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Local read haplotagging enables accurate
long-read small variant calling
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Long-read sequencing technology has enabled variant detection in difficult-to-
map regions of the genome and enabled rapid genetic diagnosis in clinical
settings. Rapidly evolving third-generation sequencing platforms like Pacific
Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) are introdu-
cing newer platforms and data types. It has been demonstrated that variant
calling methods based on deep neural networks can use local haplotyping
information with long-reads to improve the genotyping accuracy. However,
using local haplotype information creates an overhead as variant calling needs
to be performedmultiple times which ultimatelymakes it difficult to extend to
new data types and platforms as they get introduced. In this work, we have
developed a local haplotype approximatemethod that enables state-of-the-art
variant calling performance with multiple sequencing platforms including
PacBio Revio system, ONT R10.4 simplex and duplex data. This addition of
local haplotype approximation simplifies long-read variant calling with
DeepVariant.

Long-read sequencing technology can reach low-mappability regions
where short-reads have difficulty in mapping correctly1–5. Long-read
sequencing has helped to generate highly contiguous genome
assemblies6–8, extend variant benchmarking to complex regions9,10 and
has improved the quality and completeness of reference genomes11–14.

Variant detection with long-reads takes advantage of the high
mappability of long reads to reach difficult-to-map regions of the
genome1,15,16. Long-read sequencing technology have lower base-level
accuracy compared to short read technologies1,17–20. However, variant
callers based on deep neural networks (DNN) can produce highly
accurate variant calls with long-reads16,21,22. Recently, high-throughput
long-read sequencing paired with accurate variant calling has
demonstrated fastest genetic diagnosis in clinical setting23–25. Also,
accurate long-reads show a higher diagnosis rate among individuals
who were previously undiagnosed26,27. Long-read sequencing paired
with methods based on machine learning for variant detection shows
promise to have a far reaching impact in healthcare28.

DNN-based variant callers not only take advantage of the mapp-
ability of the long reads, it also uses local haplotyping information to
inform the neural network for accurate genotyping16,21. Previously29, we
have shown that using local haplotype information to determine the
genotype of a variant improves the accuracy of variant detection with
PacBio long-reads. In this three-step approach, a first round of variant
detection is performed using DeepVariant30 without haplotag infor-
mation in the reads. Then, WhatsHap31 is used to haplotag the reads.
Finally, we run DeepVariant with the haplotag information to produce
higher quality variants. A similar approach was taken for PEPPER-
Margin-DeepVariant16 pipeline for nanopore long-reads where Margin
is used to haplotag the reads.

Other Long-read germline variant callers such as Clair321 and
Medaka32 use local haplotagging information from haplotagging
methods like WhatsHap31, Margin33 or LongPhase34. Although the pre-
viously described three-step approach for variant detection provides
accurate variants, it is difficult to tune three separatemethods for each
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new datatype or platform introduced for long-reads. The long-read
platforms like Pacific Biosciences (PacBio), and Oxford Nanopore
Technologies (ONT) are rapidly evolving1,35–37 and a simpler variant
calling approach that can enable accurate variant calling across dif-
ferent platforms is desirable.

Pacific Biosciences (PacBio) is a single-molecule real-time (SMRT)
sequencing platform that uses circular consensus sequencing29.
Recently, PacBio introduced a high-throughputmachine called Revio38

that uses transformer-based consensus sequence correction method
DeepConsensus39 on the instrument to generate highly accurate
(99.9%) reads with length between 15kb and 20kb. The PacBio Revio
machine can generate 30x human genome with one SMRT cell com-
pared to 8x per SMRT cell with the previous Sequel-II machine which
lowers the overall cost and turnaround time40–42.

Oxford Nanopore Technologies (ONT) introduced R10.4 chem-
istry with two read types simplex and duplex43. Compared to R9.4.1
chemistry, R10.4 provides better resolution for homopolymer
detection43,44. The simplex sequencing mode shows average read
quality of 98% and duplex reads with 99.9% accuracy44. The nanopore
long reads can be 100kb+ which makes it suitable for high-quality
assemblies7.

In this work, we introduce an approximate haplotagging method
that can locally haplotag long reads without having to generate variant
calls. Our approach uses local candidates to haplotag the reads and
then the deep neural networkmodel uses the haplotag approximation
to generate high-quality variants. This approach eliminates the
requirement for having the first two steps for haplotagging the reads
and reduces the overhead for extending support to newer platforms
and chemistries. We show that approximate haplotagging with candi-
date variants has comparable accuracy to haplotagging with What-
sHap. We report comparable or higher variant calling accuracy
compared to DeepVariant-WhatsHap-DeepVariant approach with
PacBio HiFi data. We demonstrate that extending support to the Pac-
Bio Revio machine can achieve high INDEL and SNP accuracy (SNP F1-
score of 0.9993 and INDEL F1-score of 0.993). We also report support
for ONT R10.4 simplex and duplex dataset with requiring PEPPER-
Margin upstream of DeepVariant. We demonstrate INDEL F1-score of
0.84 and SNP F1-score of 0.9976 for nanopore simplex data and INDEL
F1-socre of 0.90 and SNP F1-score of 0.999 for duplex data which is to
our knowledge the highest variant calling accuracy achieved with
nanopore long-reads.

Results
Local haplotype approximation method for genotyping with
DeepVariant
DeepVariant performs variant calling in three stages:make_examples,
call_variants and postprocess_variants. Previously, we have
described each stage in detail16,29,30. Here, we briefly summarize
each stage:
1. make_examples: This stage identifies candidate variants and

creates a multichannel tensor representation (also known as an
“example”) for each candidate based on the read pileup at the
candidate position. Each example encodes features such as read
bases, read quality, mapping quality, read support for candidates,
and read strands.

2. call_variants: Examples are then given to a Convolutional
Neural Network (CNN) that determines the genotype likelihood
for the candidate variant represented in each example.

3. postprocess_variants: Finally, we take the likelihoods from
the CNN and report variants with their assigned genoty-
pe.Achieving accurate variant calling using long-read sequencing
data requires calling variants twice often in a three-step
process16,29 (Fig. 1a, DeepVariant-WhatsHap-DeepVariant):

1. First round variant calling: First, we run DeepVariant on non-
haplotagged alignment file to derive a set of variants.

2. Haplotagging: Using the variants from the non-haplotagged
alignment file a secondary method WhatsHap is applied to
haplotag the reads.

3. Second round variant calling: Finally, the haplotagged read is
given to DeepVariant where DeepVariant uses extra features as
haplotype channel to generate higher-quality variant calls.

The multi-step variant calling process of DeepVariant-WhatsHap-
DeepVariant (Fig. 1a) introduces overhead to extend support to newer
long-read data types as multiple steps need to be optimized. In this
work, we implement an approximate local haplotagging method
within DeepVariant to locally haplotag the reads to avoid having to run
an external haplotagging method or to have to reperform variant
calling following initial haplotagging (Fig. 1b). A descriptionof the local
haplotagging method is described here.

DeepVariant processes input by dividing it into 25,000-base pair
windows and processes the windows in parallel to create examples30.
The haplotagging algorithm is integrated into the make_examples
step, utilizing raw candidate data to calculate local haplotagging for
each 25,000-base pair window. For each window, DeepVariant gen-
erates candidate variants by identifying positions that differ from the
reference genome. The haplotagging process ensures that only poten-
tial heterozygous SNP candidates are selected. This involves excluding
all candidates that haveonly one alternate allele, and the reference allele
is supported by fewer than three reads. Additionally, any candidates
featuring alternate alleles that are not SNPs are also eliminated. Reads
are then dynamically updated with haplotagging information. The
haplotagging algorithm employs dynamic programming to determine
the best haplotagging score for each possible haplotag assignment at
eachvariantpositionwithin thewindow.Asetof reads thatoverlapboth
the previous putative heterozygous variant location and the target
location areused tocalculate this score. Theoptimal allele haplotagging
is determined by backtracking from the best score for the last variant
position. After all alleles are assigned haplotags, read haplotags are
assigned based on the majority of alleles that the read overlaps.

We use a graph to store read-support information, where each
vertex represents an allele (either an alternate allele or the reference
allele). This graph is constructed from candidates identified within a
25,000-base pair window. Only candidates that have sufficient evi-
dence to be considered heterozygous and contain only SNP alleles are
used. At each position, vertices are created for each SNP allele. Addi-
tionally, a vertex is created for the reference allele if there is adequate
read support for it. It is possible to create more than two vertices at
some positions if there is substantial support for both the reference
and multiple alternate alleles. Edges are then created to connect
consecutive vertices if a read overlaps these alleles.

We assume that the score representing each possible haplo-
tagging at a given position can be extended to the next position.
Haplotagging is performed locally for every 25,000-base pair
window. The score is calculated for each possible haplotagging at
each genomic position where putative heterozygous candidates
are created. The score is extended from the first position to the
last. If there are no incoming edges for any of the vertices repre-
senting a genomic position, haplotagging cannot be extended,
and we must reinitialize the scores. In cases where one of the
vertices at a genomic position lacks incoming edges, yet a path
exists from other vertices at the same position, artificial edges are
created. These artificial edges fully connect the vertex with all
preceding vertices.

Here is a brief step-by-step description of the algorithm:
1. Graph is built where each vertex is an allele (alt or ref). Edges are

created to connect consecutive vertices if there is a read over-
lapping these alleles.

2. Initial scores are calculated for all possible haplotagging for the
first genomic position.
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3. Scores are calculated at each position using best scores calculated
for previous vertices.

4. The best score is backtracked from the last position. Each pair of
alleles are assigned haplotags.

5. Reads are assignedhaplotags basedon a setof alleles reads overlap.

The outcome of the local approximate haplotagging is a set of
reads with haplotype association of haplotype-1, haplotype-2 or non-
haplotagged reads for each 25kb chunk. Then for each candidate
variant observed in the chunk, we generate examples through the
make_examples step of DeepVariant that creates a multi-channel

Fig. 1 | Illustration of different long-read variant calling schema. a Two-step variant calling process that uses WhatsHap to haplotag the reads. b Simplified variant
calling process schema with approximate haplotagging method implemented within DeepVariant.
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representation of the pileup surrounding the candidate variant. The
haplotype information is encoded in the haplotype channel and reads
are also sorted based on the local haplotype association of reads. The
examples are provided to a Convolutional Neural Network (CNN) to
provide genotype likelihood of homozygous to reference, hetero-
zygous or homozygous alternate. Finally, in postprocessing step we
take the output from the CNN and report the variant with a genotype
and a likelihood of the genotype in Variant Call Format (VCF) file. A
detailed description of the haplotagging algorithm with an example is
provided in the online “methods” section.

PacBio HiFi haplotype approximation and variant calling
performance
DeepVariant haplotags long reads to improve genotyping accuracy
during variant calling. We trained DeepVariant models with no haplo-
tagging information, haplotagging information from DeepVariant-
WhatsHap bam, and the approximate haplotagging method. We
trained the model on six Genome-In-A-Bottle (GIAB) samples (HG001,
HG002, HG004, HG005, HG006, HG007) and kept HG003 as a hold
out sample, we also holdout chromosome 20 as hold out. We then
compared the variant calling performance on HG003 sample at dif-
ferent coverages.

In the variant calling performance analysis (Fig. 2a and Supple-
mentary Table 1), we observe that DeepVariant model that uses no
haplotagging information has lower variant calling performance at
all coverages. The variant calling performance for SNPs with no
haplotagging information can be considered comparable (F1-score at
15x: 0.9960, 35x: 0.9990) to the performance of variant calling
with haplotagging information (F1-score at 15x: 0.996312, 35x:
0.999292). However, the INDEL performance of variant calling with-
out haplotag information (F1-score at 15x: 0.9529, 35x: 0.9906) trails
behind the performance of variant calling with haplotag information
(F1-score at 15x: 0.9701, 35x: 0.9945) showing the importance of
using haplotag information during variant calling with PacBio HiFi
long reads.

We also observe that the variant calling performance of Deep-
Variant that uses approximate haplotagging built within the variant
calling process is comparable to the previously used WhatsHap-based
pipeline. The DeepVariant model trained with haplotag information
using approximate haplotagging (F1-score 15x: 0.9963, 35x: 0.9992)
outperforms the WhatsHap-based DeepVariant model (F1-score 15x:
0.9961, 35x: 0.9947). For INDEL performance, we see that the perfor-
mance of the model trained with approximate haplotagging (F1-score
15x: 0.9701, 35x: 0.9945) is comparable to theWhatsHap-basedmodel
(F1-score 15x: 0.9705, 35x: 0.9947). Overall, we see that themodel that
operates with haplotag information from approximate haplotagging
has comparable or better variant calling performance than the
WhatsHap-based method that requires running the entire variant
calling process multiple times.

We compared the approximate haplotagging performance of
DeepVariant against WhatsHap-based haplotagging accuracy on
HG002 chr20.We took GIAB trio-phased variant calls and haplotagged
the PacBioHiFi reads usingWhatsHap and used that as the truth set for
haplotype association for reads. ForWhatsHap-based haplotagging we
used DeepVariant to initially identify variants from unphased bam and
then used WhatsHap haplotag to assign haplotags to reads. For
approximate haplotagging with DeepVariant, we reported the read
haplotype association of each chunk and merged them. Finally, we
compared the read haplotagging accuracy against GIAB-based
haplotagging.

Figure 2b showsDeepVariant approximate haplotagging accuracy
of 99.14 is comparable to WhatsHap-based haplotagging accuracy of
99.26. Notably, DeepVariant-based haplotagging is performed on
25kbp chunks and merged at the end whereas WhatsHap operates on
entire chromosome with high-quality variants from DeepVariant. We

also observe the haplotagging partitions are comparably consistent
betweenWhatsHap-basedhaplotagging andDeepVariant approximate
haplotagging. Overall, the approximate haplotagging method shows
improved variant calling accuracy compared to non-haplotagged
model (Fig. 2a, b). However, we observe slightly lower INDEL accuracy
compared to WhatsHap-based method but improved SNP accuracy
with approximate haplotaggingmethod.Wealso compared the variant
calling and approximate haplotagging accuracy for Oxford Nanopore
data in Supplementary Fig. 1.

PacBio Revio vs Sequel-II variant calling performance
PacBio has announced a new sequencing instrument called Revio.
Revio is high-throughput than previous Sequel-II. We analyzed the
variant calling performance of DeepVariant with approximate haplo-
tagging on PacBio Revio and Sequel-II instruments. The model is
trained on a dataset consisting of sequencing data coming from both
PacBio Revio and Sequel-II instruments. We trained themodel on GIAB
samples ofHG001-HG007while holding outHG003 for evaluation.We
analyzed the performance of DeepVariant at different coverages at
various coverage between 5x to 30x coverage.

In Fig. 3a, we see the read length distribution of Revio is much
wider compared to Sequel-II method as the library preparation for
Sequel-II used amoreprecise gel-basedmethod for read size selection.
We used Phred Quality Score as Quality Value (QV) to estimate the
quality of the reads. The empirical QV of both Revio and Sequel-II data
are comparable.

The variant calling performanceof DeepVariantwith Sequel-II and
Revio are shown in Fig. 3b and Supplementary Table 2. Herewe see the
SNP calling performance of DeepVariant is comparable between
Sequel-II and Revio platforms. The SNP variant calling performance
(F1-scores of Sequel-II and Revio respectively, 5x: 0.8539 vs 0.8535,
10x: 0.9803 vs 0.9793, 15x: 0.9963 vs 0.9960, 20x: 0.9985 vs 0.9985,
25x: 0.9990vs0.9991,30x: 0.9992 vs0.9993) are very similarbetween
two platforms at any given coverage. We also compared the variant
calling performance against LongShot22 and NanoCaller45 in Supple-
mentary Fig. 2.

The INDEL performance of DeepVariant at different coverages
shows some difference (F1-scores of Sequel-II and Revio respectively,
5x: 0.740798 vs 0.718782, 10x: 0.92547 vs 0.908092, 15x: 0.970101 vs
0.960039, 20x: 0.984227 vs 0.978443, 25x: 0.990044 vs 0.986717,
30x: 0.993007 vs 0.990944). We observed the INDEL variant calling
performance of DeepVariant with Sequel-II is higher compared to
Revio at coverages between 5x to 25x. Whereas, at the suggested
coverage of 30x, the variant calling performance with Revio is com-
parable to Sequel-II. The difference in the variant calling performance
could be attributed to the read length distribution difference between
the two datasets. However, Revio is high-throughput and the overall
resources required to generate 30x data are much fewer compared to
Sequel-II which makes Revio more practical for large-scale studies.

Oxford nanopore simplex variant calling performance
Oxford Nanopore Technologies (ONT) introduced an updated and
more accurate chemistry known as R10.4 which improves on homo-
polymer errors in nanopore reads. The error rate of ONT R9.4.1 data
requires pre-processing methods PEPPER-Margin to find candidates
and haplotag the reads before variant calling with DeepVariant. How-
ever, with the improved sequencing quality fromONTR10.4 chemistry
and approximate haplotagging method in DeepVariant, we are now
able to train a model for ONT R10.4 that can call variants directly with
DeepVariant without requiring complex preprocessing of PEPPER-
Margin. We trained the DeepVariant ONT model on a combined
dataset of R10.4 simplex and duplex data on GIAB samples where we
held out HG003 for evaluation.

In Fig. 4a and Supplementary Tables 3 and 4, we compared the
variant calling performance of ONT R10.4 data with three available
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variant callers, PEPPER, Clair3 and DeepVariant. Here, PEPPER refers to
the PEPPER-Margin-DeepVariant pipeline and DeepVariant refers to
DeepVariant with approximate haplotagging. In our comparison, we
observe that DeepVariant with haplotagging has comparable SNP
variant calling performance at all coverages (SNP F1-score, 15x:

DeepVariant: 0.9903, PEPPER: 0.9875, Clair3: 0.9880, 30x: DeepVar-
iant: 0.9968, PEPPER: 0.9962, Clair3: 0.9957,65x: DeepVariant: 0.9976,
PEPPER: 0.9977, Clair3: 0.9976). On the other hand, the INDEL variant
calling performance of DeepVariant is higher compared to Clair3 and
PEPPER at high and low coverages (INDEL F1-score, 15x: DeepVariant:

Fig. 2 | Effectiveness of local haplotagging approximation for variant calling. a Variant calling accuracy of PacBio HiFi reads with no haplotagging, haplotagging with
WhatsHap and approximate haplotagging. b Haplotagging accuracy of WhatsHap and the local approximate haplotagging method.
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0.7121, PEPPER: 0.7013, Clair3: 0.6902, 30x: DeepVariant: 0.8412,
PEPPER: 0.8345, Clair3: 0.8400, 65x: DeepVariant: 0.8976, PEPPER:
0.8830, Clair3: 0.8800). Overall, the DeepVariant with approximate
haplotagging shows it can derive high-quality variants from ONT
R10.4 sequencing data.

Figure 4b and Supplementary Tables 5 and 6 show the variant
calling performance improvement between R9.4.1 and R10.4 chem-
istry. We observe that the SNP variant calling performance is com-
parable between R9.4.1 and R10.4 between 40x and 65x (SNP F1-score
40x: R9: 0.9971, R10: 0.9969, 65x: R9: 0.9976, R10: 0.9974) coverage
but R10.4 shows improvements between 10x and 35x coverage where
the most improvement comes at lower coverage between 10x and 25x
(SNP F1-score 10x: R10: 0.9645, R9: 0.9371, 25x: R10: 0.9962, R9:
0.9948). The INDEL variant calling is highly improved with R10.4
chemistry at all coverages showing the improved data quality with the
updated chemistry (INDEL F1-score 15x: R10: 0.7725, R9: 0.6666, 30x:
R10: 0.8412, R9: 0.7712, 65x: R9: 0.8472, R10: 0.8976). Overall, the
variant calling improvements we observe between R9.4.1 and R10.4
chemistry is due to the improvements in nanopore chemistry.

Improved variant calling with Oxford nanopore duplex
sequencing
With the introductionof newerR10.4 chemistry,OxfordNanopore also
announced a new data type called duplex. We assessed the variant
calling performance of DeepVariant on duplex and simplex data types
of R10.4 chemistry. For this analysis, we trained a model with
R10.4 simplex and duplex data combined, where we had only HG002

available for duplex data. For each sample, we trained the model from
chr1-chr19 and tuned on chr21-chr22 which left chr20 for evaluation.
For evaluation, we compared the variant calling performance on chr20
of HG002 sample at different coverages.

Figure 5a shows the empirical QV vs read length distribution
between simplex and duplex datasets. The simplex reads have a read
length distribution that goes beyond 100kbp+ length reads. Although
duplex read length is between 10kbp-50kbp, we observe major
improvements in empirical QV with duplex data where the empirical
QV reaches nearly Q30 whereas with simplex the empirical QV ranges
between Q17 to Q20. With the improvements of empirical QV, duplex
data is expected to deliver high-quality variant calls.

The variant calling performance comparison between simplex
and duplex datatype with DeepVariant shows duplex data improves
variant calling performance for both SNP and INDEL (Fig. 5b and
Supplementary Table 7) at all coverages. The SNP variant calling per-
formance at lower coverages with duplex data is improved compared
to simplex data (SNP F1-score 10x: Duplex: 0.9661, Simplex: 0.9540,
20x: Duplex: 0.9981, Simplex: 0.9958, 30x: Duplex: 0.9989, Simplex:
0.9981). At high coverage between 40x-65x, simplex and duplex data
shows comparable SNP variant calling performance (SNP F1-score40x:
Duplex: 0.99911, Simplex: 0.9984, 50x: Duplex: 0.99918, Simplex:
0.9985). For INDEL variant calling, duplex shows improvements at all
coverages compared to simplex data (F1-score 10x: Duplex: 0.7432,
Simplex: 0.6892, 30x: Duplex: 0.8652, Simplex: 0.8326, 50x: Duplex:
0.9032, Simplex: 0.8720). Overall, the duplex datatype shows
improvements in variant calling in all aspects.

Fig. 3 | PacBio Revio and Sequl-II variant calling performance comparison. a Read length distribution and empirical QV distribution of reads from Revio and Sequel-II.
b Variant calling performance of DeepVariant with Revio and Sequel-II data.
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Discussion
The rapid improvement in long-read sequencing technology has
shown its utility from high-quality genome assembly to rare disease
diagnosis11,13,46,47. Most variant calling methods that are tuned toward
short-read sequencing technologies48,49 fail to derive and utilize the
linkage information long-reads can provide during variant calling.
Currently, most long-read variant callers require haplotagging to be
done by an external method likeWhatsHap31 or Margin16 which creates
a complex multi-step variant calling process29. Besides inference,
training and iteration on these models become difficult. In this work,
we introduce an approximate local haplotagging method that can
haplotag reads in 25kb chunks and improves the variant calling accu-
racy over non-haplotagged mode with PacBio HiFi data. We also
extended the support to Oxford Nanopore Technologies R10.4
chemistry showing that it is possible to directly call variants fromONT
data without multi-step PEPPER-Margin-DeepVariant setup.

The approximate haplotagging method we developed works
efficiently on 25kb chunks of the genome and haplotags reads with
comparable accuracy to WhatsHap. We show that the approximate
haplotagging method achieves 99.14% correct haplotag ratio com-
pared to99.26% correct haplotag ratioofWhatsHap.Wealso show that
models trained with haplotagging information from approximate
haplotaggingmethod has comparable INDEL accuracy and higher SNP
accuracy than models trained with haplotagging information with
WhatsHap or with no-haplotagging information.

We show the variant calling performanceon twoPacBio platforms,
Revio and Sequel-II. We show that the newer high-throuhput Revio’s
variant calling performance with DeepVariant is comparable to Sequel-
II platform at each coverage. At 30x coverage the performance of

Sequel-II (F1-Score INDEL: 0.993, SNP: 0.9992) is comparable to Revio
(F1-Score INDEL: 0.990, SNP: 0.9993). The performance difference at
lower coverages betweenRevio and Sequel-II is suspected to be caused
by the read length distribution difference between the two datasets.
We observed Sequel-II to have a tighter band around 15kb read length,
whereas Revio had a wider read length distribution from 5kb to 25kb.

We extendedDeepVariant toONTR10.4 chemistry that has higher
read-quality compared to R9.4.1 chemistry. We first show DeepVariant
onR10.4 simplex data has the highest quality variant calls compared to
PEPPER and Clair3. Then we show that DeepVariant with R10.4 is more
accurate than PEPPER with R9.4.1 data. We show that with R10.4
chemistry it is possible to produce high-quality variants at lower cov-
erages compared to R9.4.1 with demonstrable improvements in INDEL
accuracy.

We also show that DeepVariant works seamlessly with
R10.4 simplex and duplex data types. The duplex data has higher
average read quality (average QV27) compared to simplex (average
QV20) and produces even higher quality variant calls compared to
simplex only data type. We show with R9.4.1 it is possible to achieve
SNP F1-score of 0.999 at 30x Duplex coverage whereas 65x Simplex
data achieves 0.997 SNP F1-score. For ONT INDEL performance, we see
a noticeable improvement from R9.4.1 (INDEL F1-score 0.84),
R10.4 simplex (INDEL F1-score 0.897) and R10.4 duplex (INDEL F1-
Score 0.903). Although the INDEL improvements between platforms
are on the positive side, we believe further iteration on the chemistry
and data quality improvements would demonstrate further accuracy
improvements in the future.

As we demonstrate a more generalized framework for long-read
variant calling that uses haplotagging information, we believe future

Fig. 4 | Variant calling performance comparison between Oxford nanopore R9.4.1 and R10.4 chemistry. a Variant calling performance of R10.4 chemistry between
DeepVariant, PEPPER and Clair3 variant callers. b Variant calling performance of DeepVariant between R10.4 chemistry and R9.4.1 chemistry.
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iterations of incorporating more long-read specific features would
improve the variant calling accuracy further. For example, both PacBio
and ONT can now produce methylation information50,51. The newer
methods can provide epigenetic profiles as well as canonical base
calls52,53. We believe incorporating methylation information in the
variant calling framework would further improve the accuracy.

Methods
Approximate haplotagging
In this section, wedescribe the approximate haplotagging algorithm in
detail. The approximate haplotagging is applied on 25kb windows
indepedently and all described methods work on the 25kb window
only. We utilize a graph data structure to facilitate the haplotagging of
reads. In the graph G, a set of vertices V represents alleles at locations
where a set of readsRoverlaps these vertices. Our objective is to assign
a haplotag of 1, 2, or 0 to all vertices, ensuring that this assignment
corresponds to the maximum read support. Haplotag 1 is assigned to
reads overlapping a majority of the alleles of haplotype 1 in the local
25kb window, while haplotag 2 is assigned to those overlapping a
majority of alleles of haplotype 2 in the same window. Haplotag 0 is
designated for reads that cannot be conclusively assigned to either of
the two haplotypes.

For a genomic position n, we look at all possible tuples of
vertices (i, j) from the set of vertices at this position. We use a
similar approach to the score calculation for each pair at the same
position while calculating scores for a pair of vertices at different
variant positions. The score calculation for pair of vertices at

different variant positions is described in ”How scores are cal-
culated between positions” section. The best score S(Vn,i, Vn,j) is
calculated for each tuple where the first vertex is assigned a
haplotag 1 and the second vertex is assigned a haplotag 2. The set
of supporting reads R(Vn,i), R(Vn,j) are stored for each possible
haplotag assignment. Set of reads supporting the assignment
R(Vn,i) is calculated as a set of reads overlapping vertex Vn,i and
preceding vertex Vn−1,k joined with a set of reads that overlap Vn,i

and start after position n − 1.
At each step of the dynamic programming algorithm, we extend

the best haplotag assignment calculated for the previous position.
Final assignment is calculated by backtracking from the best score for
the last genomic position.

Below, we present a brief definition of variables we used to
describe the approximate haplotagging algorithm:

• Vn,j be a vertex j at position n.
• S(Vn,i, Vn,j) be a score for vertices i, j at genomic position n so that
vertex i is haplotag 1 and vertex j is haplotag 2. It is possible that i
and j are the same vertex;

• Vn be a set of vertices at position n;
• R(V) be a set of reads overlapping vertex V;
• R(V1,V2) be a set of reads overlapping vertices V1, V2;
• R*(Vn,j) be a set of “new” reads that start after position (n − 1) and
overlap vertex Vn,j;

Initialization. The two steps, initialization and recursion used are
described below. The first genomic position of an interval (n = 1), we

Fig. 5 | Comparison betweenOxfordNanopore simplex andduplex datatypeswithR10.4 chemistry. aRead length distribution and empirical QVdistributionof reads
from simplex and duplex datatypes. b Variant calling performance of DeepVariant with simplex and duplex datatypes.
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initialize the score as:

SðV 1,i,V 1,jÞ= sizeðRðV 1,iÞ∪RðV 1,jÞÞ for all possible haplotagging of vertices i and j

Initialization happens at the beginning of an interval or when the
haplotagging cannot be extended from the previous position.

Recursion. During recursion, we calculate scores at each position n for
all vertex pairs (Vn,i, Vn,j) based on the previously observed vertexVn−1,k

and Vn−1,l where edges E(Vn−1,k, Vn,i) and E(Vn−1,l, Vn,j) exist in the graph
connecting previous position n − 1 and current position n. The score is
calculated as:

SðVn,i,Vn,jÞ=maxfSðVn�1,k ,Vn�1,lÞ
+ sizeðRðVn�1,k ,Vn,iÞ∪RðVn�1,l ,Vn,jÞ∪R*ðVn,iÞ∪R*ðVn,jÞÞg

for all pairs (Vn−1,k) and (Vn−1,l) where edges E(Vn−1,k,Vn,i) and E(Vn−1,l,Vn,j)
exist in the graph.

Backtracking and haplotag assignment. After scores have been cal-
culated for each vertex, we backtrack from the last position to deter-
mine the best scores, and subsequently, each pair of alleles is assigned
haplotags. Now that all alleles are haplotagged, we assign reads with
haplotags based on the set of haplotagged alleles the read overlaps.
This assignment is accomplished by enumerating all the alleles a read
overlaps and then counting how many of these alleles belong to hap-
lotype 0, haplotype 1, and haplotype 2. Ideally, a read should overlap
only alleles from the same haplotype. If a read overlaps alleles from
different haplotypes then the haplotag is assigned by majority. If the
number of alleles from haplotype 1 and haplotype 2 are equal, the read
is assigned a haplotag 0.

Example of the approximate haplotagging algorithm
In Fig. 6, we illustrate a graph constructed for approximate haplotag-
ging. In this graph each vertex represents an allele An,m where n is the
genomic position andm is the allele. The alleles (m) are numbered for
this demonstration. Set of reads overlapping each allele is shown next
to it denoted as read1 to read11. The reads are placed as such it
represents the alleles it supports in the graph.

In the first step, we initialize the scores for the genomic position
n = 1:

SðA1,1,A1,1Þ= sizeðRðA1,1Þ∪RðA1,1ÞÞ= 5
SðA1,1,A1,2Þ= sizeðRðA1,1Þ∪RðA1,2ÞÞ= 5+6 = 11

SðA1,2,A1,2Þ= sizeðRðA1,2Þ∪RðA1,2ÞÞ=6

Then we calculate the scores of each pair of vertices based on the
previously observed vertices:

SðA2,1,A2,1Þ=maxfSðA1,1,A1,1Þ+ sizeðRðA1,1,A2,1Þ∪RðA1,1,A2,1ÞÞ,SðA1,1,A1,2Þ
+ sizeðRðA1,1,A2,1Þ∪RðA1,2,A2,1ÞÞg=maxf5 + 3,11 + 4g= 15

SðA2,1,A2,2Þ=maxfSðA1,1,A1,1Þ+ sizeðRðA1,1,A2,1Þ∪RðA1,1,A2,2ÞÞ,SðA1,1,A1,2Þ
+ sizeðRðA1,1,A2,1Þ∪RðA1,2,A2,2ÞÞ,SðA1,2,A1,2Þ
+ sizeðRðA1,2,A2,1Þ∪RðA1,2,A2,2ÞÞg
=maxf5 + 3 + 2,11 + 3 + 5,6 + 1 + 5g= 19

SðA2,2,A2,1Þ=maxfSðA1,1,A1,1Þ+ sizeðRðA1,1,A2,1Þ∪RðA1,1,A2,2ÞÞ,SðA1,1,A1,2Þ
+ sizeðRðA1,1,A2,2Þ∪RðA1,2,A2,1ÞÞ,SðA1,2,A1,2Þ
+ sizeðRðA1,2,A2,1Þ∪RðA1,2,A2,2ÞÞg
=maxf5 + 3 + 2,11 + 2 + 1,6 + 1 + 5g= 14

SðA2,2,A2,2Þ=maxfSðA1,1,A1,1Þ+ sizeðRðA1,1,A2,1Þ∪RðA1,1,A2,1ÞÞ,SðA1,1,A1,2Þ
+ sizeðRðA1,1,A2,1Þ∪RðA1,2,A2,1ÞÞg=maxf5 + 3,11 + 4g= 15

Thenwe calculate the best score at the last position. The best score for
the last position is 19 where allele A2,1 is assigned to haplotag-1 and
allele A2,1 is assigned to haplotag-2. Previous pair of alleles for this
score is A1,1 with haplotag-1 and A1,2 with haplotag-2.

Using the best score, we assign haplotags to the vertices and
haplotags to the reads. From the previous step we have alleles A1,1, A2,1

assigned to haplotag-1 and alleles A2,1, A2,2 assigned to haplotag-2.
Reads: read1, read2, read3 overlap alleles A1,1, A2,1 both of which are
haplotag-1. Therefore read1, read2, read3 are assigned haplotag-1.

Reads: read4, read5 overlap alleles A1,1, A2,2 are consecutively
haplotag-1 and haplotag-2. In that case read4, and read5 cannot be
haplotagged. Following the same logic reads: read7, read8, read9,
read10, read11 are assigned haplotag-2, and read6 cannot be
haplotagged.

Finally, these haplotag associations of the reads are used in the
examples we generate for each candidate and the DNNmodel uses the
information to generate accurate genotypes.

How scores are calculated between positions
The haplotagging algorithm iterates through all tuples of edges and
stores the best score for each pair of vertices. We describe three cases
with examples below.

Simple Case (for 2 positions with two edges). In the simple case, we
have two vertices per position and only two edges connecting two
positions eachwithout overlaps like in Fig. 7. In Fig. 7, vertexA1,1 means
vertex 1 in position 1 and A1,2 means vertex 2 in position 1. So here, we
would have 4 possible tuples of edges: (A1,1 −A2,1,A1,1 −A2,1),
(A1,2 −A2,2,A1,2 −A2,2), (A1,1 −A2,1,A1,2 −A2,2), (A1,2 −A2,2,A1,1 −A2,1). The
score is calculated for each tuple of edges.We calculate best scores for
the four pairs of vertices: S(A2,1,A2,1), S(A2,2,A2,2), S(A2,1,A2,2),
S(A2,2,A2,1).

Complex case (for 2 positions with four edges). In the worst case
with four vertices for two positions, we have edges that connect all
four vertices shown in Fig. 8. In this case, wewill calculate scores for all

A1,1 A1,2

A2,1 A2,2

3 5
2 1

read1,
read2, 
read3,
read4,
read5

read1,
read2, 
read3,
read6

read6,
read7, 
read8,
read9,
read10,
read11

read4,
read5,
read7, 
read8,
read9,
read10,
read11

Fig. 6 | Illustration of a graph used to explain approximate haplotagging
alogrithm. This figure demonstrates and example of how scores are calculated in
the approximate haplotagging algorithm.
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16possible tuples of edges andwe storebest scores for 4possible pairs
of vertices: S(A2,1,A2,1), S(A2,2,A2,2), S(A2,1,A2,2), S(A2,2,A2,1).

Case of 3 vertices. In the case of three vertices, where we have
reference and two alternate alleles. Similar to the previous two cases,
we calculate 9 best scores for eachpossible pair of vertices. Depending
on the number of edges, we have to calculate the scores for all possible
tuples of edges to get the scores for each possible pair of vertices.

Analysis methods
Read alignment and subsampling. We used pbmm2 version 1.10 and
minimap254 version 2.24-r1122 to align reads to the reference gen-
ome.Weused samtools55 version1.15 for sampling alignment files at
different coverages.

Variant calling and haplotagging. We used PEPPER-Margin-
DeepVariant16 version r0.8, Clair321 version v1.0.0 for variant
calling, for DeepVariant-WhatsHap-DeepVariant pipeline we used
v1.2.0 version of DeepVariant. For haplotagging with WhatsHap, we
used WhatsHap version v1.7.

Benchmarking variant calls. For benchmarking variant calls, we used
hap.py56 version v0.3.12. The hap.py is available through
jmcdani20/hap.py:v0.3.12 in dockerhub. For we used GIAB v4.2.1
truth set9 against GRCh38 reference for all samples.

Haplotagging accuracy and natural switch determination. We used
https://github.com/tpesout/genomics_scripts/haplotagging_stats.py
to calculate the haplotagging accuracy16.

Read accuracy estimation. We used Best57 version v0.1.0 for read
accuracy analysis. For the analysis, we usedGRCh38 as the reference to
derive the empirical QV for each read.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Wehavemade all data including input BAMs, output VCF and analysis
files publicly available: https://console.cloud.google.com/storage/
browser/brain-genomics-public/publications/kolesnikov2023_dv_
haplotagging/evaluation/. Moreover, all data collected and used for
this study are publicly available though the HPRC consortium:
https://s3-us-west-2.amazonaws.com/human-pangenomics/index.
html. The data policy and details of the data can be found in
https://humanpangenome.org/data/and https://www.ncbi.nlm.nih.
gov/bioproject/730823.

Code availability
Approximate haplotagging was introduced in DeepVariant r1.4.0 in
release note: https://github.com/google/deepvariant/releases/tag/v1.4.
0 and it runs by default with run_deepvariant without having to set
any parameters explicitly to enable it for PacBio and ONT long read
sequencing data. The latest versions, including r1.5.0, r1.6.0 and
r1.6.1 use this feature by default similar to r1.4.0. Methods
described here is publicly available through https://github.com/
google/deepvariant where the haplotagging method can be found in
https://github.com/google/deepvariant/blob/r1.6.1/deepvariant/direct_
phasing.cc. The implementation of graph building method for
approximate haplotagging can be found in: https://github.com/google/
deepvariant/blob/r1.6.1/deepvariant/direct_phasing.cc#L481C24-
L481C24. The implementation of scoring method for approximate
haplotagging can be found in: https://github.com/google/deepvariant/
blob/r1.6.1/deepvariant/direct_phasing.cc#L282. We have also made all
input and output files publicly available. Please see the Supplementary
Notes for access link.
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