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Cancer mutationscape: revealing the link
between modular restructuring and
intervention efficacy among mutations
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There is increasing evidence that biological systems are modular in both structure and function.
Complex biological signaling networks such as gene regulatory networks (GRNs) are proving to be
composed of subcategories that are interconnected and hierarchically ranked. These networks
contain highly dynamic processes that ultimately dictate cellular function over time, as well as
influence phenotypic fate transitions. In this work, we use a stochastic multicellular signaling network
of pancreatic cancer (PC) to show that the variance in topological rankings of themost phenotypically
influential modules implies a strong relationship between structure and function. We further show that
induction of mutations alters themodular structure, which analogously influences the aggression and
controllability of the disease in silico. We finally present evidence that the impact and location of
mutations with respect to PC modular structure directly corresponds to the efficacy of single agent
treatments in silico, because topologically deep mutations require deep targets for control.

Biologically, regulatory networks and protein–protein interaction networks
are typically thought to be densely connected sub-regions of an overall sparse
system1. Natural cellular functions such as signal transmission are carried out
by so-called modules that are discrete entities with separable functionality
from other modules2. For example, the ribosome is a module that is respon-
sible for synthesizing proteins that are spatially isolated. A similar isolation is
seen with the proteasome. Whereas, signaling systems through chemokines
would be extendedmodules that are isolated through the binding of chemical
signals to receptor proteins. These isolating features allow cells to achieve
various objectives with minimal influence from cross-talk2. Yet, their con-
nectivity allows complex guidance signals from one another.

More often, in silicomodels are being implemented in cancer research
for the discovery of general principles and novel hypotheses that can guide
the development of new treatments. Despite their potential, concrete
examples of predictive models of cancer progression remain scarce. One
reason is that most models have focused on single-cell type dynamics,
ignoring the interactions between cancer cells and their local tumor
microenvironment (TME). There have been a number of models that were
used to study gene regulation at the single-cell scale, such as macrophage
differentiation3–5, T cell exhaustion6, differentiationandplasticity ofThelper
cells7,8, and regulation of key genes in different tumor types9,10, including
pancreatic cancers11.

These models are all great steps towards control-based treatment
optimization, but it has been demonstrated that the TMEhas a critical effect

on the behavior of cancer cells12. Ignoring the effect of cells and signals of the
TMEcangenerate confounding conclusions. For example, itwas shown that
in non-small cell lung cancer, the microenvironments of squamous tumors
and adenocarcinomas are marked by differing recruitment of neutrophils
and macrophages, respectively. Ex vivo experiments revealed the impor-
tance of the TME as a whole, especially when considering immunotherapy
enhancement13. A similar observation has shown that removing pancreatic
stellate cells from the TME in silico led to differing long-term outcomes
because they form a protective layer around tumor cells11.

To study the interplay of cancer cells with components of the TME,
modelers developed multicellular models including cancer, stromal,
immune, cytokines, and growth factors14. These models are typically mul-
tiscale integrating interactions at different scales, making it possible to
simulate clinically relevant spatiotemporal scales and, at the same time,
simulate the effect of molecular drugs on tumor progression15–20. The high
complexity of these models generates challenges for model validation such
as the need to estimate too many model parameters.

While a multi-scale model would likely provide more realistic simu-
lations, state-of-the-art control techniques require a network model speci-
fication such as Boolean networks (or their generalizations) to find optimal
therapeutic interventions21. Implementation of Boolean networks (BNs)
provides a coarse-graineddescriptionof signaling cascadeswithout theneed
for tedious parameter fitting and can be simulated through stochastic dis-
crete dynamical systems (SDDS22) to streamline the modeling process and
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increase efficiency. These models have a well-studied and effective track
record for capturing various biological system dynamics23.

Pancreatic cancer is among the most lethal types of malignancies lar-
gely due to its difficulty in detecting. The pancreas is located deepwithin the
body, and a standard doctor’s exam will likely not reveal a tumor. Addi-
tionally, there is an absence of detecting and imaging techniques for early-
stage tumors.While PConly accounts for 3%of estimatednewcases, it is the
fourth highest cause of cancer-related death in theUnited States24, and there
is only a 3% 5-year survival rate among its late-stage patients (~82% in
Stages 3 and 4)25,26. PC is widely known for its resistance tomost traditional
therapy protocols. According to the Pancreatic Cancer Action Network
(PanCAN), most patients receive fluorouracil (5-FU) or gemcitabine-based
treatments that are anti-metabolites targeting thymidylate synthase and
ribonucleotide reductase, respectively26.

In prior work, we presented amulticellular model of pancreatic cancer
(PC) based on a stochastic Boolean network approximation (Supplemen-
tary Fig. 1), and we used control strategies that direct the system from a
diseased state to a healthy state by targeting and disrupting specific signaling
pathways. The model consists of pancreatic cancer cells (PCCs), pancreatic
stellate cells (PSCs), cytokine molecules diffusing in the local micro-
environment, and internal gene regulations for both cell types11. We then
used the PCmodel to study the impact of four common mutations: KRAS,
TP53, SMAD4, and CDKN2A14,27,28. Throughout this writing, we will often
denote PCC components with subscript c and PSC components with sub-
script s.

Using our PC model as a case study, readers will find the following:
Figure 1 shows a workflow of our process for defining and analyzing
modules, followed by a summary of the PC model dynamics and target
efficacy in ‘Model dynamics and target efficacy’.Within the ‘Results’ section,
we show that themodularity of GRNs is vulnerable tomutations, analogous
perturbations to long-term dynamical outcomes occur that influence
aggression and controllability, variance in topological rankings of the most
phenotypically influential modules implies a strong relationship between
structure and function, and we finally present evidence that the impact and
location ofmutations with respect tomodular structure directly correspond
to the efficacy of single-agent treatments in silico. Then, under the “Meth-
ods” section, we define the methods we have implemented.

Results
Model dynamics and target efficacy
Prior work first completed a rigorous dynamical and network cascade
analysis of the original non-mutant model11. We also identified numerous
targets using various techniques for phenotype control including

computational algebra29, feedback vertex set30,31, and stable motifs32, where
each tactic provides a complimentary approach depending on the infor-
mation available. We then sought to understand the impact of PC’s four
most common gene mutations: KRAS (gain-of-function), TP53 (loss-of-
function), SMAD4 (loss-of-function), and CDKN2A (loss-of-
function)14,23,27,28. For ease of notation, we elected to use the abbreviations
KRAS (K), TP53 (T), CycD(C), andSMAD(S). Eachof thesemutations can
be computationally achieved by a functional knock-in or knock-out com-
mand, that permanently turns the given Boolean function ON/OFF.
Detailed tutorials are included in our data repository.

Within the various mutation combinations of the PC model, we used
our stochastic simulator based on the SDDS framework (see the section
“Stochastic discrete dynamical systems”) to derive aggressiveness scores
from simulated long-term trajectory approximations (Supplementary Sec-
tion 1)23. The estimates in Fig. 2 were tracked using phenotype expressions
from only the PCC because the PSC is not considered malignant. Results
showed that certainmutation combinationsmay indeed bemore aggressive
than others. We then performed statistical analysis on clinical gene
expression data and derived survival curves that corroborated estimated
aggressiveness scores.

Phenotype control theory techniques revealed that sets of targets
contained nodes within both the PCC and the PSC, highlighting PIK3 and
BAX as a strong combination23. Notice that cells in Supplementary Fig. 1
containduplicate pathways.While targets are found inboth thePSCand the
PCC, targets such as PIK3c and PIK3s can be considered as one target
biologically. This is because a PIK3 inhibitor would act systemically rather
than locally. Thus, when inducing controls in Fig. 2, we assume systemic
treatment. Here, we show a heatmap of projected mutation aggression
compared to the application of target control. Note that as single agent
targets, PIK3 knockdown (PIK3↓) and BAX agonist (BAX↑) are not uni-
versally effective. However, their combination is an effective control across
all mutation combinations. We believe this can be explained by topological
module rankings, detailed below.

The following key observations will be visited:
• Network “depth” of KRAS mutation can break the standard modular

structure
• TP53 always directly impacts the module responsible for PCC

apoptosis
• Certain modules may not determine phenotypic states
• Signaling from mutations to modules directly influences aggression
• Topological ranking gaps correspond to aggression projections
• Single-agent targets are insufficient to out-compete downstream

mutations

Fig. 1 | Modularity workflow. The workflow within
this project begins with formal network analysis
(previously conducted on a published PC
model11,23,38). We then determine modules and
reduce to non-trivial modules, rank the modules,
and perform comparative analysis to understand the
connection between dynamics and topology.
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Mutations perturb modular structure
In1, the wild-type PC model from Supplementary Fig. 1 was first analyzed
for modularity and revealed that the system contained three non-trivial
modules. Themodule with the top hierarchical rank in Fig. 3, highlighted in
yellow, is an autocrine loop of five nodes. Module 2, highlighted in green,

contains 37 nodes spanning deep within both the PCC and PSC. The final
module, highlighted in gray, is a negative feedback loop of only two nodes
(referred to throughout as the ‘duplex module’)1.

Theoverallwild-typemodular structure fromFig. 3was achievedusing
the graphs in Fig. 4. Notice that Fig. 4a contains allmodules, both trivial and

Fig. 2 | Aggression scores and target efficacy. This figure shows aggression scores
based on phenotype approximations by applying weights to trajectory probabilities.
Here we include heat maps of aggression scores for each mutation combination (No
mutation induced (N.I.), KRAS (K), TP53 (T), CycD (C), SMAD (S)), comparing
cancer cell autophagy and proliferation while giving a negative weight to apoptosis.
Row label “Same” indicates that the same weight was given to both autophagy and
proliferation, “High/Low” indicates a high weight for autophagy but a lowweight for

proliferation, and “Low/High” indicates a low weight for autophagy but a high
weight for proliferation. Scaling of the heat map ranges from orange (low score) to
red (high score) based on themaximumandminimum values. Scaling shades of blue
(cold) indicate non-aggressive or negative scores as a response to targets PIK3
knockdown (PIK3↓) and BAX agonist (BAX↑)23. See Supplementary Section 1 for
more details.

Fig. 3 | Wild-type PC wiring diagram with modules. Shown are the highlighted modules (yellow, green, and gray) for the wild-type PC model in Supplementary Fig. 1,
adapted from ref. 1. Black barbed arrows indicate signal expression, while red oval arrows indicate suppression. A simplified structure can be seen in Fig. 4b.
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non-trivial. However, Fig. 4b is a reducedmodular structure with only non-
trivial nodes, including the cardinality of the modules as well as its original
numbering from the condensation graph in curly brackets for easy refer-
ence. Figure4a showshowphenotypes typically lie at the end (i.e. thebottom
of the graph) because they are the dynamical endpoint: Apoptosiss(24),
Proliferations(26), Migrations(28), Activations(27), Autophagyc(21),
Apoptosisc(20), and Proliferationc(23). Thus, the condensation ordering
begins with source (or input) nodes and expands distally to phenotypes
because the ultimate flow of themulticellular network goes from themiddle
outward. We anticipate that, due to this structure, we must use targets
sufficiently upstream of phenotypes to subvert the impact of mutations.

To better understand the impact of mutations on the modular struc-
ture, we constructed modules in the same manner as the wild-type after
mutations were induced. We give a comprehensive breakdown of module
structures for each mutation combination in Fig. 5. For example, to create
Fig. 5b, we first produced the corresponding condensation graph (Supple-
mentary Fig. 3) as previously described.We then identified the bins for each
SCC and noted direct or indirect communications between each module.
Lastly, we identified the location and influence of mutations that are indi-
cated in red with respect to each module. We also included the PIK3 (P↓)/
BAX (B↑) targets, indicated in blue with their respective locations and
influences, to show the explicit topological impact of the intervention tar-
gets. Notably, mutations break SCCs and change the modularity structure
both in the magnitude of the modules (total nodes within a module) and
amount of modules. More details with tables, graphs, files, and tutorials are
available in the Supplementary materials and data repository.

In general, wemaintain the three basic structures shown in Fig. 5a,
b, and f. Some cases hold to the same structure as the wild-type, but
notably, every instance of KRAS induction yields split modules—
sometimes trivial (octagonal shape in Fig. 5f) and other times non-
trivial (separate blue node). The former observation of a nontrivial
node split arises when KRAS is combined with TP53. We posit that
these phenomena are due to the location of KRAS in regard to its
“depth” within the largest central module. Notice that Fig. 3 shows
SMAD, TP53, and CyclinD are all located distally within their asso-
ciated modules (Module 1 and all others in Module 2, respectively).
Therefore, inducing their mutation merely shrinks the module size.
When KRAS is induced, it is located more centrally within its original
module and results in a broken component. For example, Fig. 5b shows
a gained module that only contains elements from the PSC that have
split from their strongly connected PCC counterparts. Additionally,
mutations do not always influence modules directly (e.g. Fig. 5c), and
there are scenarios where themutation does not impact anymodules at
all (e.g. Fig. 5o). Mutations yield anywhere from 28 to 51 modules in
total (including trivial nodes), but non-trivial modules remain at either
three or four in total (Supplementary Fig. 2).

Modular structure correlates with aggression
The most aggressive scores from Fig. 2 are TP53, T/K, T/S, and T/S/K. The
modularity structures for TP53 (Fig. 5c) and T/S (Fig. 5j) are unique in that
the TP53 component always directly interacts with the duplex module that
is responsible for apoptosis. Further, the structures forT/K (Fig. 5f) andT/S/
K (Fig. 5m) are unique because (1) the duplex module is isolated from the
standarddownstreamflow, and (2) theTP53 component influencesall three
downstreammodules (versus only the trivial and duplexmodules in T/C/K
andT/C/S/K). This added layer of influence iswhatwe believe drives amore
aggressive prediction.

Figure 6 indicates the topological ranking for eachmodule across every
mutation combination using ‘toposort’. Rankings are calculated according
to the module's overall percentile score (e.g. a rank of 5 among 28 total
modules yields 18%). Thus, rankings of a higher percentile would indicate a
greater impact (or stronger influence) on the final phenotypic state.
Figures 7 and 8 show the importance of module rankings and the gaps
(distance) between them.

A compelling correlation is displayed in Fig. 7, which shows the nor-
malized percentage difference between the rankings of Modules 2 and 3,
compared to previously predicted aggression scores.We posit that a greater
distance between the most influential modules indicates a more difficult
system dynamic to overcome when attempting to apply phenotype control
theory.Thismaybe attributed tomore competing signals toovercomewhen
compared to a small gap between modules. That is, gaps leave more room
for noise and therefore, link the topological structure to dynamical out-
comes. This is further evidenced by comparing the average errors of all
normalizedmodule gaps, shown inFig. 8,whereGaps2–3have thebestfit to
the aggression data. Indeed, greater gaps between these modules align with
more aggressive scores.

Mutations impact target efficacy
In1, target analysis was performed on the wild-type PC model in Fig. 3. For
an overview of some of themost prominent control techniques (see ref. 21).
Using apoptosis as the desired attractor, one could control the entire system
by regulating a total of three nodeswithin the top twomodules. Themodule
with the top hierarchical rank (yellow) is an autocrine loop with two fixed
points and two 3-cycles. Therefore, the Feedback Vertex Set31 strategy
yielded control ofModule 1 by pinning TGFβ1.Next,Module 2 (green)was
searched for targets using algebraic methods29 and revealed that pinning
KRAS in both the PCC and PSC stabilized the module. The final module
(gray) becomes constant after the initial three pinnings. That is, the entire
wild-type systemwas found to be controllable by a single growth factor and
systemic KRAS inhibition, both within the first two modules1.

However, KRAS is well-known for being unmanageable even though
progress is being made towards its targetability33. Therefore, targeting PIK3
and BAX may be more achievable23,34,35. We showed in Fig. 2 that the single

Fig. 4 | Wild-type PC modular structure. a Shown
are the cumulative modules (trivial and nontrivial)
ranked according to condensation. Node numbers
are assigned by the MATLAB37 “conncomp” func-
tion that bins connected graph components. b The
reduced modular structure is shown with only
nontrivial nodes, including the cardinality of the
modules (Size) and its original condensation num-
bering in brackets ({}).
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Fig. 5 | Variants of PC modular structure. Mutations are depicted with red
“explosions” with their original module (condensation) numbers in brackets. Black
arrows indicate communication between modules, red arrows indicate direct
influence from mutations and dashed arrows indicate indirect communication.
Modules are ranked in order, and curly brackets contain the original numeration

from the condensation graph. Lastly, the PIK3 (P↓)/BAX (B↑) targets are shown in
blue with respect to their location inside or outside modules to show their down-
stream modular effects. a–p Show each of the 16 mutation combinations and their
respective modular influences.
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agent controls of PIK3 and BAX are insufficient to achieve PCC apoptosis
across allmutation combinations. This is becauseTP53 directly influences the
duplex module responsible for apoptosis signaling (Fig. 5). Since PIK3 is
upstream of TP53, it must have helped to circumvent or out-compete the
mutation (through help from BAX). Such a combination is effective topolo-
gically because PIK3 is heavily involved in communications betweenmultiple

modules (either directly inside influentialmodules or indirect communication
to many modules), and BAX can override the deepest mutation signals.

Discussion
Systems biology is continually searching for general principles and tools for
their identification. The approach of network modularity adds to the

https://doi.org/10.1038/s41540-024-00398-6 Article
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repertoire of techniques that provide structural and dynamic analysis across
complex biological systems.Wehave shownhere that the givendefinitionof
modules captures the drastic perturbing effect that mutational occurrence
can have on normal biological mechanisms. A major limitation of most
other approaches to modularity is their focus on a static representation of
GRNs. Clearly, living organisms are dynamic and need to be modeled as

such1,36. That is precisely what we advocate through the framework estab-
lished in the section “Network modularity”.

However, it is important to note that the decomposition presented
in1 does not preclude the existence of emergent properties. Each
module is a complex dynamical system in itself. As we have shown,
modules perturb other downstream modules, and their emergent

https://doi.org/10.1038/s41540-024-00398-6 Article
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properties propagate to other modules. That is, within each dynamical
sub-system (module), the occurrence of mutations will have a direct
and downstream effect. Likewise, as the dynamics of upstreammodules
vary through time, the downstream modules may see an emergence of
altered dynamical properties.

What we have provided herein uses a new strategy of network
modularity1 to investigate the link between structure and function, using a
previouslypublishedpancreatic cancernetwork as a case study.Namely, this
linkwas shown to be strongly related to the variance in topological rankings

of the most phenotypically influential modules. We have identified that the
location of mutations, with respect to network depth and module posi-
tioning, expressly influences aggression and controllability. Thereby, pre-
senting evidence that the impact and location of mutations with respect to
modular structure directly correspond to the efficacy of single-agent treat-
ments in silico. These cumulative results help provide more clarity on the
impact of mutations in PC and posit the viability of using network mod-
ularity to study dynamical systems.

Methods
Network modularity
Systems biology can often build complicated structures from simpler
building blocks, even though these simple blocks (i.e.modules) traditionally
are not clearly defined. The concept of modularity detailed in1 gives a
structural decomposition that induces an analogous decomposition of the
dynamics of the network, in the sense that one can recover the dynamics of
the entire network by using the dynamics of themodules. First, we note that
the wiring diagram of a Boolean network is either strongly connected or is
composed of strongly connected components (SCCs). Using this decom-
position, we will define amodule of a BN as a subnetwork that is itself a BN
with external parameters in the subset of variables that specify an SCC
(example below).Naturally, this decomposition imposes a hierarchy among
the modules that can be used for the purpose of control. In this work, we
show one way to rank the modules to study their relevance with respect to
the effectiveness and aggressiveness of treatment.

More precisely, for a Boolean network F and a subset of its variables S,
we define a subnetwork of F as the restriction of F to S, denoted FjS ¼
ðf k1 ; � � � ; f km Þwhere xki 2 S for i = 1,⋯ ,m.Wenote that f ki might contain
inputs that are not part of S (e.g., when xki is regulated by variables that are
not in S). Therefore, F∣S is a BN with external parameters. For the Boolean
network F with wiring diagramW, letW1,…,Wm be the SCCs ofW with
variables Si. The modules of F are FjSi , and settingWi⟶Wj where there

Fig. 6 | Toposort analysis. Shown are the overall topological rankings for each module among all mutation combinations. A table version is included in the data repository.

Fig. 7 | Normalized toposort gaps between Modules 2 and 3. After comparing the
toposort rankings and gaps across all modules (Fig. 6), the gaps between Modules 2
and 3 (i.e. the modules communicating to the PCC phenotypes) were identified as
the most critical. Here we show a normalized scoring that indicates the largest

variance (or distance) between Modules 2 and 3 best aligns with the predicted
aggression scores from Fig. 2.

Fig. 8 | Errors of normalized toposort gap rankings. This chart is a comparison of
average errors after ranking and normalizing toposort gaps, compared to the nor-
malized aggression scores from Fig. 2. Gaps between Modules 2 and 3 best explain
the predicted aggression scores, further shown in Fig. 7.
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exists a node from Wi to Wj gives a directed acyclic graph
C = {(i, j)∣Wi⟶Wj}

1.
The dynamics of the state-space for Boolean network F are denoted as

DðFÞ, which is the collection of attractors. Further, if F is decomposable (say
into subnetworks H and G), then we can write F =H⋊ P G which is called
the couplingofH andGby schemeP. In the casewhere thedynamics ofG are
dependent on H, we call Gnon-autonomous denoted as G. Then we adopt
the following notation: letA =A1⊕A2 be an attractor of FwithA1 2 DðHÞ
and A2 2 DðGA1 Þ1.

Lastly, a set of controls u stabilizes a BN to attractor A if the only
remaining attractor after inducingu isA. The decomposition strategy can be
used to obtain controls for eachmodule, which can then combine to control
the entire system. That is, given a decomposable network F = F1⋊ PF2 and
an attractorA =A1⊕A2 withA1 2 DðF1Þ andA2 2 DðFA1

2 Þ, assumeu1 is a
control that stabilizes F1 in A1, and u2 is a control that stabilizes F

A1
2 in A2.

Then u = (u1, u2) is a control that stabilizes F inA given that eitherA1 orA2

are steady states1.
For an example, consider the network in Fig. 9a, which can be written

as

Fðx1; x2; x3; x4; x5; x6Þ ¼ ðx3; x1; x2; x1x6; x4; x5Þ: ð1Þ

Subnetworks are defined according to the dependencies of variables enco-
ded by the wiring diagram1. For example, the subnetwork Fjfx4 ;x5;x6g ¼ðx1x6; x4; x5Þ is the restriction of F to {x4, x5, x6} with external parameter x1.
From the givenwiring diagram,we derive two SCCswhereModule 1 (red in
Fig. 9b) flows into Module 2 (green in Fig. 9b). That is, F = F1⋊ F2 with

F1ðx1; x2; x3Þ ¼ ðx3; x1; x2Þ ð2Þ

F2ðx4; x5; x6Þ ¼ ðx6; x4; x5Þ ð3Þ

F2ðx4; x5; x6Þ ¼ ðx1x6; x4; x5Þ ð4Þ

DðF1Þ ¼ f000; 111; ½001; 100; 010�; ½011; 101; 110�g: ð5Þ

Suppose we aim to stabilize the system into y = 000000. First we see that
either x1 = 0, x2 = 0 or x3 = 0 stabilize Module 1 (i.e. F1) to A1 = 000 by
applying the Feedback Vertex Set method30,31. Likewise, x4 = 0, x5 = 0, or
x6 = 0 stabilize Module 2 (i.e. FA1

2 ) to A2 = 000. Thus, we conclude that
u = (x1 = 0, x6 = 0) achieves the desired result.

Topological sorting
To rank themodules of aBooleannetwork,wefirst formed the condensation
graph C of its wiring diagram W which is obtained by contracting each
strongly connected component into a single node (as in themiddle panel of
Fig. 1). Thus, the condensation graph is a directed, acyclic graph whose
nodes represent themodules of the original graphW. To obtain themodules
and their components we used theMATLAB37 function ‘condensation’ that
returns the condensation graph C. Another MATLAB37 function called
‘conncomp’ bins nodes according to their corresponding strongly con-
nected component. Twonodes belong to the same strong component only if
there is a path connecting them in both directions. Condensation deter-
mines the nodes and edges in C by the components and connectivity inW
such that: C contains a node for each strongly connected component inW,
and C contains an edge between node I and node J if there is an edge from
any node in component I to any node in component J ofW.

We proceeded to then order the modules using the topological
ordering of an acyclic graph, which is an ordering of the nodes in the graph
such that each node appears before its successors. We use an imple-
mentation of the topological sorting algorithm called ‘toposort’ from
MATLAB37. The algorithm is based on a depth-first search, where a node is
added to the beginning of the list after considering all of its descendants and
returns a new order of nodes such that i < j for every edge (ORDER(i),
ORDER(j)) in the original graphW. For example, consider a directed graph
whose nodes represent the courses onemust take in school andwhose edges
represent dependencies that certain courses must be completed before
others. For sucha graph, the topological sorting of the graphnodesproduces
a valid sequence inwhich the tasks could be performed37. Finally, we ranked
the modules based on the percentile scores (i.e., rank module k out of m
modules).

Stochastic discrete dynamical systems
Synchronousupdating schedules producedeterministic dynamics,where all
nodes are updated simultaneously (i.e. in sync). The stochastic discrete
dynamical systems (SDDS) framework developed by Murrugarra et al.22

incorporates Markov chain tools to study the long-term dynamics of Boo-
lean networks. By definition, an SDDS on the variables x1, x2,…, xn is a
collection of n triples denoted F̂ ¼ ff k; p"k ; p#k g

n

k¼1, where for k = 1,…, n,
• fk: {0, 1}

n→ {0, 1} is the update function for xk
• p"k 2 ½0; 1� is the activation propensity
• p#k 2 ½0; 1� is the deactivation propensity

Consider the state-space S, consistingof all possible states of the system.
If x = (x1,…, xn)∈ S and y = (y1,…, yn)∈ S, then the probability of transi-
tioning from x to y is

ax;y ¼
Yn

i¼1

Pðxi ! yiÞ ð6Þ

where

Pðxi ! f iðxÞÞ ¼
p"k ; if xi < f iðxÞ
p#k ; if xi > f iðxÞ
1; if xi ¼ f iðxÞ

8
><

>:
and Pðxi ! xiÞ

¼
1� p"k ; if xi < f iðxÞ
1� p#k ; if xi > f iðxÞ

1; if xi ¼ f iðxÞ

8
><

>:

ð7Þ

Here we assume that P(xi→ yi) = 0 for any yi∉ {xi, fi(x)}. When propen-
sities are set to p = 1, we have a traditional BN9. With this framework, we
built a simulator that takes randominitial states as inputs and then tracks the
trajectory of each node through time. Long-term phenotype expression
probabilities can then be estimated, as well as network dynamics with (and
without) controls.

Fig. 9 | Modularity example. a We show two simple three-cycles connected by an
intermediary edge. bThe upper and lowermodules are highlighted in red and green,
respectively.
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Data availability
All data supporting the findings of this study are available within the paper
and its supplementary information files on the repository.

Code availability
All code used for running simulations, statistical analysis, and plotting is
available on a GitHub repository at https://github.com/drplaugher/PCC_
Mutations. The repository also includes “How-To” documentation for
reproducibility.
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