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Summary
Background Cerebral vasospasm (CV) is a feared complication which occurs after 20–40% of subarachnoid
haemorrhage (SAH). It is standard practice to admit patients with SAH to intensive care for an extended period of
resource-intensive monitoring. We used machine learning to predict CV requiring verapamil (CVRV) in the largest
and only multi-center study to date.

Methods Patients with SAH admitted to UCLA from 2013 to 2022 and a validation cohort from VUMC from 2018 to
2023 were included. For each patient, 172 unique intensive care unit (ICU) variables were extracted through the
primary endpoint, namely first verapamil administration or no verapamil. At each institution, a light gradient
boosting machine (LightGBM) was trained using five-fold cross validation to predict the primary endpoint at various
hospitalization timepoints.

Findings A total of 1750 patients were included from UCLA, 125 receiving verapamil. LightGBM achieved an area
under the ROC (AUC) of 0.88 > 1 week in advance and ruled out 8% of non-verapamil patients with zero false
negatives. Our models predicted “no CVRV” vs “CVRV within three days” vs “CVRV after three days” with
AUCs = 0.88, 0.83, and 0.88, respectively. From VUMC, 1654 patients were included, 75 receiving verapamil.
VUMC predictions averaged within 0.01 AUC points of UCLA predictions.

Interpretation We present an accurate and early predictor of CVRV using machine learning with multi-center
validation. This represents a significant step towards optimized clinical management and resource allocation in
patients with SAH.

Funding Robert E. Freundlich is supported by National Center for Advancing Translational Sciences federal grant
UL1TR002243 and National Heart, Lung, and Blood Institute federal grant K23HL148640; these funders did not play
any role in this study. The National Institutes of Health supports Vanderbilt University Medical Center which
indirectly supported these research efforts. Neither this study nor any other authors personally received financial
support for the research presented in this manuscript. No support from pharmaceutical companies was received.

Copyright Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Cerebral vasospasm; Verapamil; Machine learning; Prediction
Introduction
Cerebral vasospasm (CV) is a common angiographic
finding following subarachnoid haemorrhage (SAH)
and is widely reported as a primary contributor to
delayed cerebral ischemia (DCI) and concomitant
morbidity and mortality in this population.1 CV mani-
fests with variable severity, being angiographically
appreciable in up to 70% of all patients with SAH and
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E-mail address: egabel@mednet.ucla.edu (E. Gabel).

www.thelancet.com Vol 105 July, 2024
clinically symptomatic in 20–40% of patients with
SAH.2,3 A smaller subset of up to 20% of all patients
with CV suffer from severe CV which results in either
death or severe neurologic deficit.4 Intraarterial verap-
amil, a calcium channel blocker, is the only targeted
therapy available for vasospasm reversal and is therefore
commonly given. Owing to the prevalence of severe CV
after SAH, it is standard clinical practice to admit
os Angeles, CA, 90095, USA.
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Research in context

Evidence before this study
We searched PubMed for studies on cerebral vasospasm (CV)
prediction published before February 1st, 2024. Search criteria
were (predict*[Title]) AND (vasospasm [Title]). The references
of relevant articles were also reviewed. Many attempts to
predict and associate CV have been made, only a handful of
which utilize machine learning (ML). The only ML attempts to
achieve predictive power sufficient for clinical use were
validated over small cohorts, not externally validated,
leveraged a small number of clinical predictors, and often
relied on labor-intensive, subjective, and inconsistently
available human-generated clinical scoring systems based on
radiography. The feasibility of predicting CV with ML remains
to be rigorously investigated.

Added value of this study
We demonstrate that ML predicts CV requiring verapamil
(CVRV) in patients with subarachnoid haemorrhage (SAH)
when trained on a vast collection (172 unique) intensive care
unit (ICU) datapoints. Our model achieved highly accurate
(AUC = 0.88) predictions across a large cohort at our
institution. Notably, our model ruled-out verapamil in an
average of 8% of patients not requiring verapamil up to 10
days advance, without any false negatives. We then externally
validated our model at a separate institution located across
the country in a cohort of patients with SAH of nearly equal

size and found that predictive models performed nearly
identically. In our validation, we restricted model inputs to
only those which are routinely collected in highly standardized
manner across institutions to further improve the
generalizability of these findings. Throughout this study, we
extensively explored ML utility in vasospasm prediction by
evaluating several different ML networks and found that light
gradient boosting machine (LightGBM) yielded the highest
predictive power. Because our model uses an open source ML
network and relies only on raw ICU data rather than human-
generated clinical scoring systems or radiography, it is fully
automated, deployable, and updatable as hospital admissions
progress. Our model stratifies patients by CVRV risk level,
allowing for customized hospital resource allocation for
monitoring CV in each patient based on that individual’s
predicted risk.

Implications of all the available evidence
ML trained on a vast collection of routinely monitored ICU
data yields a highly accurate and early predictor of CVRV. With
a prospective study to further validate these findings, we
believe that ML models can guide the development of
individualized vasospasm monitoring plans based on
predicted risk level as opposed to indiscriminate, resource-
intensive monitoring in all patients, as is standard practice.
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patients post-SAH to an ICU or neurocritical care unit
(NCCU) for up to several weeks of vigilant, resource-
intensive clinical monitoring.5

The ability to stratify SAH by CV risk would allow for
clinical monitoring commensurate to that risk, as
opposed to indiscriminate monitoring of every patient
with the same vigilance. Accurately predicting CVRV
would allow for the redirection of clinical resources to-
wards higher-risk cases while limiting ICU resources to
those unlikely to have severe symptoms and negative
outcomes. There have been many research attempts to
predict or draw associations to CV, most using either
human-generated radiographic scores, clinical scores, or
molecular biomarkers as predictors.6–9 Few studies have
assessed the feasibility of predicting CV using ML,10–17

most achieving insufficient predictive accuracy for
clinical rule-in/out of CV. Among the few studies
achieving higher predictive accuracy, all were validated
over small cohorts, were not externally validated, used a
small portion of available clinical predictors, and relied
on human-generated clinical scoring systems and sub-
jectively interpreted radiographic findings, which are
labor intensive and not available for all patients.10,14,17

Our group was motivated to rigorously explore the
utility of ML for vasospasm prediction in a large multi-
center study. We tested the predictive accuracy of
numerous machine learning networks trained on 172
unique ICU datapoints. We demonstrate the ability to
predict CVRV with high accuracy using ML over the
largest known cohort in the literature and over one week
before the event occurs, and externally validate this
model’s utility at a separate institution.
Methods
Data extraction and inclusion criteria
Data was extracted from the Perioperative Data Ware-
house, which was developed by the UCLA Department
of Anesthesiology and Perioperative Medicine and
distributed to multiple centers across the United
States.18 All patients with an ICD-10 code of I60 (non-
traumatic SAH) or S06.6 (traumatic SAH) between 2013
and 2022 at UCLA were included.

De-identified clinical data spanning the entire hos-
pital admission was extracted for each patient. This in-
formation included basic demographics, vitals, routinely
collected clinical labs (complete blood count with dif-
ferential, basic metabolic panel, arterial blood gas, He-
moglobin A1c (HgA1c), and cerebrospinal (CSF)
analysis), intracranial pressure (ICP), respiratory vari-
ables (O2 flow, FiO2, EtCO2, airway grade, intubation
attempts, nitric oxide), fluid status variables (volume of
maintenance intravenous (IV) fluid, urine output, blood
loss, blood administered), feeding (gastric feeding,
www.thelancet.com Vol 105 July, 2024
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emesis), and saturation (pulse oximetry, cerebral satu-
ration)). Finally, the verapamil administration time was
recorded if verapamil was administered. A complete
list of clinical predictor variables is provided in
Supplemental Table S1.

Feature extraction
For all patients, clinical data collected before ICU
admission and after verapamil injection time or time-of-
discharge from the ICU (depending on if verapamil was
given) were excluded. ICP and mean arterial pressure
(MAPs) time-series were encoded into a 20-dimensional
feature vector containing values corresponding to the
5th, 10th, …, 95th, and 100th percentiles over the
examined time period. Sera values such as complete
blood count (CBC) results were encoded as a
5-dimensional feature vector representing the mini-
mum, maximum, median, mean, and count of mea-
surements. Additional “dependent variables” were
derived from the originally extracted clinical variables,
such as “total count of ICP measurements”.

Predictive model architecture, training, and cross
validation
We developed two cross-sectional prediction models to
aid in the evaluation of CVRV risk: a “prospective”
predictive model and “retrospective” predictive model.
The prospective model was developed to provide a
clinically useful tool to assess CVRV risk in ICU pa-
tients. Prospective model predictions were performed
using 4 h, 1 day, 3 days, 5 days, 7 days, and 10 days of
ICU data starting from the time of ICU admission.
Patients having yet to reach a primary endpoint were
included at each prediction timepoint, resulting in
progressively smaller prediction cohorts at each time-
point. A “binary” prospective model was trained to
predict between two outcomes, namely if the patient
would need verapamil or not. Supplementary Figure S1
graphically illustrates the binary prospective model
design. A more advanced “trinary” prospective model
was trained to predict amongst three outcomes, namely
“will never get verapamil”, “will get verapamil within
three days”, or “will get verapamil after three days” from
the time of prediction.

Retrospective models were developed to explore the
events preceding CVRV by analyzing variable impor-
tance scores in groups of patients at the same chrono-
logical stage prior to vasospasm. For the retrospective
model, predictions were performed using all ICU data
starting from the primary endpoint and moving 4 h, 1
day, 3 days, 5 days, 7 days, and 10 days backwards in
time, before the prediction target. Supplementary
Figure S1 graphically illustrates the retrospective
model design.

Each model was tested with two different predictor
sets: an “institutional” and “conservative” (Supplemental
Table S1). The institutional predictor set contained all
www.thelancet.com Vol 105 July, 2024
clinical variables, whereas the conservative predictor set
contained only variables which are strictly measured in a
highly standardized manner across medical institutions.
Examples of such standardized variables include vital
signs, routine lab values, ICP, etc.

The candidate network architectures tested were
Logistic Regression, K Nearest Neighbors, Naïve Bayes,
Decision Trees, Support Vector Machines, Gaussian
Process Classifiers, Ridge Classifier, Random Forest
Classifier, Quadratic Discriminant Analysis, Ada Boost
Classifer, Gradient Boosting Classifier, Linear Extra
Trees Classifier, Extreme Gradient Boosting, Light
Gradient Boosting Machine (LightGBM), and CatBoost
Classifier. Logistic regression was chosen as a baseline
model to compare against since prior medical literature
has typically used logistic regression for linear predictive
tasks (and we sought to determine if a non-linear
machine learning approach was beneficial in
comparison).19

Models were trained and tuned using the PyCaret20

ML library (v3.1.0). Prior to training, we imputed
missing features with average imputation. Features
were normalized using Z score normalization as
implemented in PyCaret. We employed a stratified five-
fold cross-validation scheme (stratified by age, gender,
and outcome) to report the average performance of
models when trained on different subsets of the entire
dataset. Stratification was done to ensure that there was
equivalent representation of patient and clinical char-
acteristics in both the training and testing sets.

To correct class imbalance in the training set, Syn-
thetic Minority Over-Sampling Technique (SMOTE)21

was utilized with validation test distribution of values
kept as-is. Model hyperparameters were further tuned
using grid search (using the default PyCaret optimize
function) on each model type to yield a higher AUC that
was calibrated to the outcome across probability scores.
The best model (highest AUC on the validation fold) was
then set as the final model. The best model was found to
be a LightGBM22 model in all analyses. We reported ROC
curves and AUC values for each fold and calculated the
average AUC (±1 standard deviation (SD)) where 1 = best
classifier, 0.5 = random classifier. We also created a PR
(precision-recall) curve for each time point with an AP
(average precision) value (±1 SD). Lastly, we reported
“Variable Importance Scores” (relative rankings of
weights placed on factors used to train the model) for the
retrospective models, to help interpret what characteris-
tics the models focused on at different prediction time
points. ROC curves were compared for statistical differ-
ence using the DeLong test. Code used to process the
data and train the network is available at https://github.
com/abhisuri97/Vasospasm.

External validation
Once models were trained and evaluated at UCLA, the
associated code was sent to VUMC for local model
3
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training and testing. We chose to train the model at
VUMC separately since there were differences in data
collection between the two institutions. Additionally, data
harmonization between the two institutions was not
possible due to the developers not being able to see
output data from VUMC due to patient privacy concerns.

To train and test the model, VUMC data sets were
created and formatted to match the inputs of the UCLA
model in terms of general data types. Shared SQL
queries ensured that the same data were extracted from
the shared electronic health record vendor. Extracted
clinical predictors were then manually mapped to
ensure the raw data was of the expected values and
format of the UCLA and inclusive of all similar VUMC
data elements. There were several iterations of checking
the dataset to verify VUMC applied the same patient
inclusion criteria and procured the same set of clinical
predictors. Once the data set was finalized, python
scripts were executed locally to prepare the data for the
model calibration and execution. All patient-level VUMC
data remained on internal servers and only aggregated
summary statistics were returned to the UCLA research
team. Only the conservative set of inputs (as opposed to
institutional set) was prepared for the VUMC model to
simplify cross-center predictor variable mapping and
limit predictions to those based only on highly stan-
dardized and widely available predictor variables. The
three-group (trinary) prospective model was selected for
external validation at VUMC as it represents the most
difficult prediction scenario with three possible predic-
tion outcomes as opposed to two.

Statistical methods
For this retrospective study, we aimed to include a
sample size of all patients who we had any information
on in our data warehouse to maximize applicability of
predictive performance to a real life patient cohort. In
terms of statistical tests, multiple statistical tests were
undertaken in the course of this study. To determine if
there were any differences in the amount of data
collected per patient on a yearly basis, an ANOVA test
was performed on the average number of datapoints
collected for each patient in our dataset. ROC curves
between institutional and conservative models were
compared using the DeLong test. Significance level for
all tests was set at P = 0.05 [DeLong].

Role of funders
Neither this study nor any other authors personally
received financial support for the research presented in
this manuscript, including study design, data collection,
data analysis, interpretation, and writing of this report.

Ethics
This study qualified for UCLA IRB exception status
(waiver of consent) because there was no direct contact
with patients and all data in this study was de-identified.
Results
Demographics and sensitivity analysis
Demographics and case counts are summarized in
Table 1. A total of 1750 UCLA patients were included
with an average age of 56 ± 20 years and 46% female.
Verapamil was administered in 125 (7.1%) patients on
average 7.6 ± 4.6 days after admission. A total of 1654
VUMC patients were included with an average age of
53 ± 21 years, 42% female, 75 (4.5%) receiving verap-
amil. Patient age distributions at each institution were
similar, with most patients being over 50 years of age
(63% at UCLA, 59% at VUMC). Racial distributions
differed most significantly in the portion of Caucasian
individuals, being 41% at UCLA and 84% at VUMC.
The distributions of body mass index (BMI) at each
institution did not differ significantly.

Furthermore, in order to assess whether there were
any changes in the amount of data gathered on each
patient by year, we performed an ANOVA test to
determine if the average number of data points (sum of
number of labs, ICP, and mean arterial pressure read-
ings) for each patient differed by year. We found that
there was no significant difference in the average
number of datapoints collected on each patient by year
(P = 0.16 [ANOVA]).

Prospective predictive models
In Fig. 1, average ROC and PR curves for prospective
UCLA models are reported. The binary prospective
model achieved AUCs ranging from 0.68 (at t = 10 days
of ICU data) to 0.88 (with t = 4 h of ICU data). The
institutional and conservative model performances
differed by 0.00–0.03 AUC points on average, which
were not statistically significant differences (P > 0.05 for
all [DeLong]). The trinary prospective model achieved
AUCs in the range of 0.68–0.88 for predicting no CVRV,
0.73–0.83 for predicting CVRV <3 days, and 0.50–0.88
for predicting CVRV in 3+ days across the 1-, 5-, and 10-
day timepoints. In Fig. 2, LightGBM models are shown
to outperform logistic regression at all timepoints. See
Supplementary Table S2 for tabularized prospective
performance values. Additionally, theoretical CVRV
rule-out performance is compared between models by
examining precision when recall equals 1.00, with
LightGBM outperforming logistic regression at all
timepoints.

Retrospective predictive models
In Fig. 3, average ROC and PR curves for binary retro-
spective UCLA models are reported. Average AUCs
ranged from 0.81 to 0.92. The institutional and conser-
vative model performances differed by 0.01–0.09 AUC
points on average, which were not statistically signifi-
cant differences (P > 0.05 for all [DeLong]). In Fig. 4,
AUCs of the binary retrospective models are compared
to those of a control retrospective logistic regression
model (see Supplementary Table S3 for tabularized
www.thelancet.com Vol 105 July, 2024
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An “*” indicates a statistically significant difference as defined by P < 0.05 [two-sample t-test for continuous measures, chi-squared for categorical measures].

Table 1: Basic demographics for the entire study cohort, the subset of patients not receiving verapamil, and the subset of patients receiving verapamil at each institution.
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retrospective performance values). Additionally, the
predictor variables ranked by average importance score
(for LightGBM this is the number of times a feature was
used to split data in each of the decision trees it creates),
and the temporal fluctuation of the top three predictor
variables preceding vasospasm are shown.

External validation
In Fig. 5, average ROC curves for the trinary prospective
conservative VUMC models are reported. These models
achieved AUCs ranging from 0.61 to 0.93 for predicting
no CVRV, 0.81–0.82 for predicting CVRV <3 days, and
0.48–0.88 for predicting CVRV in 3+ days across the 1-,
5-, and 10-day timepoints. Predictive models at VUMC
performed very similarly to those at UCLA (on average
0.01 AUC points lower).
Discussion
We describe our experience using ML to predict CV
requiring verapamil in patients with SAH using a
diverse and temporally granular collection of ICU data at
two separate institutions. Predictive models at both in-
stitutions achieved comparable and high predictive
www.thelancet.com Vol 105 July, 2024
accuracy at multiple prediction time points, despite the
patient populations differing appreciably in racial
composition and being treated in separate health care
systems with different decision pathways for verapamil
administration.

Literature characterizing the utility of artificial intel-
ligence (AI) and ML for vasospasm prediction is limited.
One systematic review from 2021 on AI use in neuro-
critical care23 identified a single study using sparse dic-
tionary learning and covariance-based features from
digital subtraction angiography (DSA) to predict vaso-
spasm with an AUC of 0.93, but this study was limited
by a sample size of n = 22 and DSA availability.17

Another 2021 systematic review of ML for stroke diag-
nosis and outcome prediction24 reported one study
predicting DCI with an AUC of 0.74 across n = 317
patients,12 and one predicting a combination of DCI,
angiographic vasospasm, or cerebral infarction with an
accuracy of 95.2% but relied on radiography and
matricellular protein lab availability.13

Among other studies employing AI to predict CV,
Dumont et al. developed an artificial neural network
(ANN) for predicting symptomatic cerebral vasospasm
based on pre-existing clinical scores (Modified Fischer,
5
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Fig. 1: Prospective model ROC and PR curves. Prospective model ROC and PR curves using five-fold cross validation. Binary prospective model
results predicting CVRV or not during admission are shown in a–l. Panels a–f and g-l are AUCs and PR curves, respectively, using 4 h, 1 day, 3
days, 5 days, 7 days, and 10 days of ICU data since ICU admission. Trinary prospective model results predicting CVRV in ≤ 3 days, CVRV in >3
days, or no CVRV during admission, are shown in panels m–o, which show AUC curves using 1 day, 5 days, and 10 days of ICU data since ICU
admission.
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Hunt and Hess).14 The authors reported an AUC of 0.96,
however this was only validated across n = 22 and relied
on human-generated vasospasm risk scores. Skoch et al.
adapted Dumont’s ANN for pediatric populations and
achieved similar performance over n = 16 patients.15

Roederer et al. reported an AUC of 0.71 using a Naïve
Bayes model on 81 patients with acute SAH within two
days of vasospasm.16 Kim et al. predicted vasospasm
defined as vessel stenosis >50% with an AUC of 0.88
Fig. 2: Prospective model and logistic regression AUC and theoretical C
control model (logistic regression) AUCs and CVRV rule-out performance
model. Panel b shows precisions at the threshold where Recall = 1.00.
(n = 343) using a random forest10 reliant on clinical
grading scales and manually extracted image features.
We found that average AUCs for cohorts under n = 1000
were associated with significant uncertainty, justifying
the need for larger cohorts.

Our prospective CVRV prediction model trained on
raw ICU data alone achieved a high predictive accuracy
(AUC = 0.88) over one week prior to verapamil injection
and was validated over 1750 patients, which is the
VRV rule-out. Prospective institutional and conservative models and
over time. Panel a shows AUCs at each prediction timepoint for each

www.thelancet.com Vol 105 July, 2024
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Fig. 3: Retrospective model ROC and PR curves. Retrospective model ROC and PR curves using five-fold cross validation. Binary retrospective
model results predicting CVRV or not during admission are shown in panels a–l. Panels a–f and g-l are AUCs and PR curves, respectively, using
4 h, 1 day, 3 days, 5 days, 7 days, and 10 days of ICU prior to the primary endpoint (CVRV or no CVRV).

Articles
largest ML-driven vasospasm prediction cohort by a
factor of five in the known literature, and the largest
vasospasm prediction cohort of any prediction method-
ology in the literature. Our conservative model achieved
a similar AUC of 0.87. Perhaps most notably, the PR
curves for prospective models were favorable with
regards to rule-out of patients who will not need
verapamil, ruling out CVRV in 8% of those not
requiring verapamil up to 10 days in advance and
without any false negatives. Typical ICU management
involves serial neuro checks ± transcranial dopplers
(TCDs) with subsequent computed tomography angi-
ography (CTA) if suspicion for vasospasm is high
enough, followed by endovascular intervention if war-
ranted.5 Knowing a patient are unlikely to progress to
CVRV is invaluable for a few reasons: 1) frequency of
neuro checks and TCD can be decreased in this low-risk
population, and 2) patients in this category who exhibit
neurologic deficit with or without elevated TCDs can be
managed medically (BP augmentation) rather than
skipping directly to CTA for fear of CVRV, therefore
potentially cutting down on CTA frequency in this
population. Interestingly, predictive power worsened the
www.thelancet.com Vol 105 July, 2024
longer the length-of-stay in the ICU. As days pass in the
ICU, the number of patients included in the prediction
shrinks as patients have vasospasm and are therefore
excluded from subsequent timepoints. It is possible that
patient outcomes which are relatively easier to predict
tend to present earlier in the admission with vasospasm,
leaving a pool of patients whose primary endpoint is
more difficult to discern. For example, by day 10, if a
patient has not had vasospasm, it may become more
difficult to predict that they will then have a vasospasm
after day 10.

The trinary prospective model achieved high pre-
dictive accuracy (average AUC = 0.86) when predicting
the timeline of impending vasospasm. Such predictions
may serve to alert providers when to initiate prophylactic
BP augmentation, for example, therefore enabling pre-
paratory clinical action in high risk individuals and
titration of monitoring vigilance based on an in-
dividual’s CVRV risk. Because this is a prospective
model like our previously described binary model, it can
automatically generate new CVRV risk predictions every
day for each patient in the ICU and guide care. Inter-
estingly, as ICU admission progressed towards day 10,
7
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Fig. 4: Retrospective model and logistic regression AUCs and
importance scores. Retrospective institutional, conservative, and
control (logistic regression) models AUCs over time alongside
retrospective conservative model importance score analysis. Panel a
displays AUCs at each prediction timepoint for each model. Panels b
and c show importance score analysis: b shows averaged ranked
variable importance scores over all prediction timepoints and c
shows temporal fluctuation in importance of the three predictor
variables with the overall highest variable importance scores (10 = #1
overall predictor, 9 = #2 overall predictor, etc). Importance score rank
of top three strongest predictor variables for the conservative model
at each prediction interval.
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predictive accuracy declined slightly for the binary pro-
spective model and more significantly for the trinary
prospective model. We suspect these declines are
attributable to the steadily decreasing portion of patients
who are “obvious impending vasospasms” in the net-
work’s eye.

By using only raw clinical data, our model inputs
require zero human interpretation and can be fed clin-
ical information without human supervision and update
predictions in real-time. Prior attempts to predict vaso-
spasm can be stratified into those which use only raw
clinical data, and those which rely on clinical scores
generated through human interpretation of diagnostic
radiography. The former group has struggled to achieve
predictive accuracy sufficient for clinical use.7,25 The
other class of predictors9,10,13,26,27 rely on human-
generated clinical scores which are time-intensive and
limited by subjectivity inherent to human interpretation
of radiographic features. Such predictors are also not
easily updated in real-time given the practical limitations
on imaging frequency in the clinical setting. Despite the
convenience of our model’s fully automated workflow,
its predictions must be interpreted by clinicians in the
broader context of each patient’s admission, as blind
acceptance of diagnostic medical AI tools may lead to
medical errors and associated liability for physicians.28

Additionally, our model is not proprietary and there-
fore readily implementable at any institution given all
code is open source.

Our external validation supports the notion that our
prospective models can be used in a multi-center context
with nearly zero decline in peak predictive accuracy or
CVRV rule-out performance. A logical next step will be
to conduct a multi-center clinical study where it is pro-
spectively predicted whether each patient will develop
CVRV using our conservative model. Both the institu-
tional and conservative models dramatically out-
performed the control network, logistic regression,
which assumes linearity between predictors and targets
and is therefore performance limited in many settings.
We therefore demonstrate a nonlinear relationship be-
tween the vast collection of ICU datapoints and the
target.

Our study uniquely performed predictive modeling
at multiple timepoints prior to the event. For the pro-
spective model, doing so lends clinical utility in the form
of daily risk CVRV predictions. With our retrospective
model, performing predictions at multiple time points
provides insight into the events leading to CVRV. Pre-
dictive accuracy began to decline appreciably in our
retrospective model when predicting on a group of pa-
tients who were at least one week out from vasospasm.
We believe the time interval prior to vasospasm at which
retrospective predictive accuracy increases may repre-
sent the first detectable events in a pathophysiologic
cascade towards vasospasm. To investigate this idea
further, we analyzed the temporal fluctuation of pre-
dictor importance scores preceding verapamil in our
retrospective conservative model.

Our analysis of the temporal fluctuation of vaso-
spasm predictor importance scores may support
www.thelancet.com Vol 105 July, 2024

http://www.thelancet.com


Fig. 5: External validation of vasospasm prediction. Prospective, trinary model trained and tested on the conservative set of clinical predictor
variables from the VUMC dataset. Panel a displays ROCs and AUCs of five-fold cross validations for each group with the model trained on 1 day
of ICU data, panel b with 5 days of ICU data, and panel c with 10 days of ICU data.
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previously hypothesized CV pathophysiology. After
initial intracranial haemorrhage and ICP elevation,
subarachnoid blood products are thought to trigger
microglial activation and macrophage “crosstalk” lead-
ing to peripheral immune activation.29 Our model in-
dicates that the predictive accuracy of maximum ICP
peaks one week prior and then declines. This may
explain the mixed results others have reported when
attempting to predict CV with ICP alone within just a
few days of onset.16 Our model shows that minimum
white blood cell (WBC) count and maximum platelet
count, markers of peripheral immune activation, rise in
predictive accuracy approximately one week prior to
vasospasm and immediately after maximum ICP
importance score peaks. There is indeed considerable
evidence that WBC and platelet counts are predictive of
CV.30,31 The non-linear relationships between predictors
and targets in ML do not allow us to infer that it is high,
normal, low values, or some other characteristic entirely
of any predictor which underlies its predictive accuracy.
Therefore, the increases in the importance scores of
minimum WBC and maximum platelet counts after
maximum ICP predictive accuracy peaks may signal the
initiation of the previously described peripheral im-
mune activation following ICP elevation before CV.

While predictive models have been widely published
across fields of medicine, they are rarely implemented
in routine clinical practice. Many reasons may underlie
the failure to implement, though lack of external vali-
dation is a well-known contributing factor. We would
largely agree that this is a critical step towards clinician
acceptance. The process of externally validating our
UCLA predictive models proved to be complex. Despite
using a common electronic health record vendor, map-
ping clinical predictor variables from UCLA to VUMC
was a lengthy process with much back-and-forth be-
tween respective teams, chiefly because each institution
was blinded to all patient-level data of the other. It was
www.thelancet.com Vol 105 July, 2024
necessary to have the VUMC clinical team verify clinical
predictor variables were appropriately mapped, and a
researcher with programming experience at VUMC to
train and test the VUMC model. Given the anticipated
complexity of the external validation process, we elected
to test the most rigorous model configuration for
simplicity, namely a model which prospectively pre-
dicted the previously described three-group outcome,
using only the “conservative” set of clinical predictor
variables. Our experience externally validating this
model reinforces the notion that there is a large need in
medicine to establish infrastructure to perform external
validation quickly and easily.

Inclusion criteria were based on ICD codes for SAH
and ICU time, which are only available after discharge;
in a subsequent prospective analysis, another surrogate
for inclusion will be required. Because ML is a “black
box” which draws non-linear relationships between
predictors and targets, we cannot know which specific
characteristic of the most predictive variables spawn
their predictive accuracy. It should be noted that there
was moderate class imbalance in the cohorts within this
study, having more non-verapamil patients than verap-
amil patients. This is a difficult problem to avoid in this
setting, where the true number of those receiving
verapamil is low relative to those not receiving verap-
amil. As previously described, best efforts were made to
account for said class imbalance using SMOTE and
reporting average precisions. Finally, this study is sub-
ject to limitations characteristic of retrospective analyses
and hence requires prospective validation. Finally, both
traumatic and atraumatic SAH was included in our
prediction cohort; future work will involve building
predictive models for specific etiologies of subarachnoid
haemorrhage.

Cerebral vasospasm is a prevalent and life-
threatening complication of SAH and requires vigilant
clinical monitoring. Developing a reliable model for
9
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predicting CV has been an area of ongoing research
interest and has proven to be challenging. We report a
highly accurate ML-driven predictor of CV requiring
verapamil in, to our knowledge, the largest and only
multi-center study in the literature. Our ML model an-
alyzes 172 unique raw ICU datapoints to accurately
predict CV requiring verapamil on average a full week in
advance. Further research will focus on prospective
validation of this model and the prediction of lesser
forms of vasospasm to further optimize hospital
resource allocation in this setting.
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