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Single-cell RNA sequencing reveals plasmid
constrains bacterial population
heterogeneity and identifies a non-
conjugating subpopulation

Valentine Cyriaque 1,2 , Rodrigo Ibarra-Chávez 1, Anna Kuchina3,4,5,
Georg Seelig 5,6, Joseph Nesme 1 & Jonas Stenløkke Madsen 1

Transcriptional heterogeneity in isogenic bacterial populations can play var-
ious roles in bacterial evolution, but its detection remains technically chal-
lenging. Here, we usemicrobial split-pool ligation transcriptomics to study the
relationship between bacterial subpopulation formation and plasmid-host
interactions at the single-cell level. We find that single-cell transcript abun-
dances are influenced by bacterial growth state and plasmid carriage. More-
over, plasmid carriage constrains the formation of bacterial subpopulations.
Plasmid genes, including those with core functions such as replication and
maintenance, exhibit transcriptional heterogeneity associated with cell activ-
ity. Notably, we identify a cell subpopulation that does not transcribe conjugal
plasmid transfer genes, which may help reduce plasmid burden on a subset of
cells. Our study advances the understanding of plasmid-mediated sub-
populationdynamics andprovides insights into theplasmid-bacteria interplay.

To survive and reproduce, bacteria performnumerous tasks, including
importing and processing nutrients and metabolites, cell division,
defense/resistance, exogenous DNA acquisition, andmany others. Yet,
the number of tasks is limited by intracellular competition for relevant
resources1. Transcriptional heterogeneity at the single-cell level,
resulting in subpopulations2, expands the number of simultaneous
processes that can be performed at the population level. This can, for
example, facilitate division of labor where complementary metabolic
processes are carried out by different subpopulations3. Heterogeneity
also enables bet-hedging strategies where mal-adapted phenotypes
may become an asset in a changing environment4. The formation of
subpopulations in isogenic populations2 can thus increase the fitness
of bacteria while preserving the genotype. Subpopulations can emerge
through a number of processes and phenomena such as cell cycle
progression, responsive switching in spatial gradients, epigenetic

determination5, compartmentalization6 and stochasticity during gene
expression1. This results in transcriptionally and phenotypically dis-
tinct subpopulations7 fluctuating over space and time, and has been
shown to be important during utilization of different metabolic
substrates1 and survival of sudden physiological stress (e.g., via
detoxification3, competence8 or persistence9).

Plasmids are extrachromosomal semi-autonomous mobile
genetic elements (MGEs) that interact with their host’s genome to
varying degrees. Plasmids use host factors10 such as nucleotides,
tRNAs, amino acids, ribosomes11 and thus take part in the intracellular
competition for resources2. More crude interactions also transpire,
facilitated via plasmid-encoded regulatory elements9,12, toxin-antitoxin
systems13 or other defense and anti-defense systems14. The association
of plasmids with a host can change its transcriptomic profile in a
plasmid-host specificmanner at the population level15–17. Plasmids can,
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for example, induce the use of alternative carbon sources or alter the
metabolism of carbohydrates16, amino acids and nucleotides11, Addi-
tionally, host respiratory activities16 and regulatory pathways16,17 can be
directly influenced by plasmids. Over evolutionary time, compensa-
torymutationsmay reduce such genetic conflicts11,18 between plasmids
and their hosts. However, while the above illustrates that plasmids
interact with host chromosomes, very little is currently known about
plasmid-host interactions at the single-cell level and how these inter-
actions may affect the subpopulation dynamics of their host.

Recently, several techniques successfully enabled single-cell
transcriptomics in bacteria either by transcriptome imaging (Par-
seq19), physically separating the cells with fluorescence-activated cell
sorting (MATQ-seq20,21) or using randommolecular-barcode ligation to
concomitantly tag mRNAs stemming from the same cell (smRandom-
seq22, ProBac-seq23, PETRI-seq24, BacDrop25, M3-seq26, microSPLiT7).
These latter approaches have made high-throughput single-cell RNA
sequencing possible for a large number of prokaryotic cells in parallel.

Here, we successfully applied the microSPLiT (microbial split-pool
ligation transcriptomics)7 approach to assess how a conjugative broad-
host range plasmid influenced the subpopulation dynamics of Pseudo-
monas putida KT2440. This bacterium is widely used as a model in
studies of soil bacteria and is important for biotechnology27. P. putida
KT2440 has also been considered for bioremediation (e.g.,28) and
repeatedly used in studies of plasmid transfer in natural (e.g.,29,30) and
synthetic communities31,32. We sought to investigate transcriptional
interactions between a conjugative broad-host-range plasmid and the
host genome at the single-cell level hypothesizing that; (i) P. putida
would form distinct transcriptomic subpopulations despite growing in a
homogeneous environment; (ii) single-cell transcriptomics would be
successful at segregating plasmid free and carrier cells; (iii) the broad-
host-range plasmid would interact distinctly with the host, in a sub-
population dependent manner, and; (iv) the transcription level of
plasmid-encoded genes would follow the growth status of its host to
reduce its burden. In this work, bacteria grew with constant shaking in
large bottles, making it unlikely that microenvironmental differences
arose. Comparing bulk and single-cell transcriptomes, we observe clear
differences at the individual-cell level leading to the formation of sub-
populations. We find that the P. putida population is heterogeneous and

that the presence of a broad-host-range plasmid, which inflicts a
population-wide burden, changes the subpopulation dynamics. The
experimental design made it unlikely that transcriptional subpopula-
tions identified were generated by arising mutations, as the cells only
grow for a fewgenerations and themutation rate of P. putida is relatively
low. Furthermore, our data demonstrate a differential transcript abun-
dance of plasmid-encoded genes amongst bacterial subpopulations and
that the transcription of operons, essential for conjugation, are absent in
a subset of cells. These observations support that transcriptional het-
erogeneity has a determining role in the evolutionary and ecological
success of plasmids, as seems to be the case for many bacteria.

Results
Plasmid affects growth but scantly chromosomal transcription
First, we sought to compare the growthof P.putida cultures in absence
and presence of the broad-host range plasmid pKJK5 to evaluate any
cost or benefit in the overall population. Notably, we detected a
decrease in growth rate when carrying the plasmid at the start of the
exponential phase (AUC 23.5±0.3 vs. 24.9±0.4, p = 1.8× 10−9; r
0.76±0.03 vs. 1.14±0.08, p = 5.12× 10−10) (Fig. 1A, Table S1). However,
towards the end of the growth phase, no difference was observed.
When growing plasmid-free and plasmid-carrier cells in coculture, in a
competition experiment, the plasmid showed no significant fitness
cost or advantage (w = 1,016∓0,009) after 16 hours of cocultivation
(Table S2). First, unsupervised cluster analysis of the population-level
(bulk) gene transcripts (excluding tRNA and rRNA) separated samples
according togrowth state (OD0.5 vs.OD1.5), and thepresence/absence
of the plasmid (Fig. S1). This separation, however, was mainly attrib-
uted to plasmid-encoded gene transcripts since, after excluding these,
the separation between plasmid-free and carrier populations was no
longer supported statistically (Fig. 1B), despite differential transcript
abundance of a few chromosome-encoded genes.

microSPLiT generates quality scRNA-seq data
Few studies have currently utilized high-throughput single-cell tran-
scriptomics, like microSPLiT. Therefore, the acquired data were
assessed by comparison to (i) population-level bulk transcriptomes
(RNA-seq) and (ii) a blind microSPLiT replicate (referred to as the

Fig. 1 | Small growth effect of plasmid carriage with little influence on chro-
mosomal gene transcription at the population level. A Growth curve (OD=
600nm) showing small differences in growth rates of Pseudomonas putida
KT2440 with (blue) and without (orange) pKJK5 (Kruskal‒Wallisχ² = 16.516;
p = 4.823e-05) and area under the curve (t = 10.045; p = 1.792e-09; n = 12 indepen-
dent experiments, see Table S1). Samples were taken at OD0.5 and OD1.5 for bulk
transcriptomics or microSPLiT sample preparation (indicated by transparent
colored circles following color code of B). B PCA multivariate analysis on

transcripts from chromosome-encoded genes at the population level (bulk; n = 4
independent experiments) according to the presence (P +) or absence (P−) of the
plasmid and according to ODs (OD0.5 vs. OD1.5). The presence of the plasmid did
not significantly discriminate between cell transcriptomes, as confirmed using
10,000 permutations in a two-sided PERmutational Multivariate ANalysis Of VAr-
iance (PERMANOVA; r²plasmid = 0.094; pplasmid = 0.0922; r²OD = 0.253; pOD =0.001;
r²plasmid: OD = 0.035; pplasmid: OD = 0.7). Source data and detailed statistical results
are displayed in the Source Data file.
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microSPLiT control) (Fig. S2). In contrast to the main microSPLiT
experiment, the blind microSPLiT control was generated by mixing
samples (plasmid presence/absence and growth state) before gen-
erating the microSPLiT libraries. The sum of mRNA transcripts per
gene in the microSPLiT samples correlated well with those both from
population-level (bulk) transcriptomes obtained from total mRNA
extractions (r = 0.793) and themicroSPLiT control (r = 0.944), showing
that the single-cell data reflected population-level transcription.
Importantly, this also indicates that microSPLIT did not introduce a
systematic bias for specific transcripts. A total of 1599 single-cell
transcriptomes (>85 transcripts/cell, Fig. S3) were recovered, char-
acterized by transcripts from 4432 different genes (over 5698 mRNAs
annotated in the genome) over all cells, with an average of 424.36
mRNA transcripts per cell. When performing microSPLiT, a trade-off
between cell number (as defined during library preparation) and cell
transcriptome coverage was seen: the microSPLiT control generated
more single-cell transcriptomes (3165 cells) characterized by tran-
scripts from4248 genes across all cells with a lower average number of
transcripts per cell (181.6 mRNA transcripts/cell) (Fig. S4). In bulk
transcriptomes, 5632 different transcripts were obtained.

Among plasmid carrier cells, 91.4% displayed at least 1 plasmid-
derived transcript at OD0.5 (average plasmid-derived transcript ratio =
1.24%) and 94.8% at OD1.5 (average plasmid-derived transcript ratio =
1.73%), suggesting that the plasmid is stably maintained in P. putida, as
shown in previous studies33,34. The few percent of plasmid-encoded
transcript free cells among plasmid carriers could result from a lower
sequencing coverage per cell, segregational plasmid loss, or both.

For the following analyses, we filtered out transcripts that were
present in less than 10% of cells for all growth conditions (P + 0.5,
P + 1.5, P-0.5, P−1.5), resulting in 737 genes across 1486 cells (TableS S3,
S4, Fig. S5). Single-cell transcriptomics showed the formation of dis-
tinct subpopulations constrained by plasmid carriage. Detailed tran-
script abundance per growth condition and by cluster can be found in
Table S5. Unsupervised cluster analyses based on whole single-cell
transcriptomes including both plasmid- and chromosome-encoded
transcripts (reduced to the 10 top significant principal components,
Fig. S6) generated 11 distinct clusters labeled ‘W’, projected on a uni-
form manifold approximation and projection (8 dimensions, UMAP)
plot (Fig. 2A). Clusters segregated according to growth state and
plasmid carriage (Fig. 2A, B). Single cell transcriptomes from samples
grown to OD0.5 were mainly distributed in clusters W1-5, while cells
fromOD1.5were distributed in clustersW6-11. ClustersW3-5 andW9-11
were dominated by plasmid-free cells, while plasmid carrier cells
mainly distributed in clusters W1-2 and W6-8. (Fig. 2A–C).
Chromosome-only single-cell transcriptomes formed 9 clusters (Ch1-9
clusters; Fig. S7, Table S5) showing transcriptional subpopulations of
cells generally similar to W clusters. This overlay (Fig. S7C) suggests
that the segregation between the transcriptome of plasmid-free and
-carrier cells is notonly due to plasmid-encoded transcripts, but also to
changes in the transcription profile of the host chromosome (Fig. S8).

Genes differentially characterizing clusters W1-5 vs. W9-11 (i.e.,
OD0.5 vs. OD1.5; Fig. 3A, B) as identified with the Seurat function
FindMarkers, were housekeeping genes including ribosomal proteins
(rps, rpl, rpm), elongation factors (fusA, tufB), global regulators (rpoC),
and malate:quinone oxidoreductase (mqo-II), whose transcript num-
berwas higher atOD0.5. Induced transcription of thesegenes is typical
for early exponential growth35 andMqo-II, for example, is regulated by
carbon sources and oxygen availability, which changed over time due
to consumption36. At the end of the exponential phase (OD1.5), a high
number of transcripts related to respiration in decreasing oxygen
conditions characterized the samples: Differential transcripted genes
included ccoNOPQ-I, the cytochrome b component of the ubiquinol-
cytochrome c reductase complex (petB), amino acid metabolisms
(arcABCD-1, gdhB), and flagellin (fliC). These observations were con-
firmed with population-level (bulk) transcriptomics comparing OD0.5

and OD1.5. A few genes discriminated between plasmid-free and car-
rier cells (Fig. 3C, D), such as those involved in rRNA maturation,
protein translation and translocation (rne, lnfC, secD, tig) or the 3-
hydroxydecanoyl-dehydratase (fabA) whose increased transcript
number in plasmid carrier at OD0.5, may have consequence for the
membrane fluidity. Indeed, at the outset of growth, flow cytometry
analyses revealed a small change in size and cell texture (Fig. S9). These
changes may facilitate conjugation and plasmid maintenance.

The few differentially transcribed chromosome-encoded genes
identified at the population level (bulk transcriptomics), did not dis-
criminate between plasmid-free and carrier cells. Looking at single-cell
transcriptomes only, clusters W1, W4, W7, W10 and W11 (‘Ribosome-
rich subpopulations’) were distinct from clustersW2,W3,W5,W6,W8,
and W9 (‘Ribosome-poor subpopulations’) (Fig. 2A, D). Interestingly,
the underlier of this separation did not seem to be related to OD or
plasmid presence/absence. Instead, subpopulations W1, W4, W7, W10,
andW11werecharacterizedby increased levels of transcripts encoding
ribosomal proteins (rpl, rpm and rps). This suggests that subpopula-
tions with distinct translation rates or cell cycle stages co-occurred
regardless of the growth state. Furthermore, an increased rate of
ribosomal gene transcription co-occurred with an increased abun-
dance of transcripts of house-keeping genes, isoprenoid biosynthesis
and, in plasmid carrier cells, to plasmid encoded genes (Fig. 2D).

At the beginning of the exponential phase (OD0.5), plasmid-free
cells were evenly distributed among subpopulations W3, W4, and W5
(Fig. 2C) with the latter almost exclusively populatedwith plasmid-free
cells. However, W5 cells were characterized by transcripts that also
defined cells at OD1.5. Indeed, when mapping W5 transcriptomes with
the transcriptomes from themicroSPLiT control (Fig. S10), we see that
those cells cluster with cells with OD1.5 transcription profiles (includ-
ing clusters W6-9). The W5 cluster exhibits increased transcript
abundance of genes involved in (i) glycolysis (eda), (ii) the arginine
deiminase pathway and L-argnine metabolism (arcABCD, kauB), lysine
oxidative decarboxylation (davB), (iii) glutamine synthase (PP-3148)
and (iv) the oxidation of L-glutamylputrescine (puuB) (Fig. 2). This
subpopulation of cells was also characterized by having many tran-
scripts involved in motility (fliC), and respiration (ccoP). The chromo-
some single-cell transcriptome data suggest that cells in the W5
subpopulation shifted toward transcriptional patterns to an alternative
source of energy, and nitrogen through arginine and glutamine
metabolisms.

Notably, at the end of the exponential phase (OD1.5), sub-
populations of cells displaying an increased number of ribosomal gene
transcripts (W7, W10, and W11; Fig. 2D), also displayed more tran-
scripts of efflux pumps (oprCQ), for nucleic acid and amino acid
synthesis, degradation and import (tktA, cmk, putP, gchV-I, PP-0496,
aspA), regardless of the plasmid (Fig. 2D, “OD1.5 subpopulation”).

Plasmid-encoded genes are differentially transcribed
among cells
The subpopulation dynamics at OD0.5 seemed to be driven by the
presence of the plasmid, which may have led to the decreased growth
rate of the plasmid carrier cells, perceived at the outset of growth
(Fig. 1A). The burden of the plasmid may also have resulted in the
observed decrease of the cluster coefficient in plasmid carrier cells
(degree to which genes tend to cluster together; Table S6), in network
graphs calculated from spearman correlations between genes of each
single-cell at OD0.5 (>85 transcripts/cell; Fig. S11). Reduced co-
occurrence correlation between chromosomal genes of plasmid car-
rier cells suggests that the plasmid interferes with chromosome tran-
scriptional regulation. Furthermore, when calculating the Spearman
correlation between plasmid and chromosomal genes (Fig. 4A), we see
that plasmid encoded genes, especially tra genes, were transcribed
concomitantly (n> 30, p<0.05) with mqo-II and ribosomal protein
transcripts (rpsI, rpsP and rpmI, rpmJ genes). Additionally, tra gene
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transcription exhibited significant positive correlations (rs >0.6, n> 30,
p<0.05) with transcripts involved in LPS biosynthesis and membrane
protein translocase and chaperones (lptD, rfbAD, tig, PP-2304), DNA
synthesis (nrdB, purA), peptide transport, rRNA maturation, protein
synthesis and folding (dppA-II, rnr, rbbA, fklB), respiration, energy pro-
duction, oxidoreductases, oxidative stress (cyoAC, fprI, nuoF, atpB, PP-
2010, sodB) and carbon metabolism and coordination (gpm, pycAB, PP-
3443, spoT), especially after the exponential phase (OD1.5). Intriguingly,

these chromosomal gene transcripts also positively correlated with
pKJK5-encoded Tn402-related gene transcription (Fig. 4A).

Transcription of the traGFEDC operon specifically, which encodes
genes involved in DNA replication and transfer, critical for conjugative
plasmid transfer, was further investigated (Fig. 4). The PtraG promoter of
the traGFEDC operon, was fused with the green fluorescent protein
sfGFP (PtraG-sfGFP) on the pPROBE-NT vector37 to enable quantification
of single-cell expression levels by flow cytometry. Both microSPLiT
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single cell transcriptomes and flow cytometry of the PtraG-sfGFP reporter
showed, that traGFEDC transcription was increased at OD1.5, as more
cells in the population had a positive transcription signal (GFP fluores-
cence and traGFEDC transcripts; Fig. 4B, C) and the level of transcription
signal in individual cells was higher (fluorescence intensity and tran-
script number; Fig3D). Furthermore, an unsupervised cluster analysis
was performed including only plasmid transcripts from plasmid-carrier
cells (>85 transcripts/cell). Transcript numbers were normalized by
dividing transcript counts by the summed numbers of plasmid-encoded
transcripts and performing log+1 transformation (Fig. 5). Despite a low
significance of the principal component, due to low transcript numbers,
6 clusters (P1-6) of plasmid transcriptomes were identified (Fig. 5A),
grouping cells independently of growth state. Interestingly, the Tra2
region (summed trb genes encoding themating pair formation including
pilus assembly) was homogeneously expressed among plasmid carriers
(Fig. 5C). Yet, the transcriptional regulator TrbA that targets PtrbB and the
Tra1 region, was present in a small number of cells that also had fewer
transcripts of other trb genes (Fig. 5D). Also, the P4 plasmid cluster
which represented about 12% of plasmid carriers, was distinguished by a
lack of transcripts from the traGFEDC operon (Fig. 5E, F). The occur-
rence of a subpopulation of cells not expressing the traGFEDC was
confirmedby theGFP-based reporter plasmidwhere PtraGwas inactive in
about 13% of the cells (cells with no detectable GFP signal). Nonetheless,
the P4 subpopulation did not appear to be inactive or consist of dead
cells, as the numbers of rps and rpl ribosomal protein transcripts were
equivalent to those of other plasmid-carrier cells (Fig. S13).

Discussion
Here, we investigated transcript abundance at the single-cell level of P.
putida with and without the conjugative broad-host-range IncP-1
plasmid pKJK5. With microSPLiT, we observed that P. putida, despite
growing in a continuously homogenized environment, displayed
transcriptional heterogeneity. This is in agreement with the few other
studies using similar approaches7,24,25 on bacteria belonging to differ-
ent orders. Cells clustered into transcriptional subpopulations, dis-
playing differential expression of ribosomal proteins and alternative
amino acid and catabolic, energy-providing pathways. Generally sub-
populations may arise due to microenvironmental differences, epige-
netic determination, phase variation2 and mutations38. The formation
of subpopulations has the potential to improve the population-wide
fitness of the genotype by facilitating bet-hedging or division of labor
strategies. In this study, the subpopulation W5 of plasmid-free cells
observed at OD0.5 appeared to undergo a diauxic shift and/or co-
utilization of energy sources39, which have been shown to occur
through stochastic events leading to bi-phasic shifts within isogenic
populations40. The use of an alternative energy source by plasmid-free
cells may have led to the differences in overall growth rates observed
between plasmid-free and carrier cells since, during early exponential
growth, no plasmid carriers adopted the transcriptome profile of
subpopulationW5. The stability of pKJK5 within a bacterial population
is ensured by conjugation33, genes ensuring stable inheritance (parti-
tioning system parA and incC; klc and kle genes33), a putative toxin-
antitoxin system41, and a replication system that enlarges the host

range of the plasmid, especially among proteobacteria41. However, its
stability in a subpopulation of cells seems to also depend on the
transcriptomic context. The aforementioned shift to an alternative
energy-providing pathway, combined with the cost of plasmid car-
riage, may have induced a fitness loss, impeding P. putida from
meeting the burden of plasmid maintenance42, by reducing the num-
ber of formed subpopulations. The W5 subpopulation was character-
ized by a higher number of transcripts involved in arginine deiminase
pathway leading to the expulsion of ornithine. The plasmid may thus
have deprived the population ofplasmid carriers of an alternative ATP/
NH3

+ source in addition to extracellular ornithine, which interestingly,
was also shown to act as a public good for Streptococcus species43,44.

When investigating correlations between plasmid- and
chromosome-encoded transcript abundances among plasmid-
encoded genes, we found that tra genes involved in DNA replication
for transfer, were co-transcribed with housekeeping genes, which
imply that the pKJK5 plasmid decreases its burden by aligning with its
host’s activity. Likewise, we show that the abundance of transcripts
associated with the Tn-402-related transposon encoded by pKJK5 was
also correlated to the same housekeeping genes. Similar observations
were made in another single-cell transcriptome study25 and we spec-
ulate thatmanyMGEsmay, at least in part, rely on, or synchronizewith,
the cell’s transcriptional activity for the induction of transposition or
horizontalmobilization, as observedwith other transposable elements
(e.g.,45), which could be advantageous for the fitness of the host and
the success of the MGE itself. Lastly, we show with both microSPLiT
and the PtraG-sfGFP promoter activity reporter, that a defined sub-
population of cells did not transcribe the traGFEDC operon and thus
did not engage in conjugation. Interestingly, this subpopulation did
transcribe ribosomal proteins and did, therefore, not appear to be
either inactive or dead. It may seem counterintuitive that the plasmid
does not maximize its potential for horizontal transfer; however,
decreasing the expression of the large conjugativemachinery in a sub-
population of cells, and thus it’s burdenon the host cell,may represent
a bet-hedging strategy by which the plasmid promotes its association
with the genotype, in a specific subset of cells.

This study is among the first to discern the role of bacterial sub-
populations in plasmid biology. Using microSPLiT, we illustrate that
transcriptional heterogeneity among cells can indeed be central to
plasmid-host genome interactions. Plasmid carriage impacted the
subpopulation dynamics of the host, and the transcript abundance of
plasmid-encoded genes was highly heterogeneous. Central plasmid
functions such as replication and maintenance seem to fluctuate,
probably in sync with the cell cycle, while transcript abundance of
genes critical for conjugation was biphasic, resulting in a smaller
subpopulation that likely does not engage in conjugation. Studying
subpopulation dynamics holds great promise for the understanding of
bacterial ecology and evolution and for biotechnological applications.
An important perspective of the findings presented here is that we
need to further understand single-cell heterogeneity in plasmid biol-
ogy at a broader scale and in natural environments where microbes
experience a large diversity of environmental factors, and face a large
variety of MGEs, like plasmids, ICEs, phages, PICIs and transposons,

Fig. 2 | Whole single-cell transcriptomes generally cluster in accordance with
growth state and the presence/absence of the plasmid. Subpopulation clus-
tering identified by single-cell transcriptomics of P. putida carrying a plasmid (P +)
or not (P−) at early (OD0.5) and late exponential growth (OD1.5) (n = 1 independent
experiment; 1486 cells). A UMAP obtained by microSPLiT scRNA sequencing
identified 11 whole transcriptome clusters (W1-W11). Clustering was performed
with an integrative approach combining Euclidean distance-based K-nearest
neighbor, refining the edge weights with the Jaccard similarity and the Louvain
algorithm. Color of the dot indicate to which cluster the cell belongs as indicated
on the graph (W1-11). B Same UMAP graph where color of the dot indicate the
growth state (OD0.5 and OD1.5) and the presence of the plasmid (P +/P−). C Cell

transcriptomes from OD0.5 were mainly distributed in clusters W1-5, while cells
from OD1.5 were mainly distributed in clusters W6-W11. Data are presented as
absolute cell count. D Heatmap of normalized and centered-scaled transcript
number per cell as displayed through the expression color code (normalization
consist in a log10 transformation of transcript numbers * 10,000 divided by
summed transcript number of the cell). Top colors represent the cell cluster
(W1-11). The top 8 biomarker genes (p <0.05) identified by a two-sided Wilcoxon
signed-rank test are shown for each cluster (common biomarker to multiple
groups where displayed only once). The p-value associated with each marker gene
for each cluster (cluster of interest vs. all cells) can be found in Supplementary
Dataset 1. Source data are provided as a Source Data file.
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enhancing genetic variability among populations (e.g.,46,47). Therefore,
and in the context of the ongoing antibiotic resistance crisis, a deeper
understanding of the interactions between plasmids and other MGEs
with their host will be critical.

Methods
Bacterial strains, cultures, growth curve, and competition
experiment
Pseudomonas putida KT2440 (ATCCTM 47054) growth was performed
on Lysogeny-Broth medium (LB) at 30 °C and 250RPM. Pseudomonas
putida KT2440/pKJK5 was obtained by electroporating 1 µg of pKJK5

plasmid (private collection) into 50 µL of competent P. putidaKT2440.
Competency was achieved at an optical density (600 nm) of 0.8. A
culture of 50mLwas washed twice with 50mL of 10% ice-cold glycerol
and finally resuspended in 800 µL of 10% ice-cold glycerol. Cells were
aliquoted (50 µL) and electroporated in a 2mm cuvette at a voltage of
2400V, 1 pulse. For the following experiments,P. putidaKT2440andP.
putida KT2440/pKJK5 were pre-cultured separately overnight in 5mL
of LBmedium. Pseudomonas putidaKT2440/pKJK5was cultivatedwith
tetracycline (50 µg/mL). For the growth curves (3 biological replicates,
4 technical replicates), pre-cultures were washed in LB medium and
diluted 104 times before distributing 200 µL in a 96-well plate

A B

C D

Bulk SPLiT
-1   0   1-3  -1  1   3

Fig. 3 | A few genes discriminate between samples according to OD and the
presence of the plasmid. Heatmaps obtained from (A, C) the normalized popu-
lation (bulk; n = 4 biological replicates) and (B, D) the summed normalized
microSPLiT (scRNA seq; n = 1 independent experiment) normalized transcription
rate of genes characterizing cells categorized by growth stage (OD0.5 or OD1.5)
and plasmid presence (P−/P+) showing the 30 first marker genes (two-sided non-
parametric Wilcoxon rank sum test; p <0.01) obtained with Seurat separating

(A, B) clusters “W1”, “W2”, “W3”, “W4”, “W5” vs. “W6”,“W7”, “W8”, “W9”, “W10”,
“W11” mainly composed of OD0.5 and OD 1.5 cells, respectively; and (C, D)
separating clusters “W1”, “W2” vs.“W6”, “W7”, “W8”, and “W6”,“W7”, “W8” vs.
“W9”,“W10”, “W11” mainly composed of plasmid carrier- or free- cells at each OD,
respectively. Normalization was operated by dividing genes counts by the total
count of the sample *10,000 as displayed on the color key. Source data are pro-
vided as a Source Data file.
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incubated at 30 °C and shaken every 20min. Optical density (600nm)
was recorded after shaking using a Synergy H1 microplate reader
(BioTek, Winooski, VT). For the competition experiment (4 biological
replicates), overnight cultures were washed in LB medium and mixed
(Pseudomonas putida KT2440 + Pseudomonas putida KT2440/pKJK5)
equally. The mixes were diluted 104 times, and 800 µL was distributed
in a 12-well plate. Total cell number and plasmid carriers were counted
before and after competition using a 105-fold dilution plated on LB
plates and LB and tetracycline 20 µg/mL, respectively. The fitness of
the plasmid was calculated as w = ln(Pcarrierf/Pcarrieri)/ln(Pfreef/
Pfreei). For the transcriptomics analyses, 100mL cultures were incu-
bated in flasks froma 200-fold dilution and sampled at 600nmoptical
densities of 0.5 and 1.5.

GFP-based reporter plasmid and flow cytometry analysis
The promoter PtraG was cloned using HiFi Gibson Assembly into a
pPROBE-NT backbone with primers traGp_Fw (5′-gttagttagggaa-
taagccgagttttaagggagcctcgcgg-3′) and traGp_Rv (5′-aggtcgactcta-
gaggatcggccaggaagagggctaaag-3′) to amplify the PtraG region from
pKJK5 with overhangs to pPROBE-NT (Addgene Plasmid #37818) and
primers MFHO38 (5′-gatcctctagagtcgacctgc-3) and MFHO37 (5′-
tcggcttattccctaactaactaaag-3′) for pPROBE-NT. The GFP reporter plas-
mids were transformed into P. putida KT2440 (negative control) and P.
putida KT2440/pKJK5 following the electroporation procedure. Over-
night cultures were diluted 1/50 and normalized to an OD of 0.1. These
cultures (n = 3)were then grown at 30 °C and 250RPM. For cell size and
granulometry, samples were taken at OD0.5 and 1.5 and examined by
flow cytometry (FACS Aria III, Becton Dickinson Biosciences, San Jose,

CA, USA) using the 488 nm laser and the FSC and SSC detection
channels, respectively (n = 3 independent experiments). To measure
GFP intensity and abundance, samples were taken at OD0.5 and OD1.5,
washed twice with PBS and examined by flow cytometry using a
488 nm excitation laser and the FITC (530/30 nm bandpass filter)
detector channel. The closing gate was set at 50,000 counts using the
FSC and SSC detection channels. A culture of P. putida KT2440/pKJK5
containing the pPROBE-NT plasmid was used as a control to set up the
gate for the GFP signal on the FITC detection channel. The data in Fig. 4
were analyzed using FlowJo software (Tree Star Inc., USA).

Transcriptomic data acquisition
After an overnight culture of 16 h in 5mL of selective LB (250 RPM),
Pseudomonas putida KT2440 and Pseudomonas putida KT2440/pKJK5
were washed and diluted 500 times in 100mL of LB. Flasks were
incubated at 30 °C (250RPM), and cultures were sampled at turbidity
(600nm) of 0.5 and 1.5.

Population-level (bulk) RNA-seq. Samples (n = 4 independent
experiments) were centrifuged (3min, 7000× g), RNA content was
directly extracted using the Quick-RNA Fungal/Bacterial Miniprep Kit
(Zymo Research, CA, USA) following the manufacturer’s instructions,
and libraries were prepared using the Zymo-Seq RiboFree Total RNA
Library Kit (Zymo Research, CA, USA). Fragment integrity and size
were assessed using a fragment analyzer (Agilent, CA, USA) and
quantified with a Qubit dsDNA HS assay kit (Thermo Fisher Scientific,
Waltham, MA, USA) before sequencing on a Novaseq 6000 (Illumina,
CA, USA) at 2 × 150bp performed by Novogene Co., Ltd. (Cambridge,

***, p-value = 1.32E-06 **, p-value = 0.00565
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Fig. 4 | Subpopulation transcriptional heterogeneity of the traGFEDC operon,
which is essential for conjugation, validated by flow cytometry of the pro-
moter-sfGFP fusion reporter. A Spearman correlation matrix between plasmid
geneswith several chromosome-encodedgenes. Significancewas determinedwith
a two-sided t-test by the rcorr-5.1-2 Rpackage (n > 30 cells,p <0.05). The size ofdot
is proportional to the correlation (B) Normalized summed transcript counts of
traGFEDC genes from individual cells on a violin plot according to OD (n = 1

independent experiment; n = 384 traGFEDC+/P+ cells). C Percentage (mean ± SD;
n = 3 independent experiments; n = 50,000 cells) of PtraG promoter reporting
systemactivating cellfluorescence (FITC-A) as determined byGFPfluorescent cells
counted using flow cytometry (D) Flow cytometry histogram for PtraG-sfGFP
reporter signal from samples taken at OD0.5 and OD1.5 representing cell count in
FITC-A expression level (experiment was repeated 3 times with similar results).
Source data and detailed statistical results are displayed in Source Data file.
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United Kingdom). Sequence files can be found at NCBI under Biopro-
ject ID PRJNA1019643.

microSPLiT scRNA-seq. The experiment was repeated 2 times (n = 2
independent experiments) following the microSPLiT protocol7. Sam-
ples were centrifuged (3min, 7000× g), resuspended in the same
volume of cold paraformaldehyde 4% (pH 7.2) for fixation and kept at
4 °C overnight. Fixed samples were permeabilized by lysozyme, and a
polyA tail was added to mRNA using E. coli Poly(A) Polymerase (New
England Biolabs, Ipswich, MA). Cell subsamples were stained with
SYBRTM Green I (Thermo Fisher Scientific, Waltham, MA, USA), and
their concentration in each sample was measured using a FACS Aria III
(Becton Dickinson Biosciences, San Jose, CA, USA). A total of 250,000
cells were distributed in 48 wells where reverse transcription occurred
(Maxima HMinus Reverse Transcriptase, Thermo Scientific™, Thermo
Fisher Scientific, Villebon sur Yvette. France), each well containing

primers with a specific barcode. Cell distribution was carried out
blindly during the first experiment, while P-0.5, P-1.5, P + 0.5 and
P + 1.5 samples were knowingly distributed among the 48 wells. After
reverse transcription, the cells were pooled together and physically
separated (vortex and filtration steps at 10 and 1 µm, pluriSelect Life
Science UG (haftungsb.) & Co. KG, Leipzig, Germany) and randomly
split into 96 wells where a well-specific oligo was added to the cDNA
construct by ligation with a T4 DNA Ligase (New England Biolabs,
Ipswich, MA). Cell pooling, random splitting and ligation were repe-
ated for a third barcode addition so that, statistically, cell-hosted
cDNAs carry a unique 3-barcode combination. Cells were pooled,
divided into sublibraries of 10,000 (replicate 1) or 6000cells (replicate
2) and lysed after measuring their concentration using a FACS Aria III
(Becton Dickinson Biosciences, San Jose, CA, USA). The second strand
synthesis was performed using template switching oligos, and cDNAs
were amplified using a KAPA HiFi HotStart ReadyMix PCR kit (Roche
Sequencing Solutions, Pleasanton, CA) supplemented with EvaGreen®
Dye (Biotium, San Francisco, CA) for 14 cycles in total. Sublibraries
were fragmented using Enzymatics Fragmentase (QIAGEN Beverly,
Beverly, CA) and amplified. Sublibrary-specific adapters were ligated
using Enzymatics ligase (QIAGEN Beverly, Beverly, CA), and sub-
libraries of cDNAwere amplified using a KAPA HiFi HotStart ReadyMix
PCR kit (Roche Sequencing Solutions, Pleasanton, CA).

Fragment integrity and size were assessed using a Fragment
Analyzer (Agilent, CA, USA) using an NGS Fragment Kit (1–6000bp)
and quantified with a Qubit dsDNA HS assay kit (Thermo Fisher Sci-
entific, Waltham, MA, USA) before sequencing on a Novaseq 6000
(Illumina, CA, USA) at 2 × 150bp performed by Novogene Co., Ltd.
(Cambridge, United Kingdom). A list of primers and associated bar-
codes can be found in Kuchina et al. 7. Sequence files can be found at
NCBI under Bioproject ID: PRJNA1019643. The number of cells and
transcripts per cell were equivalent in the different generated sub-
libraries (Fig. S4B).

Computational method
The reference genome was generated using STAR 2.7.9a (https://
github.com/alexdobin/STAR) combining the pKJK5 plasmid and Pseu-
domonas putida KT2440 genome using, respectively, GenBank record
AM261282.1 and assembly GCA_000007565 from EnsemblBacteria.
The reference genome was indexed for STAR using parameters
(--genomeSAindexNbases 10) specific for small genomes using the
formulamin(14, log2 (Genome Length)/2 - 1). The created genomewas
used as a reference for both approaches (bulk & microSPLiT).

Population-level (bulk) RNA-seq. The sequenced reads were trimmed
of the remaining adapter sequences and low quality based using bbduk
(BBMap 38.90–Bushnell B. – sourceforge.net/projects/bbmap/), with
right-side trimming using parameters {k=23 mink=11 hdist=1 tpe tbo
trimq=10}. Trimmed reads were mapped against the reference genome,
and the per-cell gene counts were quantified using STAR 2.7.9a (https://
github.com/alexdobin/STAR). Transcripts identified as rRNA, tRNA and
plasmid encoded were removed from the data. For heatmaps, feature
counts from the generated contingency table (gene× sample) were
normalized (divided by the total counts, multiplied by 10,000+ 1, and
log10 transformed) and centered-scaled with the R scale function.

microSPLiT scRNA-seq. Sequenced reads were demultiplexed (bar-
code list can be found in ref. 7) and mapped against the reference
genome, and the per-cell gene expression was quantified using
STARsolo (STAR 2.7.9a; https://github.com/alexdobin/STAR/). A
matrix of unique molecular identifier (UMIs, unique gene transcript-
associated barcode) counts for each cell (N-by-K matrix, with N cells
and K genes) was generated by gathering cells from all sublibraries.
UMIs identified as rRNA or tRNA were removed from the dataset, and
cellswith less than85UMIswere sorted out. This thresholdwas chosen
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Fig. 5 | Plasmid single-cell transcriptome clustering suggests population het-
erogeneity in plasmid gene transcription, with differential expression of
tra genes. Subpopulation clustering identified by single-cell transcriptomics of P.
putida plasmid carriers at early (OD0.5) and late exponential growth (OD1.5)
(n = 621 P+ cells, Table S3). A UMAP obtained by microSPLiT scRNA sequencing
identified 6 plasmid transcriptome clusters (P1-P6) when only plasmid transcripts
were analyzed with 6 dimensions (see Fig. S12). Clustering was performed with an
integrative approach combining Euclidean distance-based K-nearest neighbor,
refining the edge weights with the Jaccard similarity and the Louvain algorithm.
Same UMAP, where dots were colored according to (B) the OD of the cell or (C–E)
to normalized transcript number of (C) all trb genes, (D) trbA genes, (E) traGFEDC
genes. Normalization consist in a log10 transformation of transcript numbers+1 *
10,000dividedby summedplasmid transcript number of the cell.FHeatmapof the
normalized centered-scalednumberof tra transcripts per cell ordered according to
clusters P1-6. Source data are provided as a Source Data file.
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to be above the sharp drop of UMIs48 as determined with the knee-
graph (UMI count per barcode rank; Fig. S3). This left samples sizes of
3165 cells (Control E1 experiment) and 1486 cells (E2 experiment). We
consider that this sample size was sufficient since cell identity could be
retraced from the clustering48. UMIs identified as plasmid genes were
counted and added as metadata to characterize cells, as well as the
sublibrary, the associated experiment and the sample type. For each
subset of data (whole-genome encoded genes; chromosome encoded
genes or plasmid encoded genes), a SeuratObject was created using
the R package Seurat 5.0.1. (https://cran.r-project.org/web/packages/
Seurat/index.html)with R 4.3.2. Genes presents in less than 10%of cells
in all cell types (P-0.5; P-1.5; P + 0.5; P + 1.5) were sorted out for subsets
of data made of whole-genome encoded genes and chromosome
encoded genes in order to ensure a robust analysis49. Feature counts
per cell were divided by the total counts of the cell, normalized (divi-
ded by the total counts, multiplied by 10,000 + 1, and log10 trans-
formed), scaled and centered using the scale R function (heatmaps) or
linear model with the ScaleData function from Seurat R package for
cell clustering. Variables were individually regressed against each
feature, and the resulting residuals are then scaled and centered. Lin-
ear dimensional reduction was performed with a PCA, and clustering
parameters were selected by combining a JackStraw resampling test
and an elbow plot (Fig. S7). Cells were clustered with an integrative
approach combining Euclidean distance-based K-nearest neighbor,
refining the edge weights with the Jaccard similarity and the Louvain
algorithm. A nonlinear dimensionality reductionwas then appliedwith
UMAP. Inter-gene Spearman correlation and associated p values were
calculated with the rcorr-5.1-2R package (https://search.r-project.org/
CRAN/refmans/Hmisc/html/rcorr.html).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sequence data generated in this study have been deposited in the
National Center for Biotechnology Information’s SRA repository under
accession code PRJNA1019643. The reference genome data used in this
study were generated combining the pKJK5 plasmid sequence available
in the NCBI database under accession code AM261282.1 and Pseudomo-
nas putida KT2440 genome available in the Ensembl Bacteria database
under accession code GCA_000007565. The mapping, demultiplexing
and quantification for bulk and single cell RNA-seq data generated in this
study havebeendeposited in theZenododatabase under accession code
11356666. Source data are provided with this paper.

Code availability
Statistical analyses were performed with R 4.3.2 (packages vegan-2.6-4,
mvabund-4.2.1, Seurat-5.0.1, patchwork-1.2.0, dplyr-2.4.0, scCustomize-
2.0.1, ggplot2-3.4.4, rcorr -5.1-2 and corrplot-0.92). The sequenced reads
were trimmed of the remaining adapter sequences and low quality
based using bbduk (BBMap 38-90-Bushnell B. - sourceforge.net/pro-
jects/bbmap/). Reads were mapped against the reference genome, and
the per-cell gene counts were quantified using STAR-2.7.9a (bulk tras-
criptomics) or STARsolo from STAR-2.7.9a (single-cell transcriptomics)
(https://github.com/alexdobin/STAR). Flow Cytometry analyses were
obtained with FlowJo software v10 (Tree Star Inc., USA).
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