS (left). For TD λð Þ (TD with trace
decaying at a time constant λ) the bump no longer appears (right). c A schematic
depiction of experiments where there is no observation of a backward shifting
bump28,30. d The integral of dopamine neuron (DA) activity according to TD theory

(left) should be constant over training (for γ= 1, dotted line) or decreasing mono-
tonically for (γ < 1, blue line). Right, reanalyzed existing experimental data from a
trace conditioning task in Coddington and Dudman (2018)32. The horizontal axis is
the training trial, and the vertical axis is themean activitymodulation of DA neuron
activity integratedover both the cue and reward periods (relative to baseline). Each
blue dot represents a recording period for an individual neuron from either the
ventral tegmental area (VTA) or substantia nigra compacta (SNc) (n = 96). The black
line is a running average over 10 trials. A bracket with a star indicates blocks of 10
individual cell recording periods (dots) which show a significantly different
modulated DA response (integrated over both the cue and reward periods) than
that of the first 10 recording periods/cells (Significance with a two-sided Wilcoxon
rank sum test, p <0.05). See also Supplementary Fig. 1. Definitions: temporal dif-
ference learning (TD), dopamine neurons (DA).
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indicates this might not always be the case and that significant response
to reward, at the time of reward, persists throughout training28,29,33. This
discrepancy between TD and the neural data is observed both for
experiments in which responses throughout learning are presented28,29

as well as in experiments that only show results after training33.
In experimental approaches affording large ensembles of DA

neurons to be simultaneously recorded, a diversity of responses has
been reported. Some DA neurons are observed to become fully unre-
sponsive at the time of reward, while others exhibit a robust response
at the time of reward that is no weaker than the initial US response of
these cells. This is clearly exhibited by one class of dopaminergic cells
(type I) that Cohen et. al. 33 recorded in VTA. This diversity implies that
TD is inconsistent with the results of some of the recorded neurons,
but it is possible that TD does apply to the whole population (see work
regarding “distributional TD”34,35). One complicating factor is that in
most experiments we have no way of ascertaining that learning has
reached its final state.

The original conception of TD is clean, elegant, and based on a
simple normative foundation of estimating discounted expected
rewards. Over the years, various experimental results that do not fully
conform with the predictions of TD have been interpreted as con-
sistent with the theory by making significant modifications to the
classical value-based formulation of TD34,36. Such modifications might
include anassumptionof different variants of the learning rule for each
neuron, such that each dopaminergic neuron no longer represents a
formal, value-based RPE34, or an assumption of additional inputs such
that evenwhen the expectation of reward is learned and fully expected
dopaminergic neurons still respond at the timeof reward.Note thatwe
are not suggesting that such modifications are incorrect or biophysi-
cally implausible – on the contrary, we are suggesting that the success
of these models demonstrates that the original, normative marriage
between TD, RPE, and DA should be open to scrutiny.

Towards this end, a recent paper has also shown that dopamine
release, as recorded with photometry, seems to be inconsistent with
RPE30. This paper has shown many experimental results that are at
odds with those expected by an RPE, and specifically, these experi-
ments show that dopamine release at least partially represents the
retrospective probability of stimulus-given reward. Other work
has suggested that dopamine signaling is more consistent with
direct learning of behavioral policy than a value-based RPE37. The
culmination of these results leads us to consider new theories that
may underlie the mechanisms behind observed DA release in
the brain.

The FLEX theory of reinforcement learning: A theoretical fra-
mework based on a plastic temporal basis
We propose an alternative theoretical framework underlying observed
dopamine dynamics, coined FLEX (Flexibly Learned Errors in Expected
Reward). The FLEX theory assumes that there is a plastic (as opposed to
fixed) temporal basis that evolves alongside the changing response of
reward-dependent neurons (such as DA neurons in VTA). The theory in
general is agnostic about the functional form of the temporal basis, and
several possible examples are shown in Fig. 4 (top, schematic; middle,
characteristic single unit activity; bottom, population activity before and
after learning). Feed-forward neural sequences38,39 (Fig. 4a), homo-
genous recurrent networks (Fig. 4b), and heterogeneous recurrent net-
works (Fig. 4c) could all plausibly support the temporal basis. Before
learning, well-developed basis-functions do not exist, though some
neurons do respond transiently to the CS. Over learning, basis-functions
develop (Fig. 4, bottom) in response to the rewardedstimulus, butnot to
unrewarded stimuli. In FLEX, we discard the implausible assumption of a
separate, predeveloped basis for every possible stimulus that spans an
arbitrary amount of time. Instead, basis functions only form in the pro-
cess of learning, develop only to stimuli that are tied to reward, and only
span the relevant temporal interval for the behavior.

In the following, we demonstrate that such a framework can be
implemented in a biophysically plausible model and that such a
model not only agrees with many existing experimental observa-
tions but also can reconcile seemingly incongruent results pertain-
ing to sequential conditioning. The aim of this model is to show that
the FLEX theoretical framework is possible and plausible given the
available data, not to claim that this implementation is a perfectly
validated model of reinforcement learning in the brain. Previous
models concerning hippocampus and prefrontal cortex (PFC) have
also considered cue memories with adaptive durations, but not
explicitly in the context of challenging the fundamental idea of a
fixed temporal basis40,41.

A biophysically plausible implementation of FLEX, proof-of-
concept
Here we present a biophysically plausible proof-of-concept model that
implements FLEX. This model is motivated by previous experimental
results23,24 and previous theoretical work42–46. The network’s full archi-
tecture (visualized in Fig. 5a) consists of two separate modules, a basis
functionmodule, and a rewardmodule, heremappedontodistinct brain
areas. We treat the reward module as an analogue of the VTA and the
basis-functionmodule akin to a cortical region such as themPFCorOFC
(although other cortical or subcortical regions, notably striatum22,47

might support temporal basis functions). All cells in these regions are
modeled as spiking integrate-and-fire neurons (see Methods).

We assume that within our basis function module are sub-
populations of neurons tuned to certain external inputs, visualized in
Fig. 5a as a set of discrete “columns”, each responding to a specific
stimulus. Within each column there are both excitatory and inhibitory
cells, with a connectivity structure that includes both plastic (dashed
lines, Fig. 5a) and fixed synaptic connections (solid lines, Fig. 5a). The
VTA is composed of dopaminergic (DA) and inhibitory GABAergic
cells. The VTA neurons have a background firing rate of ~5Hz, and the
DA neurons have preexisting inputs from “intrinsically rewarding”
stimuli (such as a water reward). The plastic and fixed connections
between the modules and from both the CS and US to these modules
are also depicted in Fig. 5a.

The model’s structure is motivated by observations of distinct
classes of temporally-sensitive cell responses that evolve during
trace conditioning experiments in medial prefrontal cortex (mPFC),
orbitofrontal cortex (OFC) and primary visual cortex (V1)23,24,45,48,49.
The architecture described above allows us to incorporate these
observed cell classes into our basis-function module (Fig. 5b). The
first class of neurons (“Timers”) are feature-specific and learn to
maintain persistently elevated activity that spans the delay period
between cue and reward, eventually decaying at the time of reward
(real or expected). The second class, the “Messengers”, has an
activity profile that peaks at the time of real or expected reward. This
set of cells forms what has been coined a “Core Neural Architecture”
(CNA)44, a potentially canonical package of neural temporal repre-
sentations. A slew of previous studies have shown these cell classes
within the CNA to be a robust phenomenon experimentally24,45,48–52,
and computational work has demonstrated that the CNA can be used
to learn and recall single temporal intervals44, Markovian and non-
Markovian sequences43,53. For simplicity, our model treats connec-
tions between populations within a single CNA as fixed (previous
work has shown that such a construction is robust to the perturba-
tion of these weights43,44).

Learning in themodel is dictated by the interaction of eligibility
traces and dopaminergic reinforcement. We use a previously
established two-trace learning rule43,45,46,54 (TTL), which assumes two
Hebbian-activated eligibility traces, one associatedwith LTP and one
associated with LTD (see Methods). We use this rule because it
solves the temporal credit assignment problem inherent in trace
conditioning, reaches stable fixed points, and since such traces
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have been experimentally observed in trace conditioning tasks45.
In theory, other methods capable of solving the temporal credit
assignment problem (such as a rule with a single eligibility trace42)
could also be used to facilitate learning in FLEX, but owing to its
functionality and experimental support, we choose to utilize TTL for
this work. See theMethods section for details of the implementation
of TTL used here.

Now, we will use this implementation of FLEX to simulate sev-
eral experimental paradigms, showing that it can account for
reported results. Importantly, some of the predictions of the model
are categorically different than those produced by TD, which allows
us to distinguish between the two theories based on experimental
evidence.

CS-evoked and US-evoked Dopamine responses evolve on dif-
ferent timescales
First, we test FLEX on a basic trace conditioning task, where a single
conditioned stimulus is presented, followed by an unconditioned sti-
mulus at a fixed delay of one second (Fig. 6a). The evolution of FLEX
over training is mediated by reinforcement learning (via TTL) in three
sets of weights: Timer → Timer, Messenger → VTA GABA neurons, and
CS→VTA DA neurons. These learned connections encode the feature-
specific cue-reward delay, the temporally specific suppression of US-
evoked dopamine, and the emergence of CS-evoked dopamine,
respectively.

Upon presentation of the cue, cue neurons (CS) and feature-
specific Timers are excited, producing Hebbian-activated eligibility
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traces at their CS→DA and T→T synapses, respectively. When the
reward is subsequently presented one second later, the excess dopa-
mine it triggers acts as a reinforcement signal for these eligibility traces
(which we model as a function of the DA neuron firing rate, D(t), see
Methods) causing both the cue neurons’ feed-forward connections
and the Timers’ recurrent connections to increase (Fig. 6b).

Over repeated trials of this cue-reward pairing, the Timers’
recurrent connections continue to increase until they approach their
fixed points, which corresponds to the Timers’ persistent firing dura-
tion increasing until it spans the delay between CS and US (Supple-
mentary Fig. 2 and Methods). These mature Timers then provide a
feature-specific representation of the expected cue-reward delay.

The increase of feed-forward connections from the CS to the DA
neurons (Fig. 6c) causes the model to develop a CS-evoked dopamine
response. Again, this feed-forward learning uses dopamine release at
tUS as the reinforcement signal to convert the Hebbian activated
CS→DA eligibility traces into synaptic changes (Supplementary Fig. 3).
The emergenceof excess dopamine at the timeof theCS ðtCSÞ owing to
thesepotentiated connections also acts tomaintain themat a non-zero
fixed point, so CS-evoked dopamine persists long after US-evoked
dopamine has been suppressed to baseline (see Methods).

As the Timer population modifies its timing to span the delay
period, the Messengers are “dragged along”, since, owing to the
dynamics of the Messengers’ inputs (T and Inh), the Messengers
themselves selectively fire at the end of the Timers’ firing envelope.
Eventually, the Messengers overlap with the tonic background activity
of VTA GABAergic neurons at the time of the US ðtUSÞ (Fig. 6b). When
combined with the dopamine release at tUS, this overlap triggers
Hebbian learning at the Messenger → VTA GABA synapses (see Fig. 6c,
Methods), which indirectly suppresses the DA neurons. Because of the

temporal specificity of the Messengers, this learned inhibition of the
DA neurons (through excitation of the VTA GABAergic neurons) is
effectively restricted to a short timewindow around the US and acts to
suppress DA neural activity at tUS back towards baseline.

As a result of these processes, our model recaptures the tradi-
tional picture of DA neuron activity before and after learning a trace
conditioning task (Fig. 6b). While the classical single neuron results of
Schultz and others suggested that DA neurons are almost completely
lacking excess firing at the time of expected reward5, more recent
calcium imaging studies have revealed that a complete suppression of
the US response is not universal. Rather, many optogenetically iden-
tified dopamine neurons maintain a response to the US and show
varying development of a response to theCS28,29,33. This diversity is also
exhibited in our implementation of FLEX (Fig. 6d) due to the con-
nectivity structure which is based on sparse random projections from
the CS to the VTA and from the US to VTA.

During trace conditioning in FLEX, the inhibition of theUS-evoked
dopamine response (via M→GABA learning) occurs only after the
Timers have learned the delay period (since M and GABA firing must
overlap to trigger learning), giving the potentiation of the CS response
time to occur first. At intermediate learning stages (e.g. trial 5,
Fig. 6a, b), the CS-evoked dopamine response (or equivalently, the
CS→DAweights) already exhibits significant potentiation while the US-
evoked dopamine response (or equivalently, inverse of the M→US
weights) has only been slightly depressed.While this phenomenon has
been occasionally observed in certain experimental paradigms28,32,55,56,
it has not been widely commented on – in FLEX, this is a fundamental
property of thedynamics of learning (inparticular, very early learning).

If an expected reward is omitted in FLEX, the resulting DA
neuron firing will be inhibited at that time, demonstrating the

Fig. 5 | Biophysically Inspired Architecture Allows for Flexible Encoding
of Time. a Diagram of the model architecture. Core neural architectures (CNAs,
visualized here as columns) located in the PFC are selective to certain sensory
stimuli (indicated here by color atop the column) via fixed excitatory inputs
(conditioned stimulus, CS). Ventral tegmental area dopamine (VTA, DA) neurons
receive fixed input from naturally positive valence stimuli, such as food or water
reward (unconditioned stimulus, US). DA neuron firing releases dopamine, which

acts as a learning signal for both PFC and VTA. Solid lines indicate fixed connec-
tions, while dotted lines indicate learned connections. b, c Schematic representa-
tion of data adapted from Liu et al. 51. b Timers learn to characteristically decay at
the time of cue-predicted reward. c Messengers learn to have a firing peak at the
time of cue-predicted reward. Definitions: prefrontal cortex (PFC), ventral teg-
mental area (VTA).
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characteristic dopamine “dip” seen in experiments (Supplementary
Fig. 4)5. This phenomenon occurs in ourmodel because the previous
balance between excitation and inhibition (from the US and GABA
neurons, respectively) is disrupted when the US is not presented.
The remaining input at tUS is therefore largely inhibitory, resulting in
a transient drop in firing rates. If the CS is consistently presented
without being paired with the US, the association between cue
and reward is unlearned, since the consistent negative D(t) at the
time of the US causes depression of CS→DA weights (Supplemen-
tary Fig. 4). Additionally, unlike fixed RNN models, FLEX is able to
learn and report accurate stimulus reward associations even in the
presence of distractor cues, both during and after training (Sup-
plementary Fig. 5). Further, although the implementation of FLEXwe
discuss here in the main text does not explicitly report value, with

slight modifications to our assumptions of the persistence of DA
or other neuromodulators (see Methods), FLEX can account for
the scaling of cue magnitude with initial reward value (Supplemen-
tary Fig. 6).

Dynamics of FLEX diverge from those of TD during conditioning
FLEX’s property that the evolution of the CS responses can occur
independently of (andbefore) depressionof theUS response underlies
a much more fundamental and general departure of our model from
TD-based models. In our model, DA activity does not “travel” back-
wards over trials1,5 as in TD(0), nor is DA activity transferred from one
time to the other in an equal and opposite manner as in TD(λ)11,28. This
is because our DA activity is not a strict RPE signal. Instead, while the
DA neural firing in FLEX may resemble RPE following successful
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learning, the DA neural firing and RPE are not equivalent, as evidenced
during the learning period.

To demonstrate this, we compare the putative DA responses in
FLEX to the RPEs in TD(λ) (Fig. 7a), training on the previously
described trace conditioning task (see Fig. 6a). We set the para-
meters of our TD(λ) model to match those in earlier work28 and
approximate the cue and reward as Gaussians centered at tCS1
and tCS2, respectively. In TDmodels, by definition, the integral of the
RPE over the course of the trial is always less than or equal to the
original total RPE provided by the initial unexpected presentation of
reward. In other words, the error in reward expectation cannot be
larger than the initial reward. In both TD(0) and TD(λ), this quantity
of “integrated RPE” is conserved; for versions of TD with a temporal
discounting factor γ (which acts such that a reward with value r0
presented n timesteps in the future is only worth r0γ

n where γ≤ 1),
this quantity decreases as learning progresses (see Supplementary
Material Appendix A and for proof and Supplementary Fig. 1 for
simulations).

In FLEX, by contrast, integrated dopaminergic release D(t) during
a given trial canbe greater than that evokedby theoriginal unexpected
US (see Fig. 7b), and therefore during training the DA signal in FLEX
diverges from a reward prediction error. This property has not been
explicitly investigated, and most published experiments do not pro-
vide continuous data during the training phase. However, to test our
prediction, we re-analyzed recently published data which does cover
the training phase29,32, and found that there is indeed a significant
transient increase in dopamine release during training (Fig. 3d and
Supplementary Fig. 1). Another recent publication found that initial DA
response to the US was uncorrelated with the final DA response to the

CS37, which also supports the idea that integrated dopamine release is
not conserved.

FLEX unifies sequential conditioning results
Standard trace conditioning experiments with multiple cues
(CS1→CS2→US) have generally reported the so-called “serial transfer of
activation” – that dopamine neurons learn to fire at the time of the
earliest reward-predictive cue, “transferring” their initial activation at
tUS back to the time of the first conditioned stimulus57,58. However,
other results have shown that the DA neural responses at the times of
the first and second conditioned stimuli (tCS1 and tCS2, respectively)
evolve together, with both CS1 and CS2 predictive of the reward28,30.

Surprisingly, FLEX can reconcile these seemingly contradictory
results. In Fig. 8 we show simulations of sequential conditioning using
FLEX. In early training, we observe an emerging response to both CS1
and CS2, as well as to the US (Fig. 8b, ii). Later on, the response to the
US is suppressed (Fig. 8b, iii). During late training (Fig. 8b, iv) the
response to CS2 is suppressed and all activation is transferred to the
earliest predictive stimulus, CS1. These evolving dynamics can be
compared to the different experimental results. Early training is similar
to the results of Pan et al. 28 and Jeong et al. 30, as seen in Fig. 8c, while
the late training results are similar to the results of Schultz (1993)57 as
seen in Fig. 8d.

After training, in FLEX, both sequential cues still affect the dopa-
mine release at the time of reward, as removal of either cue results in a
partial recovery of the dopamine response at tUS (Supplementary
Fig. 7). This is the case even in late training in FLEX, when there is a
positive dopamine response only to first cue – ourmodel predicts that
removal of the second cue will result in a positive dopamine response
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at the time of expected reward. In contrast, the RPE hypothesis would
posit that after extended training, the value function would eventually
be maximized following the first cue, and therefore removal of the
subsequent cue would not change dopamine release at tUS.

FLEX is also capable of replicating the results of a different set of
sequential learning paradigms (Supplementary Fig. 8). In these proto-
cols, the network is initially trained on a standard trace conditioning task
with a single CS. Once the cue-reward association is learned completely,
a second cue is inserted in between the initial cue and the reward, and
learning is repeated. As in experiments, this intermediate cue on its
own does not become reward predictive, a phenomenon called
“blocking”59–61. However, if reward magnitude is increased or additional
dopamine is introduced to the system, a response to the intermediateCS
(CS2) emerges, a phenomenon termed “unblocking”62,63. Each of these
phenomena can be replicated in FLEX (Supplementary Fig. 8).

Discussion
TDhasestablished itself as oneof themost successfulmodels of neural
function to date, as its predictions regarding RPE have, to a large
extent, matched experimental results. However, two key factors make
it reasonable to consider alternatives to TD as a modeling framework

for how midbrain dopamine neurons could learn RPE. First, attempts
for biologically plausible implementations of TD have previously
assumed that even before learning, each possible cue triggers a
separate chain of neuronswhich tile an arbitrary periodof time relative
to the cue start. The a priori existence of such an immense set of fixed,
arbitrarily long cue-dependent basis functions is both fundamentally
implausible and inconsistent with experimental evidence which
demonstrates the development or maturation of temporal bases over
learning22–25,45,48,49. Second, different conditioning paradigms have
revealed dopamine dynamics that are incompatible with the predic-
tions of models based on the TD framework28,30,64,65.

To overcome these problems, we suggest that the temporal basis
itself is not fixed, but instead plastic, and is learned only for specific
cues that lead to reward. We call this theoretical framework FLEX. We
also presented a biophysically plausible implementation of FLEX, and
we have shown that it can generate flexible basis functions and that it
produces dopamine cell dynamics that are consistent with experi-
mental results. Our implementation should be seen as a proof-of-
concept model. It shows that FLEX can be implemented with biophy-
sical components and that such an implementation is consistent with
much of the data. It does not show that the specific details of this

t
CS1

t
CS2

t
US

CS1 CS2 US

Fi
rin

g 
ra

te
 (H

z)

10

Fi
rin

g 
ra

te
 (H

z)

30

30

30

-0.5 0 0.5 1.0 s 0.5 s-0.5 0
Instruction Trigger Reward

Time (ms)

25

25

25

25

200 700 1200

a)

b) c)

d) Time (s)
-2 -1 0 1 2 3 4 5 6 7 8

i) initalization

ii) acquisition

iii) reward suppression

iv) serial transfer of activation

i)

ii)

iii)

iv)

DA Neurons in FLEX
Schematic Illustrations of Results 

in Experimental Literature

Pan et al. 2005

Schultz et al. 1993

Time (s)

Fig. 8 | FLEX model reconciles differing experimental phenomena observed
during sequential conditioning. Results from “sequential conditioning”, where
sequential neutral stimuli CS1 and CS2 (conditioned stimuli 1 and 2) are paired with
delayed reward (US). a Visualization of the protocol. In this example, the US is
presented starting at 1500ms, with CS1 is presented starting at 100ms, and CS2 is
presented starting at 800ms. bMean firing rates over all dopamine (DA) neurons,
for four distinctive stages in learning – initialization(i), acquisition(ii), reward

depression(iii), and serial transfer of activation(iv). c Schematic illustration of
experimental results from recorded dopamine neurons, labeled with the matching
stage of learning in ourmodel. cDAneuronfiringbefore (top), during (middle), and
after (bottom) training, wherein two cues (0 s and 4 s) were followed by a single
reward (6 s). Adapted from Pan et al. 28. d DA neuron firing after training wherein
two cues (instruction, trigger) were followed by a single reward. Adapted from
Schultz et al. 57.

Article https://doi.org/10.1038/s41467-024-50205-3

Nature Communications |         (2024) 15:5856 11



implementation, (including the brain regions in which the temporal-
basis is developed, the specific dynamics of the temporal basis func-
tions, and the learning rules used) are those used by the brain.

Cue reward associations canbebehaviorally learned even for long
durations between the cue and reward. The specific implementation of
FLEX proposed here can only learn them for a span of up to several
seconds.This limitation stems from twoaspects of themodel. First, the
spiking stochastic recurrent network itself cannot reliably express
temporal intervals of durations that are longer than a few seconds.
Second, the synaptic eligibility traces only last several seconds45,66. We
have analyzed these limitations in a previous paper and showed thatby
including additional active intrinsic conductance’s in the neuronal
model these limitations can be relaxed and time gaps of tens of sec-
onds can be learned67. For simplicity, we have not included these
additional mechanisms here. For longer time gaps on the order of
minutes, different types of mechanisms must be considered, though
they too might fall into the general FLEX framework.

One of the appealing aspects of TD learning is that it arises from
the simple normative assumption that the brain needs to estimate
future expected rewards. Does FLEX have a similar normative basis?
Indeed, in the final stage of learning, the responses of DA neurons in
FLEX resemble RPE neurons in TD, however, in FLEX there is no
analog for the value neurons assumed in TD. Unlike in TD, the
activity of FLEX DA neurons in response to the cue represents an
association with future expected rewards, independent of a valua-
tion. Though a slight modification of FLEX (see Methods and Sup-
plementary Fig. 6) is able to learn value, the observation that FLEX
does not require value neurons in order to learn associations or even
the value of expected reward, does not mean such neurons do not
exist in the brain, or are not useful. Although experiments have
reported value neurons in the brain68, it has been debated whether
value neurons indeed exist and whether they are useful69, but this is
not part of the FLEX theory.

Instead of primarily learning value, the goal of FLEX is to learn the
association between cue and reward, develop the temporal basis
functions that span the period between the two, and transfer DA sig-
naling from the time of the reward to the time of the cue. These basic
functions could then be used as a mechanistic foundation for brain
activities, including the timing of actions. Once these basis functions
exist it might be possible to use them for future TD type learning. In
essence, DA in FLEX acts to create internal models of associations and
timings. Recent experimental evidence37 which suggests that DA cor-
relates more with the direct learning of behavioral policies rather than
value-encoded prediction errors is broadly consistent with this view of
dopamine’s function within the FLEX framework.

As noted, FLEX is a general theory, and there could be alternative
models implementing it. Indeed, a recent publication70 has proposed a
similar model to account for VTA dynamics. This model also assumes
that temporal associations learned in the cortex can explain the for-
mation of VTA responses in the absence of a preexisting temporal
basis. This previous publication differs fromourmodel in the details of
the recurrent network, which cell types inhibit the VTA response to
reward, the details of the learning rules which are not based on bio-
physical observations, and in that it is a rate-basedmodel, not a spiking
model. It has also been applied to a somewhat different set of
experimental observations. The major difference between the two
papers is not the detailed differences in the mechanisms, but rather
that our work explains explicitly the conceptual limitations of tradi-
tional models of TD learning, and how they fail to account for some
experimental results. It then offers the general FLEX theory as an
alternative to traditional TD algorithms.

Another recent publication30 has challenged the claim that DA
neurons indeed represent RPE, instead hypothesizing that DA
release is also dependent on retrospective probabilities30,71. The
design of most historical experiments cannot distinguish between

these competing hypotheses. In this recent research project, a set of
new experiments was designed specifically to test these competing
hypotheses, and the results obtained are inconsistent with the
common interpretation that DA neurons simply represent RPE30.
More generally, while the idea that the brain does and should esti-
mate economic value seems intuitive, it has been recently
questioned69. This challenge to the prevailing normative view is
motivated by behavioral experimental results which instead suggest
that a heuristic process, which does not faithfully represent value,
often guides decisions.

Although recent papers have questioned the common normative
view of the response of DA neurons in the brain and their relation to
value estimation13,30,37,69, the goal of this work is different. Here we
survey problems with the implementation of TD algorithms in neuro-
nal machinery, and propose an alternative theoretical formulation,
FLEX, along with a computational implementation of this theory. The
fundamental difference from previous work is that FLEX postulates
that the temporal basis-functions necessary for learning are them-
selves learned, and that neuromodulator activity in the brain is an
instructive signal for learning thesebasis functions.Our computational
implementation haspredictions that are different than thoseof TD and
are consistent with many experimental results. Further, we tested a
unique prediction of FLEX (that integratedDA release across a trial can
change over learning) by re-analyzing experimental data, showing that
the data was consistent with FLEX but not the TD framework.

Additional qualitative predictions of the specific computational
model will require further experimental testing. First, our imple-
mentation of FLEX would predict that the temporal basis must form
before the response at the US is inhibited. In the case of our model,
with its Timer and Messenger cell types, this would mean that the
duration of the Timer cellswould gradually increase until it bridges the
temporal gapbetween the CS and theUS. Further, our implementation
predicts that the activity of the Messenger cells shifts forward in time
until it overlaps with the activity of the DA cells, and only subsequent
to this might the activity of the DA cells at the time of reward be
inhibited. These specific predictions still need to be tested, but note
that these are predictions of our specific computational implementa-
tion of FLEX, not of the general FLEX framework. Other networks that
could plausibly implement the flexible timing central to the FLEX
theory (Fig. 4a, c) may not be consistent with these implementation-
specific predictions.

Methods
All simulations were run via custom code in MATLAB 2023b (see code
availability statement). A full table of parameter values used for the
main simulations is provided in Table 1.

Network dynamics
The membrane dynamics for each neuron i are described by the fol-
lowing equations:

C
dvi
dt

= gL EL � vi
� �

+gE,i EE � vi
� �

+gI,i EI � vi
� �

+σ ð1Þ

dsi
dt

= � si
τs

+ρ 1� si
� �X

k

δ t� tik
� �

ð2Þ

The membrane potential and synaptic activation of neuron i are
notated vi and si. g refers to the conductance,C the capacitance, and E
to the reversal potentials indicated by the appropriate subscript,
where leak, excitatory, and inhibitory are indicated by subscripts L, E,
and I, respectively. σ is a mean zero noise term. The neuron spikes
upon it crossing its membrane threshold potential vth, after which it
enters a refractory period tref . The synaptic activation si is updated by
an amount ρ 1� si

� �
, where ρ is the fractional change in synaptic
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activity, at each time (tik) the neuron spikes, and decays exponentially
with time constant τs when there is no spike.

The conductance g is the product of the incoming synaptic
weights and their respective presynaptic neurons:

gα,i =
X
j

Wα
ij sj ð3Þ

Wα
ij are the connection strengths fromneuron j to neuron i, where

the superscript α can either indicate E (excitatory) or I (inhibitory). A
firing rate estimate for each neuron ri is calculated as an exponential
filter of the spikes, with a time constant τr.

τr
dri
dt

= � ri +
X
k

δ t� tik
� �

ð4Þ

Fixed RNN
For the network in Fig. 2, the dynamics of the units ui in the RNN are
described by the equation below:

τnet
dui

dt
= � ui +

X
k

Wikϕ uk

� �
ð5Þ

Where ui are the firing rates of the units in the RNN, each with a time
constant τnet. Wik are the recurrent weights of the RNN, each of which
is drawn from a normal distribution Nð0, gffiffiffi

K
p Þ, where g is the “gain” of

the network72 and ϕ is a sigmoidal activation function. Each of the
inputs given to the network (A, B, or C) is a unique, normally dis-
tributed projection of a 100ms step function.

Dopaminergic Two-Trace Learning (dTTL)
Rather than using temporal difference learning, FLEX uses a previously
established learning rulebasedon competitive eligibility traces, known

Table 1 | Model Parameters

Parameter Value Units Description

Npp 100 – Number of E/I neurons per population

Npop 3 – Number of E/I populations (Timer, Messenger, VTA)

N 300 – Number of E/I neurons in network

Ntotal 600 – Total number of neurons (E + I) in network

ntrials 30,80 – Number of training trials

dt 1 ms Integration timestep

tcue 200 ms Time of cue

treward 1100 ms Time of reward

D 10 ms Intrinsic transmission delay

pr 30 Hz Rate of Poisson stimulus pulse

σN, σVTA Ɲ(0,1e-10), .0375 +
Ɲ(0,2.5e-3)

– Gaussian white noise, Timer/Messenger neurons, VTA neurons

ρ 1/7 – Fractional change of synaptic activation

τw 40 ms Time window for firing rate integration

τe, τea 10, 20 dt (arb.) Time constants of eligibility traces

τs
E, τs

I, τs
VTAe,τs

VTAi 80, 20, 20, 10 ms Time constant for synaptic activation for excitatory (EE and IE), inhibitory (EI) connections, as well as VTA
excitatory (EE) and VTA inhibitory connections (EI)

gL 10 nS Leak conductance

Cm 200 pF Membrane capacitance

EL −60 mV Leak reversal potential

EE, EL, EI −5, −60, −70 mV Excitatory, leak, and inhibitory reversal potentials

vth, vth
I −55, −50 mV Spiking threshold potential (excitatory, inhibitory)

vrest −60 mV Resting potential

vhold −61 mV Reset potential

tref 3 ms Absolute refractory period (parameter value in MATLAB code is 2, because of implementation quirk, it is
effectively 3)

τp, τd 1800, 800 ms LTP/LTD eligibility trace time constant, recurrent connections

Tp
max, Td

max 0.003, 0.0033 – Saturation level, LTP/LTD eligibility trace, recurrent connections

ηp, ηd 300, 135 ms−1 Activation rate, LTP/LTD eligibility trace, recurrent connections

τp
FF, τd

FF 2000, 800 ms LTP/LTD eligibility trace time constant, feed-forward connections

Tp
max,FF, Td

max,FF 0.0015, 0.004 – Saturation level, LTP/LTD eligibility trace, feed-forward connections

ηp
FF, ηd

FF 650, 40 ms−1 Activation rate, LTP/LTD eligibility trace, feed-forward connections

d0, Δd 5, 2 Hz Firing rate threshold to triggerDA releaseaboveor belowexpectation (lower bound isd0 -Δd, upper bound
is d0 + Δd)

WEE
MT, WEI

MT 0.5, −20 nS Synaptic connection strength, Timer to Messenger excitatory to excitatory (EE) and inhibitory to excitatory
(EI) connections

WEI
VTA,VTA −1.5 nS Synaptic connection strength, VTA-VTA inhibitory to excitatory (EI) connections

WIE
TT, WIE

MM 0.3, 1 nS Synaptic connection strength, Timer-Timer and Messenger-Messenger excitatory to inhibitory (IE)
connections

ηrec,l, ηff,l, ηVTA,l 0.00015, Ɲ(0,1.5),
Ɲ(0,1e-2)

ms−1 Learning rates for recurrent, feed-forward, and Messenger-VTA connections, respectively
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as “two-trace learning” or TTL43,45,46. However, we replace the general
reinforcement signal R(t) of previous implementations with a dopa-
minergic reinforcement D(t). We repeat here the description of D(t)
from the main text:

D tð Þ=
rDA tð Þ � ðr0 � θÞ, rDAðtÞ ≤ r0 � θ

0, r0 � θ < rDAðtÞ< r0 + θ

rDA tð Þ � ðr0 + θÞ, rDAðtÞ≥ r0 + θ

8><
>: ð6Þ

Where rDA tð Þ is the firing rate of DA neurons, r0 is a baseline firing rate,
and θ is a threshold for reinforcement. Note that the dopaminergic
reinforcement can be both positive and negative, even though actual
DA neuron firing (and the subsequent release of dopamine neuro-
transmitter) can itself only be positive. The bipolar nature of D(t)
implicitly assumes that background tonic levels of dopamine do not
modify weights, and that changes in synaptic efficacies are a result of a
departure (positive or negative) from this background level. The
neutral region around r0 provides robustness to small fluctuations in
firing rates which are inherent in spiking networks.

The eligibility traces, which are synapse-specific, act as long-
lasting markers of Hebbian activity. The two traces are separated into
LTP- and LTD-associated varieties via distinct dynamics, which are
described in the equations below.

τp
dTp

ij

dt
= � Tp

ij +η
pHij Tp

max � Tp
ij

� �
ð7Þ

τd
dTd

ij

dt
= � Td

ij +η
dHij Td

max � Td
ij

� � ð8Þ

Here, Ta
ij (where a 2 p,dð Þ) is the LTP (p superscript) or LTD (d

superscript) eligibility trace located at the synapse between the j-th
presynaptic cell and the i-th postsynaptic cell. The Hebbian activity,
Hij, is a simple multiplication ri � rj for application of this rule in VTA,
where rj and ri are the time-averaged firing rates at the pre- and post-
synaptic cells. Experimentally, the “Hebbian” terms (Hij) which impact
LTP and LTD trace generation are complex45, but in VTA we approx-
imate with the simple multiplication ri � rj . For synapses in PFC, we
make the alteration that Hij =

ri �rj
1 +αDðtÞ, acting to restrict PFC trace gen-

eration for large positive RPEs. The alteration of Hij by large positive
RPEs is inspired by recent experimental work showing that large
positive RPEs act as event boundaries and disrupt across-boundary
(but not within-boundary) associations and timing73. Functionally, this
alteredHij biases Timers in PFC towards encoding a singledelay period
(cue to cue or cue to reward) and disrupts their ability to encode
across-boundary delays.

The LTP and LTD traces activate (via activation constant ηa),
saturate (at a level Ta

max), and decay (with time constant τa) at different
rates. D(t) binds to these eligibility traces, converting them into
changes in synaptic weights. This conversion into synaptic changes is
“competitive”, being determined by the difference in the product:

dWij

dt
=ηD tð Þ Tp

ij tð Þ � Td
ij tð Þ

� �
ð9Þ

where η is the learning rate.
The above eligibility trace learning rules, with the inclusion of

dopamine, are referred to as dopaminergic “two-trace” learning or
dTTL. This rule is pertinent not only because it can solve the temporal
credit assignment problem, allowing the network to associate events
distal in time, but also because dTTL is supported by recent experi-
ments that have found eligibility traces for in multiple brain
regions45,66,74–76. Notably, in such experiments, the eligibility traces in
prefrontal cortexwere found to convert into positive synaptic changes

via delayed application of dopamine45, which is the main assumption
behind dTTL.

For simplicity and to reduce computational time, in the simula-
tions shown, M→GABA connections are learned via a simple
dopamine-modulated Hebbian rule,

dWij

dt =ηDðtÞrirj. Since these con-
nections are responsible for inhibiting the DA neurons at the time of
reward, this learning rule imposes its own fixed point by suppressing
D(t) down to 0. For any appropriate selection of feed-forward learning
parameters in dTTL (Eq. 9), the fixed-point D(t) = 0 is reached well
before the fixed point Tp

ij tð Þ=Td
ij tð Þ. This is because, by construction,

the function of M→GABA learning is to suppress D(t) down to zero.
Therefore, the fixed point Tp

ij tð Þ=Td
ij tð Þ needs to be placed (via choos-

ing trace parameters) beyond the fixed-point D(t) = 0. Functionally,
then, both rules act to potentiate M→GABA connections mono-
tonically until D(t) = 0. As a result, the dopamine-modulated Hebbian
rule is in practice equivalent to dTTL in this case.

Network Architecture
Our network architecture consists of two regions, VTA and PFC, each
of which consists of subpopulations of leaky-integrate-and-fire (LIF)
neurons. Both fixed and learned connections exist between certain
populations to facilitate the functionality of our model.

To model VTA, we include 100 dopaminergic and 100 GABAergic
neurons, both of which receive tonic noisy input to establish baseline
firing rates of ~5Hz. Naturally appetitive stimuli, such as food or water,
are assumed tohavefixed connections toDAneurons via the gustatory
system.Dopamine release is determined byDAneurons firing above or
below a threshold θ, and dopamine release acts as reinforcement for
all learned connections in the model.

Our model of PFC is comprised of different feature-specific ‘col-
umns’. Within each column there is a CNA microcircuit, with each
subpopulation (Timers, Inhibitory, Messengers) consisting of 100 LIF
neurons. Previous work has shown that these subpopulations can
emerge from randomly distributed connections44, and further that a
single mean field neuron can well approximate the activity of each of
these subpopulations of spiking neurons77.

The two-trace learning ruleweutilize for ourmodel is described in
further detail in previous work43,45,46,54. However, we will attempt to
clarify how it functions below.

As a first approximation, the traces from the two-trace learning
rule we utilize effectively act such that when they interact with dopa-
mine above baseline, the learning rule will favor potentiation, and
when they encounter dopamine below baseline, the learning rule will
favor depression. Formally, the rule has fixed points which depend on
both the dynamics of the traces and the dopamine release D(t):

ZTtrial

0

dt D tð Þ Tp
ij tð Þ � Td

ij tð Þ
� �

=0 ð10Þ

A trivial fixed point exists when D(t) = 0 for all t. Another simple
fixed point exists in the limit that D tð Þ= δðtR � tÞ, where tR is the time
of reward, as Eq. 10 then reduces to Tp

ij tR
� �

=Td
ij tR
� �

. In this case, the
weights have reached their fixed point when the traces cross at the
time of reward. In practice, the true fixed points of the model are a
combination of these two factors (suppression of dopamine and
crossing dynamics of the traces). In reality, D(t) is not a delta function
(andmay havemultiple peaks during the trial), so to truly calculate the
fixed points, one must use Eq. 10 as a whole. However, the delta
approximation used above gives a functional intuition for the
dynamics of learning in the model.

Supplementary Fig. 2 and Supplementary Fig. 3 demonstrate
examples of fixed points for both recurrent and feed-forward learning,
respectively. Note that in these examples the two “bumps” of excess
dopamine (CS-evoked andUS-evoked) are theonly instances of non-zero
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D(t). As such, we can take the integral in Eq. 10 and split it into two parts:

ZtCS,and

tCS,start

dt D tð Þ Tp
ij tð Þ � Td

ij tð Þ
� �

+
Z tUS,end

tUS,start

dt D tð Þ Tp
ij tð Þ � Td

ij tð Þ
� �

=0 ð11Þ

For recurrent learning, the dynamics evolve as follows. In the
beginning, only the integral over ΔtUS exists, as D(t) is initially zero
overΔtCS (Trial 1 in Supplementary Fig. 2). As a result, the learning rule

evolves to approach the fixed point mediated by Tp
ij tð Þ � Td

ij tð Þ
� �

(Trial

20 in Supplementary Fig. 2). After the recurrent weights have reached
this fixed point and the Timer neurons encode the cue-reward delay
(Trial 30 in Supplementary Fig. 2), M→GABA learning acts to suppress
D(t) down to zero aswell (Trial 40 in Supplementary Fig. 2). Note again
that we make the assumption that trace generation in PFC is inhibited
during large positive RPEs. This acts to encourage the Timers to
encode a single “duration” (whether cue-cue or cue-reward). In line
with our assumption, experimental evidence has shown these large
positive RPEs act as event boundaries and disrupt across-boundary
(but not within-boundary) reports of timing73.

For feed-forward learning, the weights initially evolve identically
to the recurrent weights (Trial 1 in Supplementary Fig. 3). Again, only
the integral over ΔtUS exists, so the feed-forward weights evolve
according to ðTp

ij ðtÞ � Td
ij ðtÞÞ. However, soon the potentiation of these

feed-forward CS→DA weights themselves cause release of CS-evoked
dopamine, and therefore we must consider both integrals to explain
the learning dynamics (Trial 5 in Supplementary Fig. 3). This stage of
learning is harder to intuit, but an intermediate fixed point is reached
when the positiveΔW produced by the traces’ overlap with US-evoked
dopamine is equal and opposite to the negative ΔW produced by the
traces’ overlap with CS-evoked dopamine (Trial 20 in Supplementary
Fig. 3). Finally, after US-evoked dopamine has been suppressed to
baseline, the feed-forward weights reach a final fixed point where both
positive and negative contributions to ΔW over the course of the CS
offset each other (Trial 50 in Supplementary Fig. 3).

Modified value-tracking network (Supplementary Fig. 6 only)
The above formulation of FLEX does not directly track the initial reward
magnitude in the learnedmagnitudeof thecueDA responses. This is due
to the last part of feed forward learning (once the US-evoked DA has
been suppressed to baseline), which leaves uswith a fixed point which is
independent of the initial reward magnitude. In order for the feed-
forwardweights (and thereby the cue-evokedDA response) to scalewith
the initial reward, we include an additional neuromodulatory term, AðtÞ,
which takes on the same functional form as our dopamine functionDðtÞ,
but is not suppressed over the course of learning:

dWij

dt
=ηA tð Þ Tp

ij tð Þ � Td
ij tð Þ

� �
ð12Þ

where η is the learning rate.

Data Analysis
Themeasureof “area under receiver operating characteristic” (auROC)
is used throughout this paper, for the purpose of making direct
comparison to calcium imaging results that use auROC as ameasure of
statistical significance. Following themethods of Cohen et al. 33, time is
tiled into 50ms bins. For a single neuron, within each 50ms bin, the
distribution of spike counts for 25 trials of baseline spontaneous firing
(no external stimuli) is compared to the distribution of spike counts
during the same time bin for 25 trials of the learning phase in question.
For example, in Fig. 6d, left, the baseline distributions of spike counts
are compared to the distributions of spike counts when US only is
presented. ROC is calculated for each bin by sliding the criteria from

zero to the max spike count within the bin, and then plotting P(acti-
ve>criteria) versus P(baseline>criteria). The area under this curve is
then a measure of discriminability between the two distributions, with
an auROC of 1 demonstrating a maximally discriminable increase in
spikes compared to baseline, 0 demonstrating a maximally dis-
criminable decrease of spikes compared to baseline, and .5 demon-
strating an inability to discriminate between the two distributions.

Data fromAmoet al. was used for Supplementary Fig. 129,31. The data
from 7 animals (437-440, 444-446) is shown here. This dataset comes
preprocessed, havingbeen z-scored, “calculated from signals in an entire
session smoothed with moving average of 50ms”28. On every training
day only the first 40 trials are used, unless therewas a smaller number of
rewarded trials, in which case that number was used. For every animal
per every day, the integral from the time of the CS to the end of the trial
is calculated and averaged over all trials in that day. These are the data
points in Supplementary Fig. 1d, with each animal represented by a
different color. The blue line is the average over animals. The distribu-
tions in Supplementary Fig. 1e represent the average over all animals in
early (days 1–2), intermediate (day 3-4) and late (day 8-10) periods. Two-
sided Wilcoxon rank sum tests find that intermediate is significantly
higher than early (p=0.004) and that late is significantly higher than
early (p=0.006). Late is not significantly lower than intermediate. We
also find that late is significantly higher than early if we take the average
per animal over the early and intermediate days (p=0.02).

Supplementary Fig. 1f shows re-analyzed data from Coddington
and Dudman (2018)32. The horizontal axis is the training trial, and the
vertical axis is the mean activity modulation of DA neuron activity
integrated over both the cue and reward periods (relative to baseline).
Each blue dot represents a recording period for an individual neuron
from either VTA or SNc (n = 96). The black line is a running average
over 10 trials. A bracket with a star indicates blocks of 10 individual cell
recording periods (dots) which show a significantly different modu-
lated DA response (integrated over both the cue and reward periods)
than that of the first 10 recording periods/cells(Significancewith a two-
sided Wilcoxon rank sum test, p <0.05).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available within the
paper and its accompanying custom MATLAB code (version 2023b).
The code is available at https://github.com/ianconehed/FLEX78. Cone,
I. Learning to Express Reward Prediction Error-like Dopaminergic
Activity Requires Plastic Representations of Time. GitHub https://doi.
org/10.5281/zenodo.11260815 (2024).

Code availability
All simulations were run via custom code in MATLAB 2023b. The code
is available at https://github.com/ianconehed/FLEX78. Cone, I. Learning
to Express Reward Prediction Error-like Dopaminergic Activity
Requires Plastic Representations of Time. GitHub https://doi.org/10.
5281/zenodo.11260815 (2024).
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