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Abstract 
Background.   Infrared (IR) spectroscopy allows intraoperative, optical brain tumor diagnosis. Here, we explored 
it as a translational technology for the identification of aggressive meningioma types according to both, the WHO 
CNS grading system and the methylation classes (MC).
Methods.   Frozen sections of 47 meningioma were examined by IR spectroscopic imaging and different classifica-
tion approaches were compared to discern samples according to WHO grade or MC.
Results.   IR spectroscopic differences were more pronounced between WHO grade 2 and 3 than between MC in-
termediate and MC malignant, although similar spectral ranges were affected. Aggressive types of meningioma 
exhibited reduced bands of carbohydrates (at 1024 cm−1) and nucleic acids (at 1080 cm−1), along with increased 
bands of phospholipids (at 1240 and 1450 cm−1). While linear discriminant analysis was able to discern spectra of 
WHO grade 2 and 3 meningiomas (AUC 0.89), it failed for MC (AUC 0.66). However, neural network classifiers were 
effective for classification according to both WHO grade (AUC 0.91) and MC (AUC 0.83), resulting in the correct 
classification of 20/23 meningiomas of the test set.
Conclusions.   IR spectroscopy proved capable of extracting information about the malignancy of meningiomas, 
not only according to the WHO grade, but also for a diagnostic system based on molecular tumor characteristics. 
In future clinical use, physicians could assess the goodness of the classification by considering classification prob-
abilities and cross-measurement validation. This might enhance the overall accuracy and clinical utility, reinforcing 
the potential of IR spectroscopy in advancing precision medicine for meningioma characterization.

Key Points

•	 Aggressive types of meningioma have changed infrared (IR) spectroscopic signatures.

•	 Deep learning can predict WHO grade and methylation class of meningiomas exploiting 
IR spectra.

Vibrational spectroscopy includes infrared (IR) and Raman 
spectroscopy and has been suggested for brain tumor di-
agnosis. Many studies illustrate its enormous potential in 
neuro-oncology, demonstrating its ability to discriminate 
tumor from nontumor tissue, detect necrotic areas, reveal 

the tumor (sub)type,1 and identify the primary tumor of brain 
metastases.2 As these optical techniques are label-free and 
provide information about tissue immediately, they are envi-
sioned as intraoperative tools for neurosurgery.3–5 In situ ap-
plication of Raman spectroscopy during glioma surgery was 
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already performed,6 while infrared spectroscopy of fresh 
brain tumor samples allowed successful brain tumor iden-
tification within minutes after resection.7 Thus, vibrational 
spectroscopy holds great promise for intraoperative appli-
cations to provide relevant information to aid clinicians in 
their decision making.

Meningiomas are the most frequent primary brain tu-
mors. Most of them are nonmalignant, however a minority 
of meningiomas (0.7%) exhibits malignant behavior and 
with poor prognosis.8 They are graded as WHO CNS grade 
1, WHO CNS grade 2, and WHO CNS grade 3 (anaplastic) 
based on histopathology and subtype according to current 
WHO classification.9 Several genetic aberrations and driver 
mutations have been identified in meningiomas, which 
endorsed for refinement of meningioma classification 
and grading. Brain tumors can also be classified based on 
their methylation profile.10 Methylome profiling stratifies 
meningiomas into benign (three subclasses), intermediate 
(two subclasses), and malignant. The methylation class 
(MC) correlates with progression and overall survival and 
might be superior to WHO grade for predicting patients 
at risk.11 Furthermore, recurrent meningiomas seem to 
arise from a genetically distinct subgroup.12 It is thus clin-
ically important to identify those patients with aggressive 
meningiomas as early as possible in the clinical course in 
order to adapt the therapeutic regimen and follow-up care 
accordingly.

The spectroscopic signature of meningiomas has been 
previously investigated, however not for anaplastic menin-
gioma WHO 3, as this is a rare subtype. The IR spectroscopic 
signatures of meningiomas WHO 1 were described on sam-
ples of four patients13 and analyses indicated reduced bands 
assigned to unsaturated fatty acids as main difference to 
brain tissue. Several studies focused on differences between 
nontumor brain tissue and several types of brain tumors 
(among those were meningiomas) and were successful in 
discriminating tissue types taking advantage of machine 
learning strategies.14–16 Other studies focused exclusively on 
meningioma with regard to neurosurgical applications. The 
analysis of frozen sections17 and fresh samples18 showed 
that vibrational spectroscopy is able to distinguish dura and 
meningioma tissue, as to be expected, mainly based on the 
spectral bands of collagen. Moreover, IR19 and Raman spec-
troscopy20 of dewaxed formalin-fixed paraffin-embedded 
tissue were able to discriminate meningiomas WHO 1 from 
meningiomas WHO 2 using principal component analysis 

(PCA) and discriminant analysis. Visible Resonance Raman 
spectroscopy confirmed this for fresh samples.21

Here, we have used infrared spectroscopy as a promising 
translational technology for the identification of aggressive 
meningiomas, based on both, the WHO classification and 
the methylation profile. Therefore, IR spectral differences 
were analyzed and strategies for predicting (i) WHO grades 
2 or 3 and (ii) methylation classes intermediate or malig-
nant were developed, taking into account the requirements 
for clinical use and evaluation of this information in the 
frame of patients’ therapy management.

Materials and Methods

Samples

Human brain tumor samples were obtained from routine 
surgical resection of brain tumors and one sample was 
investigated for each patient. Meningioma tumor sam-
ples from the Department of Neurosurgery, University 
Hospital Carl Gustav Carus at the TU Dresden (n = 38), 
from the Department of Neuropathology, University 
of Heidelberg (n = 4), and from the Department of 
Neurosurgery, University Medical Center Hamburg-
Eppendorf, Hamburg (n = 5) were included. All 
meningiomas were diagnosed as WHO grade II or WHO 
grade III by the local neuropathologists; the diagnosis 
was confirmed and methylation class analysis22 was pro-
vided by the Department of Neuropathology, University 
of Heidelberg, Germany. Collection and use of tissue 
samples and data were done in accordance with local 
ethics regulations and approval.

Cryosections of 16 µm thickness were prepared on CaF2 
slides (for infrared spectroscopy) and on glass slides (for 
reference histology).

Infrared Spectroscopy

Infrared spectroscopy was conducted on frozen sections, 
as this is a validated approach for the investigation of bio-
chemical signatures by vibrational spectroscopy. In future 
studies, this signature could then be transferred to anal-
ysis of fresh tissue or in situ. Three measurement positions 
being vital tumor and free of tissue preparation artifacts 

Importance of the Study

Meningiomas are the most prevalent primary brain tu-
mors. With a minority exhibiting malignant behavior, early 
identification is crucial. Since IR spectroscopy offers 
intraoperative optical brain tumor diagnosis, we investi-
gated the spectral signatures for the WHO CNS grading 
system and the methylation classes. While previous 
studies have delved into spectroscopy of meningiomas, 
our research is the first to include the rare anaplastic 
subtype. The identification of differences in the infrared 

spectra enabled the development of a translational ap-
proach for the detection of aggressive meningiomas. 
Importantly, neural network classifiers are needed for 
the identification of MC classes, presumably due to the 
complex and interacting processes associated with 
DNA methylation patterns. These findings may pave the 
way for intraoperative spectroscopic assessment of 
meningiomas to support clinical decision making in the 
pursuit for improved therapeutic strategies.
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were selected on each sample in reference to a consecu-
tive HE-stained tissue section; for 1 sample, only 2 suitable 
positions could be identified. Infrared spectra were ac-
quired in transmission mode using a Vertex 70 FT-IR spec-
trometer with infrared microscope Hyperion 3000 (both 
Bruker Optik GmbH, Ettlingen, Germany) as described 
previously.23 The system is equipped with a focal plane 
MCT array detector in combination with a 15 × Cassegrain 
objective to deliver an array of 64 × 64 spectra over a 
170 × 170 µm2 area at each measurement position. A new 
background spectrum was acquired prior to each meas-
urement on CaF2 without sample. The spectral resolution 
was set to 6 cm-1 and 100 interferograms were collected, 
coadded and Fourier transformed by applying Blackman–
Harris apodization and zero filling factor of 0, resulting in 
an acquisition time of 3 min. Each spectrum was ratioed 
to the background spectrum and the transmission spectra 
were converted to absorbance values.

To exclude contributions of residual water vapor and 
CO2 bands, an atmospheric compensation was calculated. 
A 4 × 4 spatial binning was performed to further improve 
the spectral quality and obtain 256 spectra for each meas-
urement position, thus resulting in 768 spectra for each 
sample. FT-IR spectra were then reduced to the finger-
print region (950–1800 cm-1) and baseline corrected using 
a rubber band procedure (all performed in OPUS 7.2 soft-
ware, Bruker Optic GmbH, Ettlingen, Germany). Spectra 
with artifacts were identified by visual inspection and ex-
cluded from further analysis.

Classification of Spectral Datasets

All analyses were performed in MATLAB 2023a (The 
MathWorks Inc, Natick, MA, USA). The dataset was split 
into training (n = 18,345 spectra) and test set (n = 17,298 
spectra) in a patient wise manner. Classifiers were devel-
oped and validated (leave-one-patient-out cross valida-
tion) on the training set and were afterwards applied to 
the independent test set. Data dimensionality reduction 
was performed in 3 different ways: (i) principal component 
analysis (PCA), using the MATLAB function pca and consid-
ering either the first five principal components (explaining 
95% of variance) or the first 30 principal components (ex-
plaining 99.9% of variance); (ii) 4-fold spectral binning; 
(iii) manual feature selection (10 or 30 features) based on 

the Fisher coefficient. PCA and calculation of Fisher coeffi-
cients were performed on the training set.

The dataset was labeled according to either WHO CNS 
grade as “WHO 2” or “WHO 3” or according to methyla-
tion class intermediate “MC int” or malingnant “MC mal.” 
Classifiers were developed either based on linear discrim-
inant analysis (MATLAB function fitcdiscr) or a fully con-
nected neural network (MATLAB function fitcnet with 20 
optimization steps OptimizeHyperparameters auto). The 
probability of class assignment was obtained for each 
spectrum of the test set. Subsequently, the probability of 
class assignment of each sample was calculated as the av-
erage value of the probabilities of all spectra belonging to 
the respective sample.

Results

Samples of 47 meningioma cases were included in this 
study. Table 1 shows the diagnosis according to WHO 
grade and methylation class and the allocation of the 
samples to the test and training sets. In fact, many WHO 
2 meningiomas belonged to the MC int and many WHO 3 
samples belonged to MC mal. The grading of malignancy 
in the two different diagnostic systems was not concordant 
for a substantial number of samples.

Three measurement positions were selected on a 
HE-stained tissue section and 256 IR spectra were obtained 
in a 16 × 16 array on consecutive unstained tissue sections 
at each position (Supplementary Figure 1). IR spectral sig-
natures of meningiomas were analyzed on the training 
set (Figure 1). Mean spectra were calculated for the dif-
ferent WHO grades (left) or methylation classes (right). 
They all show the well-known IR spectral bands of brain tu-
mors and look very similar on first sight. Besides, a similar 
standard deviation was observed for the different groups, 
indicating a similar variability (Figure 1A–D). The inspec-
tion of the difference spectrum showed reduced IR bands 
at 1024, 1085, and 1650 cm-1 and increased IR bands around 
1240 and at 1450 cm-1 in meningiomas WHO 3 compared to 
meningiomas WHO 2 (Figure 1E). Spectral differences be-
tween methylation classes were found in similar spectral 
ranges but were smaller (Figure 1F). Here, reduced spec-
tral bands at 1024, 1081, and 1620 cm-1 and increased bands 
around 1240 and 1670 cm-1 were found in meningiomas MC 

Table 1.  Histopathological Diagnosis of WHO CNS Grade and Methylation Class With Allocation to Training and Test set. One Sample was 
Investigated for Each Case. MC int: Intermediate, MC mal: Malignant

Diagnosis Samples
total

Samples
training set

Samples
test set

WHO 2 21 11 10

 � MC int 14 7 7

 � MC mal 7 4 3

WHO 3 26 13 13

 � MC int 10 5 5

 � MC mal 16 8 8

Total 47 24 23

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae082#supplementary-data
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mal. The Fisher coefficients confirmed the relevance of these 
spectral regions for WHO grades 2 and 3 (Supplementary 
Figure 2A) as well as for MC int and MC mal (Supplementary 
Figure 2B), respectively. Considering IR band assign-
ments,24 carbohydrates (C-O vibrations at 1024 cm-1) and 
nucleic acids (symmetric stretching of PO2- at 1080 cm-1) 
might have been reduced in more aggressive types of me-
ningioma phenotype, while (phospho-)lipids (stretching 
of PO2- at 1240 cm-1 and CH3 bending at 1450 cm-1)  
were increased. Moreover, the conformation of proteins 
(beta-sheet band around 1620 cm-1, alpha-helix band 
around 1650 cm-1, random coil band around 1670 cm-1) was 
changed. Interestingly, the difference spectra had similar 
bands except in the Amide I region (1600–1700 cm-1; com-
pare Figure 1E and F). The data suggests that there was a 
change in protein content for the meningiomas WHO grade 
2 and 3, while there was rather a change in protein confor-
mation for meningiomas MC int and MC mal.

As we found spectral differences between groups, we then 
developed classification algorithms. Two different algorithms 
were developed on respective training sets of IR spectra: one 
for predicting WHO grade and the other for predicting meth-
ylation class for each spectrum using the identical dataset, 
respectively. Previous studies showed that simple classifiers 
are well suited to identify brain tumors and extract the WHO 
grade of glioma.7,15,25 Therefore, we first followed established 
approaches and used PCA for data dimensionality reduc-
tion followed by linear discriminant analysis for either WHO 
grade classification or methylation class analysis (Figure 2A). 
This strategy was rather successful for WHO grade classifica-
tion taking into account 30 PCs (AUC 0.89), while it was not 
suited to identify methylation classes (AUC of 0.66). However, 
choosing a neural network (NN) classifier drastically im-
proved the classification performance for methylation class 
analysis (AUC 0.83), while giving comparable results for WHO 
grade (AUC 0.91, Figure 2B). Interestingly, linear discriminant 
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Figure 1.  IR spectral signatures of meningioma. IR spectra of the training set were split according to WHO grade 2 versus WHO grade 3 (left) or 
methylation class intermediate versus malignant (right) and analyzed. A–D: Mean spectra (solid line) ± SD (dotted line) E, F: difference spectra 
as indicated
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analysis was generally inadequate to distinguish methylation 
classes, regardless of the approach for data dimensionality 
reduction (Figure 2C), whereas results were sufficient for 
WHO grades. Here, LDA was a sound solution for all condi-
tions tested and the application of an NN did not lead to an 
improvement of classification.

Choosing the classification strategy accordingly 
(namely, data dimensionality reduction by PCA and NN 
classification) led to successful prediction of WHO grade 
(Figure 3A) and methylation class (Figure 3B). For both di-
agnostic systems, 20/23 samples of the test set were as-
signed to the correct class by applying a straightforward 
approach that uses the mean value of class assignments 
of the spectra as the classification result for a sample. 
Classification results for each measurement position are 
shown in Supplementary Figure 4. The distribution of the 
class assignment probabilities of the spectra is shown 
as a violin plot in Figure 3. The median of the probabil-
ities showed a clear weighting of a class for almost all the 
samples, with the exception of sample 102, for prediction 
of methylation class. Moreover, it becomes clear on first 
sight that the neural network classifier is kind of “abso-
lutely sure” for about half of the samples (for WHO grade: 
samples 44, 48, 52, 60, 65, 68, 46, 84, 90, 86, 93, 106; for 
MC: samples 44, 48, 52, 60, 65, 68, 46, 59, 72, 86, 406, 111). 
In those cases, almost all spectra of the sample were as-
signed with probabilities of ~100% to the same class.

Interestingly, samples that were misclassified regarding 
the WHO grade were correctly classified in terms of meth-
ylation class and vice versa (misclassified samples are 
marked by an asterisk in Figure 3 A, B). This suggests that 
spectral features associated with the tumor were respon-
sible for the misclassification rather than measurement 
artifacts or errors. The diagnosis of eight samples of the 
test set was discordant between WHO grade and MC (sam-
ples 46, 56, 59, 84, 90, 95, 110, 88). Interestingly, misclassi-
fication for MC occurred only in those cases. Sample 46 
(ground truth: MC mal) was misclassified as MC int and 
had WHO grade 2 and samples 90 and 95 (ground truth: 
MC int) were misclassified as MC mal and had histopatho-
logical WHO grade 3.: WHO.

Discussion

This study shows that analysis of infrared spectroscopic 
datasets can provide information on WHO CNS grade and 
methylation class for meningiomas. It extends previous 
findings to aggressive meningioma subtypes and relates 
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infrared spectroscopy and diagnostic methylation profiling 
for the first time.

Vibrational spectroscopy addresses molecular bond vi-
brations and is sensitive to DNA methylation as shown 
on isolated chemical compounds.26 Although IR spectros-
copy can directly visualize methyl groups attached to DNA, 
this typically necessitates DNA isolation and specialized 
sample preparation.27 In our study, we analyzed tissue 
sections and the recorded spectra thus comprised informa-
tion of all cellular compartments. Therefore, the observed 
spectral changes between meningiomas MC int and MC 
mal are likely caused by cellular and metabolic remodeling 
triggered by altered gene expression, rather than from 
CH3 groups bound to the DNA. This is supported by find-
ings of Raman spectroscopy that have previously linked 
the MGMT methylation status in glioblastoma to metabolic 
and biochemical changes in lipids.28

Changes in similar IR spectral ranges were identified 
for the respective more aggressive meningioma types in 
both diagnostic system (WHO grade and MC). Those might 
be explainable in the context of cellular modifications as-
sociated with increasing proliferation and malignancy.29 
Meningiomas WHO grade 1 and 2 have been investigated 
using IR spectroscopy before.19 The authors identified a re-
duction of amide I (1650 cm-1) band intensity in recurrent 
WHO 1 meningiomas and WHO 2 meningiomas compared 
to WHO 1 meningiomas. In our study, a similar observa-
tion was made regarding the amide I band that was also re-
duced in the higher-grade meningiomas. This could be due 
to the reduction in protein content associated with changes 
in cell density, fibrous structures, and extracellular fibers. 
Expression of collagen type V is increased in atypical and 
anaplastic meningiomas WHO 2/330 and proteomics indi-
cated disturbed collagen biosynthesis and degradation 
as well as extracellular matrix remodeling in nonskull 
base meningiomas (WHO 1 and 2).31 Moreover, brain in-
vasive meningiomas might strongly express MMP-9 al-
tering extracellular protein.32 Interestingly, the change in 
protein-related band intensity is different in comparison to 
other types of primary or secondary brain tumors. Here, 
an increase in protein-related bands together with a de-
crease in lipid related bands is associated with increasing 
malignancy.1,15 Besides protein modifications, our study 
suggests changes in carbohydrates, nucleic acids, and 
(phospho-)lipids. Increased bands related to carbohydrates 
might be associated with the presence of clear cells with 
cytoplasmic glycogen deposition, being the name-giving 
feature of clear cell meningiomas WHO 2.29 Moreover, 
activities of several glycolysis enzymes were altered in 
anaplastic meningioma compared to benign subtypes.33 
Likewise, the expression of proteins associated with fatty 
acid metabolism was linked to meningioma grade and ag-
gressiveness.34 Increased bands related to nucleic acids in 
WHO 2 / MC int seem counter-intuitive, given the increased 
proliferation (more mitotic figures) that is a key diagnostic 
feature of WHO 3 meningiomas. It could be nonetheless 
linked to higher cell density and/or translational activity.

The successful development of a classifier capable of 
distinguishing between WHO 2 and WHO 3 meningiomas 
aligns with prior research in the field. In the context of 
cancer, including brain tumors, IR spectroscopy has been 
widely utilized, demonstrating its efficacy in classifying 

specimens based on histological diagnosis.35–37 However, 
there is a considerable degree of heterogeneity among 
meningiomas even within the various subtypes, which is 
reflected in the presence of different intratumoral gene 
and protein expression programs. Here we showed that 
infrared spectroscopy holds promise for identifying estab-
lished biomarkers that discriminate between meningioma 
subtypes or predict clinical outcomes, thereby facilitating 
more precise diagnosis and prognosis during surgery. 
Future studies on a larger dataset might extend those find-
ings and employ unsupervised machine learning strategies 
to further stratify meningiomas and uncover valuable in-
sights into the underlying molecular processes driving 
tumor progression and response to therapy.

It is important to note that linear classifiers, which are 
established strategies and that work well for WHO grade, 
failed in retrieving the MC. The NN classifier exhibited su-
perior performance, presumably because it can better 
model complex relationships in the data and can po-
tentially capture fine nuances. This is consistent with the 
general trend that workflows are evolving towards more 
complex modeling approaches that allow capturing tissue 
complexity.35 In the context of this study, one may spec-
ulate that the categorization into MC can be attributed to 
the complex and interacting processes associated with 
DNA methylation patterns, while histological WHO grade 
is based on a more straightforward visual assessment and 
represents an ordinal type of the grading system. This is 
supported by the fact that misclassifications for MC oc-
curred only in samples that had a discordant WHO grade. 
Unfortunately, NN classifiers come with the drawback of 
being data hungry. While they were well applicable in our 
ex vivo study that used an IR imaging array for data ac-
quisition and analyzed 35643 spectra, the need for large 
training sets might be a limitation for studies using fiber-
based spectroscopic systems that can only acquire single 
spectra in one shot. This fact must be considered in the fu-
ture development of clinical classifiers. Moreover, it might 
increase the classification accuracy to intentionally focus 
the training of the algorithm on samples that show con-
flicting states of malignancy in the two diagnostic systems 
(ie, MC int WHO3 samples and MC mal WHO 2 samples) to 
refine the classifier.

Fiber-based instruments offering in situ IR spectros-
copy have been made available and have demonstrated 
large potential for identification of pancreatic cancer.38 
This implies that intraoperative IR spectroscopy could be 
likewise performed during meningioma surgery offering 
immediate diagnostic insights. For this information to be 
effectively utilized in a clinical setting, algorithms need to 
be developed and the attending physician must be em-
powered to rate the output of the classifier. Here, we de-
fined the average of class assignments of all the spectra 
of one sample as classification result. However, other var-
ious strategies for data interpretation exist, presenting ad-
ditional options to assess the goodness of classification 
and it may be beneficial to incorporate additional criteria 
in future clinical applications. One potential approach is to 
consider the probabilities of class assignments. This could 
involve setting a classification probability threshold or ex-
cluding areas with a high number of spectra classified with 
low probability. Alternatively, one might evaluate multiple 
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measurement position separately to take into considera-
tion regional variability and determine a conclusive diag-
nosis for the patient integrating various clinical modalities. 
These kinds of approach might enhance the overall accu-
racy and clinical utility, reinforcing the potential of IR spec-
troscopy in advancing precision medicine for meningioma 
characterization.

Supplementary data

Supplementary material is available online at Neuro-
Oncology Advances (https://academic.oup.com/noa).
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Lay Summary 

Meningioma is a type of tumor that grows from the lining around 
the brain and spine. Some are benign and grow slowly, while 
others are aggressive and grow quickly. The aggressiveness of 
the tumor is typically determined after it is surgically removed 
and examined under a microscope or analyzed using genetic 
techniques, both of which take time. The authors of this study 
used infrared spectroscopy (IR), a technique that uses light to 
measure substances in a sample, to predict how aggressive 
the tumor is. They found that IR spectroscopy could predict the 
tumor’s aggressiveness with good accuracy, as confirmed by 
traditional pathology and genetic methods.
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