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Abstract
Purpose  The presurgical discrimination of IDH-mutant astrocytoma grade 4 from IDH-wildtype glioblastoma is crucial 
for patient management, especially in younger adults, aiding in prognostic assessment, guiding molecular diagnostics and 
surgical planning, and identifying candidates for IDH-targeted trials. Despite its potential, the full capabilities of DSC-PWI 
remain underexplored. This research evaluates the differentiation ability of relative-cerebral-blood-volume (rCBV) percen-
tile values for the enhancing and non-enhancing tumor regions compared to the more commonly used mean or maximum 
preselected rCBV values.
Methods  This retrospective study, spanning 2016–2023, included patients under 55 years (age threshold based on World 
Health Organization recommendations) with grade 4 astrocytic tumors and known IDH status, who underwent presurgical 
MR with DSC-PWI. Enhancing and non-enhancing regions were 3D-segmented to calculate voxel-level rCBV, deriving 
mean, maximum, and percentile values. Statistical analyses were conducted using the Mann-Whitney U test and AUC-ROC.
Results  The cohort consisted of 59 patients (mean age 46; 34 male): 11 astrocytoma-4 and 48 glioblastoma. While glio-
blastoma showed higher rCBV in enhancing regions, the differences were not significant. However, non-enhancing astrocy-
toma-4 regions displayed notably higher rCBV, particularly in lower percentiles. The 30th rCBV percentile for non-enhanc-
ing regions was 0.705 in astrocytoma-4, compared to 0.458 in glioblastoma (p = 0.001, AUC-ROC = 0.811), outperforming 
standard mean and maximum values.
Conclusion  Employing an automated percentile-based approach for rCBV selection enhances differentiation capabilities, 
with non-enhancing regions providing more insightful data. Elevated rCBV in lower percentiles of non-enhancing astro-
cytoma-4 is the most distinguishable characteristic and may indicate lowly vascularized infiltrated edema, contrasting with 
glioblastoma’s pure edema.
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Abbreviations
DSC-PWI	� Dynamic-Susceptibility-Contrast 

Perfusion-Weighted-Imaging
rCBV	� Relative Cerebral Blood Volume
IDH	� Isocitrate Dehydrogenase
WHO	� World Health Organization
ROI	� Region Of Interest
AUC-ROC	� Area Under the Receiver Operating Charac-

teristic Curve

Introduction

According to the latest World Health Organization (WHO) 
classification of CNS tumors, Isocitrate Dehydrogenase 
(IDH)-mutant astrocytoma grade 4 is no longer referred 
to as Glioblastoma. This term is now reserved exclusively 
for IDH-wildtype grade 4 astrocytic tumors [1]. A non-
invasive differentiation of these grade 4 astrocytic tumors 
could have significant implications for patient manage-
ment [2–7]. Astrocytoma grade 4 has been less extensively 
studied compared to its grade 2–3 counterparts, remaining 
a major radiological challenge. While lower-grade IDH-
mutant astrocytomas typically appear as non-enhancing and 
non-necrotic on morphological images, grade 4 astrocyto-
mas can mimic the imaging characteristics of glioblastomas. 
Both often exhibit enhancement and necrosis, contrast-
ing starkly with their grade 2–3 IDH-mutant counterparts 
[7–13]. This overlap in morphological features between 
IDH-mutant and IDH-wildtype grade 4 tumors highlights 
the need for advanced quantitative MR techniques, such 
as Dynamic-Susceptibility-Contrast Perfusion-Weighted-
Imaging (DSC-PWI).

DSC-PWI provides insights into the tumors’ vascular 
and microvascular environments [14], particularly relevant 
because microvascular proliferation is a defining feature of 
grade 4 according to the 2021 WHO classification [1]. As a 
result, predictably, both of these tumors, regardless of IDH 
status, should exhibit elevated relative cerebral-blood-vol-
ume (rCBV), which can be considered a radiological mani-
festation of microvascular proliferation. Thus, the question 
arises: Does high rCBV predict IDH-mutation status or 
merely denote a grade 4 tumor? Traditionally, rCBV cal-
culations have focused on either mean or extreme values 
(maximum or “hot-spots”) derived from manually delin-
eated regions-of-interest (ROIs) or entire tumor volumet-
ric segmentations. The practice of using preselected single 
rCBV values, particularly when focused solely on specific 
ROIs, tends to overlook tumor heterogeneity, potentially 
overlooking significant differences across the entire tumor 
and spectrum of rCBV values [15, 16]. Furthermore, in 
these grade 4 tumors, both enhancing and non-enhancing 

components often coexist, which represent different tumor 
environments, and their separate evaluation could offer 
diverse perspectives [17].

Differentiating astrocytoma grade 4 and glioblastoma is 
especially crucial in patients under 55-year-old. Accord-
ing to WHO guidelines, DNA sequencing to confirm IDH 
mutation status in grade 4 astrocytic tumors is mandatory 
for patients under 55 years of age, while negative immuno-
histochemistry suffices for those above this age, given the 
rarity of IDH mutations beyond this threshold. Yet, for those 
under 55, IDH mutations are more balanced, emphasizing 
the need for accurate differentiation in this age group [1, 7, 
18, 19]. Given the heavily correlated factors of age, grade, 
and IDH-mutation status, studies must approach these enti-
ties with care to ensure accurate representation of data and 
interpretation. Thus, focused studies are crucial for a deeper 
understanding.

Based on these rationales, we believe that the pre-surgi-
cal differentiation between IDH-mutant astrocytoma grade 
4 and IDH-Wildtype Glioblastoma deserves specific atten-
tion [13]. The primary objective of this work is to study the 
potential of rCBV in distinguishing the IDH-mutation status 
of grade 4 astrocytic tumors in an age-adjusted cohort, in 
accordance with WHO recommendations regarding IDH-
mutations [1, 18, 19]. We aim to asses both the enhanc-
ing and non-enhancing components in a comprehensive 
voxel-wise, automated, unsupervised manner (exploratory, 
without the input of prior knowledge or assumptions) using 
histogram-derived percentile values, contrasting with con-
ventional methods that rely on preselected rCBV values 
such as mean or maximum.

Methods

This retrospective study received approval from the 
Research Ethics Committee of our tertiary hospital.

Patients

Patients diagnosed with IDH-mutant astrocytoma grade 
4 and IDH-wildtype glioblastoma were retrospectively 
retrieved from our centre’s database spanning the years 
2016–2023. The study’s inclusion criteria were as follows: 
(1) Confirmed tumor diagnosis in accordance with the WHO 
Classification of CNS Tumors 2021 criteria; (2) Age under 
55-year-old at the time of tumor diagnosis, adhering to the 
WHO recommendations; and (3) Availability of a diag-
nostic pre-surgical MR imaging examination that includes 
DSC-PWI, T1WI, T2WI, FLAIR, and contrast-enhanced 
T1WI (CE-T1WI). The study’s exclusion criterion was 
the absence of any of the sequences or a low quality that 
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prevented adequate tumor segmentation or DSC-PWI data 
extraction.

Imaging

The MR imaging examinations included in the study were 
performed using a 1.5-T scanner (Ingenia, Philips Health-
care). All DSC-PWI sequences were gradient-echo, with 
the following technical parameters: Echo Time, 40ms; Rep-
etition Time, 1500-1700ms; Flip- Angle, 75º; Pixel size, 
1.75  mm; Slice Thickness, 5  mm; Image size, 128 × 128; 
Number of Slices, 20–25; Number and duration of Dynam-
ics, 60 and 1.5s. A single dose of 0.1 mmol/kg of intrave-
nous gadolinium-based contrast agent (1 mmol/mL) was 
injected at a rate of 4–5 mL/s. Baseline was in the order 
of 10–15 points. The quality of the sequences was assessed 
by two experienced neuroradiologists: A.P.-E and PN-B 
with more than 10 and 5 years of experience in neuroradiol-
ogy. Examinations were labelled as poor quality and thus 
excluded from the study if: (1) motion artifacts prevented 
the segmentation or coregistration, or (2) an obvious low 
signal-to-noise ratio was visually assessable in the mean 
raw time-intensity curves.

Post-processing and DSC-PWI data extraction

After following the standard recommended preprocessing 
steps, the HD-GLIO pipeline was utilized to segment both 
enhancing and non-enhancing regions of the whole brain 
tumor-related abnormality, considering axial T1WI, T2WI, 
FLAIR, and CE-T1WI [20, 21]. Necrosis was excluded. 
Subsequently, the FAST tool within FSL was employed to 
acquire the segmentation for normal-appearing white mat-
ter for normalization purposes [22]. Finally, the segmenta-
tions were co-registered with the DSC-PWI using the 3D 
Slicer BRAINSFit module (http://www.slicer.org). The seg-
mentations were reviewed and verified by two experienced 
neuroradiologists: A.P-E. and PN-B. For each voxel within 
the tumor segmentations, normalized and leakage corrected 
rCBV was calculated as described by Boxerman et al. [14]. 
For each patient’s tumor segmentations, the mean and maxi-
mum values of all the voxels as well as percentile values in 
increments of five were calculated.

Description and comparison of DSC-PWI metrics

Statistical comparisons were conducted for Grade 4 Astro-
cytoma and Glioblastoma rCBV mean, maximum and per-
centile values via a Mann-Whitney U test. Simultaneously, 
we calculated the area under the receiver operating char-
acteristic curve (AUC-ROC) for all rCBV values. Finally, 

box-plots were constructed to visually assess the segrega-
tion potential of the different rCBV value.

As an addition, just to reinforce our observations that these 
two tumors display similar characteristics on morphologi-
cal imaging, we referred to the most recent research [8–13]. 
According to these studies, the primary imaging markers for 
IDH-mutation status on morphological MRI might include 
nodular enhancement, necrosis, and T2-FLAIR mismatch. 
These markers were assessed dichotomously (for enhanced 
clarity, reproducibility and robustness) by two experienced 
radiologists (AP-E and PN-B), who determined the pres-
ence or absence of such signs.

Results

Patients

The initial cohort consisted of 63 grade 4 astrocytic tumors 
in patients under 55-year-old. This group was made up of 12 
Astrocytoma grade 4 (Astrocytoma 4) and 51 Glioblastoma. 
Four tumors (1 Astrocytoma 4, and 3 Glioblastomas) were 
excluded due to the absence of DSC-PWI or the presence 
of motion artifacts that precluded accurate tumor segmenta-
tion or DSC-PWI data extraction. Consequently, the result-
ing dataset comprised 59 tumors: 11 Astrocytoma 4, and 48 
Glioblastoma. A flowchart detailing the patient selection 
process is provided in Fig. 1.

Demographic details, including age and sex, are pre-
sented in Table 1. This table also highlights statistical com-
parisons between the two groups. The mean age across the 
dataset was 46-year-old, with 34 of the 59 participants being 
male. Despite the age-centric nature of the study, a signifi-
cant age difference (p = 0.009) emerged between the enti-
ties, with Glioblastoma patients being slightly older, which 
aligns with prior knowledge [1]. Additionally, warranting 
particular mention and fully consistent with established 
knowledge, our reference centre’s brain tumor database did 
not include any Astrocytoma 4 in patients over 55-year-old.

Regarding morphological imaging evaluation (detailed 
in Table  2), the T2-FLAIR mismatch was the only visual 
feature showing significant differences associated with 
IDH-mutation status, boasting perfect specificity. However, 
it was observed in just 27% of the cases. No significant dif-
ferences were observed in the presence or absence of nod-
ular enhancement or necrosis, present in vast majority of 
cases for both entities as shown in Fig. 2.

Description and comparison of DSC-PWI metrics

Tables  3 and 4 present the results for rCBV comparisons 
using the U-Mann Whitney p-values and AUC-ROCs for 
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were higher in Astrocytomas 4. Applying the more stringent 
threshold of p < 0.005, recently proposed as more robust 
[23], the mean rCBV (Astrocytoma = 1.48 vs. Glioblas-
toma = 1.14) and percentile rCBV values between p10 and 
p60 (Astrocytoma = 0.35–1.32 vs. Glioblastoma = 0.21–
0.96) remain significant. In AUC-ROC analysis, excellent 
discriminatory power considered as above 0.8 [24], was 
demonstrated by the percentiles between p15 and p30. 
Whisker-plots for the mean and maximum rCBV of enhanc-
ing region are shown in Fig. 3. The plots for non-enhanc-
ing region mean, maximum, and the best percentile (p30) 
rCBV values are shown in Fig. 4. These figures allow for a 
visual assessment of the different discriminative capabili-
ties and values dispersion. The sensitivity and specificity of 
rCBVp30, the best percentile, were 0.82 and 0.71, respec-
tively, for a threshold of 0.56.

To clarify, for example, p5 corresponds to the rCBV 
value below which 5% of voxels within the segmented vol-
ume-of-interest fall, meaning 95% are above it, while p10 is 
the value below which 10% of voxels fall, meaning 90% are 
above it, and so forth. Therefore, for instance the range from 
p5 to p35 represents the lower range of rCBV values within 
the segmented volume-of-interest, from the 5th percentile 
to the 35th percentile, with values above the lowest 5% 
and below the highest 65%. For clarity and transparency, 
we provide the full list of results for all percentiles in both 
tumor regions. This approach offers an exploratory alterna-
tive without relying on prior knowledge or assumptions, and 
studying all percentiles ensures full data availability and the 
robustness of the provided information.

Two additional subanalyses were conducted to reinforce 
the main findings: one involved a class-balanced 5-fold 
internal cross-validation to address potential class imbal-
ance (11 Astrocytoma: 48 Glioblastoma) biases, and the 
other applied Bonferroni corrections to p-values. These are 
detailed in Supplementary Materials 1 and 2, respectively. 

enhancing and non-enhancing regions respectively. In the 
context of the enhancing tumor (Table  3), IDH-wildtype 
displayed higher values overall, but no significant differ-
ences emerged between the two tumor types. Interestingly, 
the lower percentiles (those between p5 and p35) in enhanc-
ing regions showed higher rCBV values in IDH-mutant, 
also no significant. For the non-enhancing regions (Table 4), 
all rCBV percentile values exhibited significant differ-
ences between both entities, using the conventional p-value 
threshold of 0.05. Overall rCBV in non-enhancing regions 

Table 1  This table presents the demographic and clinical characteristics of the participants, including age, sex, and tumor grade
Grade 4 astrocytoma IDH-Mutant Glioblastoma 

IDH-wildtype
Whole data-set p-value

Age (years), Mean +/-SD 41 +/-8 47 +/- 6 46 +/- 7 0.009*
Sex, 
Men: Women

6: 5 28: 20 34: 25 1

Total 11 48 59
Statistical comparisons were made using the U-Mann Whitney Test for age, and the Chi-Square test for sex. SD denotes Standard Deviation.
(*) indicates statistical significance, p < 0.05.

Table 2  Distribution of presence of Nodular enhancement, necrosis and T2-FLAIR mismatch among tumor groups
Tumor type/ imaging features Grade 4 astrocytoma IDH-Mutant Glioblastoma 

IDH-wildtype
p-value

Nodular enhancement 9/11 (82%) 47/48 (98%) 0.16
Necrosis 9/11 (82%) 44/48 (92%) 0.52
T2-FLAIR mismatch 3/11 (27%) 0/48 (0%) 0.03*
Statistical comparisons were made using Chi-Square. (*) indicates statistical significance, p < 0.05.

Fig. 1  A flowchart that summarizes the study participant selection 
process
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Discussion

In this study, we assessed the discriminatory potential 
of rCBV derived from DSC-PWI to non-invasively dif-
ferentiate between IDH-mutant astrocytoma grade 4 and 
IDH-wildtype glioblastoma pre-surgically. Our voxel-wise 
approach, which accounted for volumetric segmentations 
and all percentile values, revealed that the most discrimi-
native rCBV values lie within the lower percentiles of the 
non-enhancing regions. Here, though the values are over-
all low, they are notably higher in IDH-mutant tumors, 

In these analyses, the lower percentiles of non-enhancing 
regions remained significant and exhibited stable AUC-
ROC values under very stringent conditions, whereas the 
mean and maximum values lost their significance. This 
confirms our main results, highlighting not only the supe-
rior performance of lower percentiles in the non-enhancing 
regions but also their greater veracity, robustness and stabil-
ity compared to the mean and maximum values. For addi-
tional comparison of the main rCBV variables, an additional 
figure of dispersion graphics is also provided in Supplemen-
tary Material 3.

Table 3  Average rCBV values (mean, maximum, and percentiles) for both tumor types in enhancing regions
Enhancing region
Astro 4 rCBV Mean Gb rCBV Mean p AUC-ROC

rCBV mean 2.496 rCBV mean 2.784 0.315 0.608
rCBV p5 0.638 rCBV p5 0.359 0.074 0.690
rCBV p10 0.901 rCBV p10 0.648 0.103 0.674
rCBV p15 1.074 rCBV p15 0.894 0.255 0.622
rCBV p20 1.275 rCBV p20 1.117 0.360 0.598
rCBV p25 1.454 rCBV p25 1.321 0.475 0.577
rCBV p30 1.577 rCBV p30 1.513 0.672 0.546
rCBV p35 1.715 rCBV p35 1.707 0.947 0.508
rCBV p40 1.860 rCBV p40 1.902 1.000 0.501
rCBV p45 2.009 rCBV p45 2.106 0.841 0.522
rCBV p50 2.157 rCBV p50 2.322 0.672 0.546
rCBV p55 2.300 rCBV p55 2.539 0.577 0.560
rCBV p60 2.471 rCBV p60 2.777 0.422 0.586
rCBV p65 2.649 rCBV p65 3.045 0.315 0.608
rCBV p70 2.830 rCBV p70 3.337 0.237 0.626
rCBV p75 3.043 rCBV p75 3.700 0.160 0.650
rCBV p80 3.373 rCBV p80 4.122 0.147 0.655
rCBV p85 3.812 rCBV p85 4.659 0.129 0.662
rCBV p90 4.617 rCBV p90 5.417 0.141 0.657
rCBV max 5.772 rCBV max 6.763 0.090 0.681

Statistical comparisons were conducted using the U-Mann Whitney Test and AUC-ROC. (*) indicates statistical significance, p < 0.05 and/or 
AUC-ROC > 0.8. (**) indicates statistical significance, p < 0.005.

Fig. 2  Illustrative cases of 
patients aged between 36 
and 51 years diagnosed with 
Astrocytoma grade 4 (A-C) and 
Glioblastoma (D-F). These cases 
demonstrate overlapping imaging 
characteristics on morphological 
MR (FLAIR and CE-T1WI) and 
rCBV color maps. Features such 
as non-enhancing regions, nodu-
lar enhancements, conspicuous 
signs of necrosis, and high rCBV 
are common to both tumor types 
in all shown cases
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cases, they may more closely align with pure edema. 
Indeed, this hypothesis aligns well with prior knowledge: 
Glioblastomas are known to generate more pronounced 
edema, whereas Astrocytomas manifest a more substantial 
proportion of non-enhancing tumor tissue in the T2-FLAIR 
abnormality [25].

The observed elevated rCBV values in enhancing regions 
in both tumors, with no significant differences between 
them, would support the hypothesis that microvascular pro-
liferation is a characteristic of grade 4 tumors, rather than 

suggesting the benefit of using an unsupervised rCBV selec-
tion approach over the conventional reliance on preselected 
mean or maximum values.

Furthermore, given the well-known coexistence of tumor 
infiltration and edema in the non-enhancing regions, we 
propose that these differential rCBV values may stem from 
varying degrees of tumor infiltration in these low-vascu-
larized non-enhancing areas. Such regions may represent 
a greater degree of coexisting very-low vascularized infil-
trated tissue in IDH-mutant cases, while in IDH-wildtype 

Table 4  Average rCBV values (mean, maximum, and percentiles) for both tumor types in non-enhancing regions
Non-enhancing region
Astro 4 rCBV Mean Gb rCBV Mean p AUC-ROC

rCBV mean 1.484 rCBV mean 1.137 0.004** 0.782
rCBV p5 0.204 rCBV p5 0.122 0.053 0.689
rCBV p10 0.353 rCBV p10 0.205 0.003** 0.792
rCBV p15 0.449 rCBV p15 0.270 0.002** 0.801*
rCBV p20 0.535 rCBV p20 0.335 0.002** 0.807*
rCBV p25 0.621 rCBV p25 0.396 0.001** 0.811*
rCBV p30 0.705 rCBV p30 0.458 0.001** 0.811*
rCBV p35 0.794 rCBV p35 0.526 0.002** 0.799
rCBV p40 0.881 rCBV p40 0.590 0.002** 0.797
rCBV p45 0.979 rCBV p45 0.662 0.003** 0.79
rCBV p50 1.082 rCBV p50 0.745 0.002** 0.795
rCBV p55 1.194 rCBV p55 0.846 0.003** 0.792
rCBV p60 1.321 rCBV p60 0.957 0.004** 0.784
rCBV p65 1.459 rCBV p65 1.084 0.006* 0.771
rCBV p70 1.623 rCBV p70 1.236 0.008* 0.759
rCBV p75 1.832 rCBV p75 1.420 0.008* 0.759
rCBV p80 2.091 rCBV p80 1.652 0.015* 0.739
rCBV p85 2.434 rCBV p85 1.972 0.020* 0.727
rCBV p90 2.985 rCBV p90 2.498 0.022* 0.723
rCBV max 4.080 rCBV max 3.440 0.025* 0.72

Statistical comparisons were conducted using the U-Mann Whitney Test and AUC-ROC. (*) indicates statistical significance, p < 0.05 and/or 
AUC-ROC > 0.8. (**) indicates statistical significance, p < 0.005.

Fig. 3  Whisker plots depict 
the distribution of mean and 
maximum rCBV values for the 
enhancing region of each tumor 
subtype. For clarity, only mean 
and maximum rCBV values are 
shown due to their widespread 
utilization in clinical practice, 
and also because none of the 
percentiles yielded significantly 
improved results
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instance, by emphasizing and optimizing DNA sequencing 
utilization (often costly or difficult to access) in the most 
indicated cases to optimally detect IDH mutations. Ulti-
mately, it offers an early prognosis prediction, which is 
invaluable, especially for young adults, and their families, 
enabling informed decisions and setting realistic expecta-
tions. Furthermore, such differentiation could be instru-
mental for the early detection of clinical trial candidates, 
for instance, for trials on treatments targeting IDH, which 
are anticipated to increase due to recent positive outcomes 
[2]. As we move further into the era of personalized and 
targeted therapies, the insights from our study could play an 
increasingly important role in shaping treatment strategies. 
This, in turn, hopefully will positively influence the disease 
course and enhance the quality of life for patients [3–6]. 
An illustrative example of potential clinical applicability of 
results in new patients with unknown diagnosis is shown 
in Fig. 5. Four additional illustrative cases are provided in 
Supplementary Material 4, along with the rCBVp30 values 
for the entire dataset.

Several studies have attempted to identify IDH-mutation 
status using rCBV while analysing a range of adult diffuse 
gliomas. Some suggest the feasibility of discerning IDH 
mutation status, generally reporting higher rCBV values 
in both enhancing and non-enhancing regions for IDH-
wildtype [17, 26, 27]. However, interpreting these find-
ings requires caution, as these studies do not account for 
potential confounding with age or histological grade which 
are only reported as descriptive statistics, thereby prevent-
ing the optimal discernment of the specific differential in 
the current study. As an exemplification, considering that 
the vast majority of grade 4 astrocytic tumors are indeed 

a specific attribute of IDH-mutation status. Interestingly, 
the lower percentile rCBV values for Astrocytoma grade 4 
tend to be slightly higher than those for Glioblastoma within 
these enhancing regions. This trend may suggest a higher 
homogeneity in Astrocytomas, characterized by a narrower 
range of rCBV values when compared to Glioblastomas.

Grade 4 Astrocytomas present morphological imaging 
traits that are distinct from grade 2–3 but are more remi-
niscent of IDH-wildtype Glioblastoma. The challenge of 
radiologically distinguishing between these two entities is 
highlighted by the morphological evaluations in this study, 
as illustrated in Fig. 2; Table 2, when considering the main 
markers described for differentiating between IDH-mutant 
and IDH-wildtype tumors [8–13].

Additionally, this study underscores the clinical signifi-
cance of this differentiation in patients under 55 years old. 
In realistic clinical settings, the differentiation becomes cru-
cial in this age group, making our findings especially perti-
nent. Unlike in those over 55 where the prevalence of the 
IDH mutation is negligible [1, 18, 19]. This approach mir-
rors a real-world clinical scenario where such differentiation 
is genuinely pertinent and impactful. For instance, the non-
invasive presurgical differentiation of grade 4 astrocytic 
tumors is relevant beyond the ultimate histopathological 
diagnosis and could profoundly impact patient management 
across different levels. First, in specific scenarios, it could 
influence surgical decisions, such as whether to opt for func-
tion-preserving surgery or a biopsy (in cases of suspected 
grade 4 astrocytomas) versus total resection (in cases of 
suspected glioblastomas), particularly in challenging loca-
tions. Second, it may guide the sequence of the diagnostic 
workflow in histopathology and molecular pathology. For 

Fig. 4  Whisker plots display the distribution of mean, maximum, and 
best percentile (p30) rCBV values for the non-enhancing region of 
each tumor subtype. For clarity, mean and maximum rCBV values are 
shown for comparison purposes because they are the most standard 

measures used in clinical practice. Meanwhile, p30 represents the 
best percentile result and surpasses those obtained with the standard 
approaches
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widely extended and accepted DSC-PWI for brain tumor 
imaging [14, 15, 32, 33]. At any instance, recognizing the 
challenges, we believe that an ideal approach for the near 
future would combine comprehensive imaging data, includ-
ing DSC-PWI and MR spectroscopy, with advanced data 
analysis techniques, such as AI and radiomics, to enhance 
presurgical tumor classification.

This study comes with several limitations. This is a 
single-site retrospective investigation. Nevertheless, this 
approach ensured data homogeneity, useful in pilot studies. 
The sample size, though seeming modest, is justified as all 
tumors were classified based on the stringent 2021 WHO 
Classification criteria, limiting retrospective patient inclu-
sion. Also, IDH-mutant grade 4 astrocytomas are infrequent 
tumors, and they are rarely addressed in recent literature 
as a separate entity from their grade 2–3 counterparts. We 
recognize that theoretically, preloaded or low Flip-Angle 
(30º) DSC-PWI sequences might optimize rCBV measures 
when aligned with histological vascularization evaluations 
[14]. Yet, the primary differences lie in the non-enhancing 
region of tumors, where leakage-effects due to blood-brain-
barrier disruption should be negligible, thus reducing the 
impact on rCBV calculations. Moreover, our study’s main 
focus wasn’t solely on this alignment. Different techniques 
have also shown reproducibility and robustness and we 
applied rigorous leakage correction procedures, mitigat-
ing potential leakage impacts [34]. Additionally, it should 
be highlighted that many clinicians have a preference for 
non-preloaded intermediate-high Flip-Angle sequences, 
particularly when it comes to the pre-surgical differential 
diagnosis [35–41]. This preference aligns with our study’s 
context and has demonstrated to be useful for diffuse glio-
mas’ genetic subtypes presurgical differentiation [42, 43]. 

glioblastomas, and the vast majority of grade 2–3 are IDH-
mutant astrocytomas, a study claiming to identify IDH 
mutation status might actually be reflecting a more familiar 
differentiation between grade 2–3 and grade 4. Lastly, it is 
crucial to recognize that astrocytoma grade 4 is often either 
absent or significantly underrepresented in such studies, 
which limits the applicability of their results to this specific, 
smaller subgroup. This subgroup necessitates particular 
attention, as provided in our study.

Our literature search yielded only two DSC-PWI stud-
ies explicitly focused on grade 4 astrocytic tumors [28, 29], 
which in general terms reported higher rCBV values in IDH-
wildtype tumors. However, due to different methodological 
approaches, direct comparison of results is not feasible. We 
consider relevant strengths of our methodology to include 
volumetric segmentations of easily demarcated morpho-
logical MR main tumor regions, which provide information 
on the entire abnormality; and the comprehensive evalua-
tion of voxel-wise rCBV values through percentile analysis, 
not limited to preselected mean or maximum, which may 
obscure relevant differences in other parts of the full range 
of values.

Finally, another advanced MR technique deserving men-
tion in this scenario is MR spectroscopy. It has been proven 
useful for IDH-mutation identification through specifically 
edited sequences, achieving high accuracies [30]. Also, more 
standard MR spectroscopy protocols offer information for 
glioma classification under the latest WHO guidelines [31]. 
However, the specific focused performance in grade 4 astro-
cytic tumors remains less clear because existing research 
again mixes tumor grades 2, 3, and 4. A potential limitation 
of this technique is its less extended implementation and use 
in neuroradiology departments worldwide compared to the 

Fig. 5  Illustrative cases of two patients with unknown diagnosis: 
Patient_1 is 51 years old, and Patient_2 is 49 years old. The images 
display an extensive non-enhancing component beyond the enhancing 
tumor margins. This could be attributed to infiltrative tumor, edema, 
or a coexistence of both. rCBV color maps focused analysis allow 
the detection of small foci of slightly elevated rCBV (arrows) in the 

non-enhancing component of Patient_2, while it depicts clear areas 
of very low rCBV (arrows) in Patient_1. Quantification of the 30th 
percentile in non-enhancing areas indicates that Patient_1 has values 
that fall within the range of Glioblastoma (Gb), while Patient_2 aligns 
with Astrocytoma grade 4 (Astro 4). The diagnoses for both cases were 
histopathology confirmed
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