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The shared mechanism 
and potential diagnostic markers 
for premature ovarian failure 
and dry eye disease
Xi Long 1,2, Zixuan Wu 1, Pengfei Jiang 3, Kang Tan 1, Pei Liu 1 & Qinghua Peng 1,2*

Premature ovarian failure (POF), which is often comorbid with dry eye disease (DED) is a key issue 
affecting female health. Here, we explored the mechanism underlying comorbid POF and DED to 
further elucidate disease mechanisms and improve treatment. Datasets related to POF (GSE39501) 
and DED (GSE44101) were identified from the Gene Expression Omnibus (GEO) database and 
subjected to weighted gene coexpression network (WGCNA) and differentially expressed genes 
(DEGs) analyses, respectively, with the intersection used to obtain 158 genes comorbid in POF 
and DED. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses of 
comorbid genes revealed that identified genes were primarily related to DNA replication and Cell 
cycle, respectively. Protein–Protein interaction (PPI) network analysis of comorbid genes obtained 
the 15 hub genes: CDC20, BIRC5, PLK1, TOP2A, MCM5, MCM6, MCM7, MCM2, CENPA, FOXM1, 
GINS1, TIPIN, MAD2L1, and CDCA3. To validate the analysis results, additional POF- and DED-related 
datasets (GSE48873 and GSE171043, respectively) were selected. miRNAs-lncRNAs-genes network 
and machine learning methods were used to further analysis comorbid genes. The DGIdb database 
identified valdecoxib, amorfrutin A, and kaempferitrin as potential drugs. Herein, the comorbid 
genes of POF and DED were identified from a bioinformatics perspective, providing a new strategy to 
explore the comorbidity mechanism, opening up a new direction for the diagnosis and treatment of 
comorbid POF and DED.
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MCM  Minichromosome maintenance
MCC  Maximal clique centrality
MNC  Maximal neighborhood component
LASSO  Least absolute shrinkage and selection operator
SVM-RFE  Support vector machine recursive feature elimination
CV  Cross-validation
ROC  Receiver operating characteristic
AUC   An area under the curve

Premature ovarian failure (POF), formerly known as premature ovarian insufficiency (POI) or premature meno-
pause, is characterized by the cessation of ovarian function before 40 years of  age1. This condition is marked by 
hypoestrogenism and diminished follicular reserves, leading to menstrual irregularities, infertility, and dimin-
ished health-related quality of  life2. POF is a diverse disease frequently overlooked during diagnosis, with a 
multifaceted etiology that includes genetic, iatrogenic, infectious, and autoimmune origins. Clinically, POF 
symptoms predominantly stem from estrogen deficiency and present as amenorrhea, oligomenorrhea, vasomotor 
symptoms (such as hot flashes and night sweats), sleep disturbances, vulvovaginal atrophy, urinary frequency 
changes, recurrent infections, and mood disturbances, including irritability and emotional  instability3. Women 
with POF have increased risks of cardiovascular disease, dementia, cognitive decline, Parkinsonism, dry eye 
syndrome, and  osteoporosis4,5. The psychological impact of POF is profound, necessitating counseling to address 
 infertility6, self-esteem issues, and increased anxiety and depression.

Dry eye disease (DED), also known as keratoconjunctivitis sicca (KCS), dry eye syndrome (DES), ocular 
surface disease (OSD), or dysfunctional tear syndrome (DTS), is a common ophthalmic disorder. This syndrome, 
particularly common in individuals over the age of 48 years, arises from an imbalance in the preocular tear 
film, affecting roughly one in seven individuals in this age group. DED originates from dysfunction within the 
nasolacrimal unit (encompassing the nasolacrimal glands, corneal surface, and eyelids), which leads to compro-
mised or inadequate tear film  production7. A physiologically intact tear film is crucial for clear vision because it 
collaborates with the cornea to focus light on the retina. Additionally, it plays a vital role in lubricating the eye, 
clearing ocular debris, and sustaining nutrition and oxygenation of ocular  structures8. Patients with DED often 
experience symptoms such as ocular burning, blurred vision, or pain, which substantially diminish their qual-
ity of life. Activities that require visual focus, such as reading or computer work, can be  challenging9. Despite 
the availability of treatments to alleviate the symptoms of DED, they often fail to address the underlying causes. 
A diverse array of factors, including autoimmunity, hormonal imbalances, and adverse environmental condi-
tions, have been implicated in the development of  DED10. Notably, dry eye symptoms may occasionally signal 
undiagnosed systemic diseases, and timely interventions could avert potentially life-threatening complications.

POF is frequently comorbid with DED, which markedly affects the physical and mental health of the affected 
women. Numerous studies have established a linkage between POF and  DED11,12. The diminished estrogen 
levels resulting from ovarian hypoplasia adversely affect lacrimal gland secretion, leading to the characteristic 
symptoms of  DED13. Additionally, certain inflammatory factors are aberrantly expressed under both condi-
tions, suggesting a shared pathophysiological basis. Investigating these comorbid mechanisms is crucial for 
understanding the development and progression of both POF and  DED14,15. Moreover, such explorations could 
offer novel perspectives and approaches for treating these conditions. The POF and DED Initiative, which uti-
lizes high-throughput transcriptome sequencing and enrichment with detailed clinical annotations, presents an 
unparalleled opportunity to examine the transcriptional landscape and molecular pathways of POF and DED. 
Bioinformatics analyses of these comprehensive datasets have yielded valuable insights into their intricate patho-
physiological mechanisms. However, a notable gap remains regarding the use of bioinformatics to explore the 
roles of differentially expressed genes (DEGs) in POF and DED. In the current study, we aimed to fill this gap 
by analyzing the POF and DED-related Gene Expression Omnibus (GEO) datasets to enhance our molecular 
understanding of POF and DED and identify new therapeutic targets, as illustrated in Fig. 1.

Results
GEO information
The DED- and POF-related datasets were screened from GEO to obtain gene chip datasets GSE44101 (microarray 
platform GPL1261), GSE39501 (microarray platform GPL6887), GSE171043 (microarray platform GPL28441), 
and GSE48873 (microarray platform GPL13607), which were eligible for the study. These datasets contain both 
normal and diseased samples. After screening, we selected the DED-related dataset GSE44101 for analysis and 
GSE171043 for validation, the POF-related dataset GSE39501 for analysis, and GSE48873 for validation.

Weighted gene coexpression network analysis (WGCNA) of DED and POF
Data from the GSE44101 and GSE39501 datasets were analyzed after preprocessing to obtain sample clusters. The 
β values of 20 and 9 were selected as the soft threshold to construct a coexpression network respectively (Fig. 2A, 
B), which fulfilled the following conditions: (i) the scale-free fitting index was ˃ 0.8, (ii) the average connectivity 
of the network was good, and (iii) the network conformed to the non-scale topological network distribution. 
Module identification was performed using a dynamic tree-chopping algorithm and by merging similar mod-
ules. The gene sets within the modules were highly related. The final GSE44101 dataset obtained 33 modules, 
while the GSE39501 dataset obtained 50 modules, respectively (Fig. 2C, D). Upon correlating the modules of the 
GSE44101 and GSE39501 datasets with the clinical characteristics (treat and control) of the samples and setting 
the MM threshold to 0.8, GS threshold to 0.1, and weight threshold to 0.1, we found that the GSE44101 dataset 
darkolivegreen4 module was highly correlated with the clinical characteristics (r = 0.99, P = 0.00) of the tissues. 
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Figure 1.  Schematic diagram of the general flow of this research work. In order to gain a more penetrating 
understanding of the mechanisms of comorbidity between POF and DED, we began our research journey 
using data from the GEO database. Specifically, this study was divided into three main parts. Firstly, in the first 
part we identified the GSE44101 and GSE39501 datasets as the primary cohorts through a careful matching 
strategy, and identified the GSE171043 and GSE48873 datasets for validation. We performed WGCNA analysis 
on GSE44101 and GSE39501 to identify the key modules and module genes, followed by differential expression 
analysis, respectively. The 158 common genes of POF and DED were obtained by merging and removing 
duplicate genes. Subsequently, in the second part, in order to reveal the functional basis of these common 
key genes, we performed exhaustive GO and KEGG analyses. Meanwhile, in order to further screen the hub 
genes, we executed a set of step-by-step screening of 15 hub genes after covering PPI, MCODE, Cytoscape, and 
GeneMANIA analyses. In the third part, the hub genes were further analysed and validated through seamless 
integration with 4 different methods and 2 datasets. This comprehensive approach not only enriches our 
understanding of the mechanisms of POF and DED comorbidity, but also lays a solid foundation for identifying 
prospective targeted therapies and interventions for the treatment of POF and DED comorbidity.
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Figure 2.  Weighted Gene Co-expression Network Analysis. (A) Selection of soft thresholds (β) for WGCNA 
analysis of POF. (B) Selection of soft thresholds (β) for WGCNA analysis of DED. (C) This diagram shows the 
degree of correlation within the module of the POF dataset. (D) This diagram shows the degree of correlation 
within the module of the DED dataset. (E) Relationship between modules and clinical features in POF dataset. 
(F) Relationship between modules and clinical features in DED dataset. Rows represent different modules and 
columns represent clinical features. Each cell contains the correlation between modules and clinical features 
and the corresponding p-value. (G) Module membership in deeppink1 module in POF dataset. (H) Module 
membership in darkolivegrenn4 module in DED dataset.
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The GSE39501 dataset deeppink1 module was highly correlated with clinical characteristics (r = 0.99, P = 0.00), 
as shown in Fig. 2E, F, G, H. Therefore, we selected the green GSE44101 dataset darkolivegreen4 module with 
the GSE39501 dataset deeppink1 module for further screening of key genes analysis. By analyzing WGCNA, 
151 coexpressed genes in DED and POF were obtained by considering the intersection of the two (Fig. 4A).

Analysis of DED and POF DEGs
Differential gene expression analysis of GSE44101 and GSE39501 revealed 1089 DEGs in GSE44101, of which 
553 genes were upregulated, and 536 genes were downregulated. A total of 166 DEGs were found in GSE39501, 
of which 131 were upregulated, and 35 were downregulated (Fig. 3). GSE44101 and GSE39501 had 10 common 

Figure 3.  Differentially expressed genes in POF and DED. (A) Volcano plot of differentially expressed genes 
in DED dataset, with pink representing up-regulated genes and blue representing down-regulated genes. (B) 
Heatmap of differentially expressed genes in DED dataset. Pink color represents high expression and blue 
color represents low expression. (C) Volcano plot of differentially expressed genes in POF dataset, with pink 
representing up-regulated genes and blue representing down-regulated genes. (D) Heatmap of differentially 
expressed genes in POF dataset. Pink color represents high expression and blue color represents low expression.
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DEGs, of which nine genes were upregulated, namely BC048546, LCN2, LTF, PADI1, HDC, PLVAP, GNG13, 
S100A8, and C3, and one gene was downregulated, MFAP4, as shown in Fig. 4B, C.

Enrichment analysis and functional annotation
After merging and removing duplicate genes, 158 DED and POF comorbid genes were obtained by combining 
all genes obtained from WGCNA and differential expression gene analysis. Genes were enriched using R to 
further clarify the functions of the screened genes and their roles in signaling pathways. The results showed that 
the identified genes were mainly enriched in DNA replication, cell cycle, glycosylphosphatidylinositol (GPI)-
anchor biosynthesis, Chagas disease (American trypanosomiasis), TNF signaling pathway, leishmaniasis, Kaposi 
sarcoma-associated herpesvirus infection, IL-17 signaling pathway, progesterone-mediated oocyte maturation, 
and legionellosis, while its major genes functions were mainly in chromosome, chromosomal part, cell cycle, 
chromosomal region, chromosome, centromeric region, mitotic cell cycle, condensed chromosome, kinetochore, 
condensed chromosome kinetochore, condensed chromosome, centromeric region, as shown in Fig. 5.

PPI network construction and modular analysis
The genes obtained from WGCNA and differential expression genes analysis were imported into the STRING10.0 
database, and the species was set as "homo sapiens" to obtain the genes comorbid in DED and POF. These genes 
were analyzed using PPI, and the key comorbid genes were screened, as shown in Fig. 6A. Two individual cluster-
ing modules of closely linked genes were extracted using the Molecular Complex Detection (MCODE) plugin 
(Fig. 6B, C). Cluster 1 contained 7 nodes and 19 edges. Cluster 2 contains 10 nodes and 32 edges.

Selection and analysis of hub genes
Furthermore, network analysis using the CytoHubba plugin with MCC, MNC, and Degree value as reference 
standards identified 15 key hub genes, including CDC20, BIRC5, PLK1, CDCA8, TOP2A, MCM5, MCM6, 
MCM7, MCM2, CENPA, FOXM1, GINS1, TIPIN, MAD2L1, and CDCA3 (Fig. 6D, E, F). Subsequently, we 
evaluated the coexpression network and the associated roles of the hub genes using the GeneMANIA database. 
The network results identified 46.7% coexpression, 22.85% physical interactions, 18.15% predictions, 5.39% 
pathways, 2.51% shared protein domains, 2.27% genetic interactions, and 2.14% co-localization (Fig. 6G).

Validation of hub gene expression
The expression levels of 15 key genes were validated using the POF-related dataset GSE48873 and the DED-
related dataset GSE171043. The t-test was performed on each subset of the dataset. The significance level was 
set at P < 0.05. Herein, we found that PLK1, CDCA8, TOP2A, MCM5, MCM6, MCM2, CENPA, MCM7, TIPIN, 

Figure 4.  POF and DED co-morbidity-genes screening. (A) Intersecting WGCNA genes of POF and DED. 
Green color represents DED dataset and blue color represents POF dataset. (B) Intersecting down-regulated 
DEGs of POF and DED. Purple color represents DED dataset and blue color represents POF dataset. (C) 
Intersecting up-regulated DEGs of POF and DED. Purple color represents DED dataset and blue color 
represents POF dataset.
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GINS1, MAD2L1, CDCA3, BIRC5, FOXM1, and CDC20 were expressed in another POF-related dataset, in 
which MCM7, TIPIN, GINS1, and MAD2L1 expression levels were significantly higher (P < 0.05), and CDC20 
expression levels were significantly lower (P < 0.05), as shown in Fig. 7. Additionally, CDC20, PLK1, TOP2A, 
MCM5, MCM6, MCM7, MCM2, CENPA, FOXM1, GINS1, TIPIN, MAD2L1, CDCA3, and CDCA8 were 
expressed in another DED-related dataset (Fig. 8). Therefore, we hypothesized that CDC20, CDCA8, PLK1, 
TOP2A, MCM5, MCM6, MCM7, MCM2, CENPA, FOXM1, GINS1, TIPIN, MAD2L1, and CDCA3 were comor-
bid in POF and DED. TIPIN, GINS1, MAD2L1, and CDC20 were also differentially expressed.

Figure 5.  Enrichment analysis and Functional Annotation of comorbid genes between POF and DED. (A) 
Bubble diagram of KEGG enrichment analysis. (C) Histogram of KEGG enrichment analysis. (D) Circle 
diagram of KEGG enrichment analysis. (E) Bubble diagram of GO functional analysis. (F) Histogram of GO 
functional analysis. (G) Circle diagram of GO functional analysis.
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Figure 6.  Identifcation and analysis of hub genes. (A) Protein–protein interaction network from String10.0. 
The purpler the node represents its higher significance, the yellower it is the opposite. (B) Cluster 1 from 
MCODE analysis of key genes. (C) Cluster 2 from MCODE analysis of key genes. (D) Identifcation of hub 
genes by CytoHubba of MCC ranking method. (E) Identifcation of hub genes by CytoHubba of MNC ranking 
method. (F) Identifcation of hub genes by CytoHubba of Dgree ranking method. (G) Hub genes and their 
co-expression genes were analyzed by GeneMANIA.

Figure 7.  Validation of hub genes expression by POF dataset (GSE48873).
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Identification of common RNAs and construction of microRNAs (miRNAs)- long noncoding 
RNAs (lncRNAs) shared genes network
A total of 210 miRNAs and 296 lncRNAs associated with DED and POF were identified from the three databases, 
namely, miRanda, miRDB, and TargetScan. When the corresponding database matched the relevant miRNAs, 
the score was marked as 1. Upon matching all three databases were matched, a score of 3 points was assigned. 
miRNAs were matched using the SpongeScan database to obtain the corresponding lncRNA data. The miRNA-
lncRNA-gene network was constructed by intersecting these non-coding RNAs with the shared genes. The 
network comprised 57 lncRNAs, 174 miRNAs, and some common genes, including the 14 hub genes (BIRC5, 
FOXM1, CDCA8, CDCA3, MCM6, CENPA, TOP2A, MAD2L1, PLK1, MCM5, TIPIN, MCM2, GINS1, and 
MCM7) (Fig. 9).

Drug forecasting and drug-gene interaction analysis
The prediction was performed using the DGIdb database, and a total of 293 predicted drugs were obtained, of 
which BIRC5 corresponded to 36 predicted drugs, PLK1 corresponded to 176 predicted drugs, and TOP2A 
corresponded to 80 predicted drugs. We constructed a drug-gene interaction network (Fig. 10A) and found that 
idarubicin hydrochloride and myricetin were common candidates for TOP2A and PLK1. Doxorubicin, fluoroura-
cil, paclitaxel, epirubicin, camptothecin, and genistein were common TOP2A and BIRC5 candidates. According 
to the above studies, we screened these drugs based on their interaction scores after excluding antineoplastic 
drugs. The drugs with the highest interaction scores for each hub gene are listed in Table 1. The BIRC5-predicted 
drug was valdecoxib, the PLK1-predicted drug was amorfrutin A, and the TOP2A-predicted drug was kaemp-
feritrin. Molecular docking between the hub genes and their predicted drugs revealed that the binding energies 
of the hub genes and their counterparts were < 0, suggesting that both could bind spontaneously. It is generally 
believed that the lower the energy, the more stable the ligand-receptor binding conformation and the greater the 
possibility of action. Analysis of the molecular docking results showed that BIRC5 had the lowest binding energy 
with valdecoxib ( − 5.51 kJ/mol), indicating that the ligand and receptor have the most stable conformation. The 
docking results are shown in Fig. 10B, C, D.

Machine learning model building
The 15 identified genes were explored as potential markers using the least absolute shrinkage and selection 
operator (LASSO) regression algorithm and support vector machine recursive feature elimination (SVM-RFE) 
analysis (Fig. 11). In the LASSO regression algorithm analysis of hub genes in GSE39501, five featured genes, 
namely CDC20, CDCA3, MCM5, PLK1, and TOP2A, were considered as characteristic genes that significantly 
correlated with the samples. Likewise, in GSE44101, two featured genes, namely, MAD2L1 and TIPIN, were 
considered characteristic genes. Notably, in the SVM-RFE analysis, all hub genes in GSE39501 and GSE44101 
were identified as characteristic genes. We combined these two results for receiver operating characteristic (ROC) 
analysis of hub genes, revealing that CDC20, CDCA3, MCM5, PLK1, TOP2A, MAD2L1, and TIPIN possessed 
good diagnostic performance as characteristic genes, with an area under the curve (AUC) of 1.

Figure 8.  Validation of hub genes expression by DED dataset (GSE171043).
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Discussion
POF, also known as pathological ovarian aging, is a reproductive disorder that markedly affects women during 
their fertile years. The cardinal facets of ovarian aging include a diminishing count and compromised follicle 
quality, thereby resulting in menstrual cycle irregularities or outright  amenorrhea2. This progressive decline in 
fertility ultimately culminates in a complete loss of reproductive capacity, concurrently entwined with the onset 
of multifaceted systemic ailments culminating in menopause. Women with POF have an increased susceptibil-
ity to diverse systemic and ocular  disorders13. DED, a prevalent ocular affliction with global ramifications, is 
characterized by inadequate tear production and tears of suboptimal quality, precipitating discomfort, visual 
disturbances, and consequential harm to the ocular  surface16. Various risk factors, such as age, hormonal fluc-
tuations, and autoimmune conditions, have been identified in  DED10. Some studies have suggested that DED is 
associated with comorbidities. Recent empirical data indicate an elevated prevalence of DED among individuals 
with POI when compared with those with normal ovarian  function12. However, the underlying mechanisms and 
the potential interconnections between these two conditions remain unclear. Against the backdrop of an evolv-
ing narrative on tumorigenesis, the scientific focus is progressively veering toward non-oncological realms. The 
collective interplay between comorbid genes in POF and DED represents an uncharted territory awaiting further 
exploration. A nuanced examination of the distinctive patterns of comorbidity amid the progression of POF 
and DED may elicit crucial insights into their pathogenic roles, thereby fostering the development of precisely 
targeted therapeutic interventions.

In the current study, we conducted data mining and analyzed the comorbidity mechanism of POF and DED 
based on bioinformatics methods, such as WGCNA and DEGs. We used the CytoHubba plug-in to perform an 
in-depth analysis of the PPI network and identified 15 key hub genes: CDC20, BIRC5, PLK1, CDCA8, TOP2A, 
MCM5, MCM6, MCM7, MCM2, CENPA, FOXM1, GINS1, TIPIN, MAD2L1, and CDCA3. Accordingly, hub 
genes were mainly covered by the cell division cycle (CDC) and minichromosome maintenance (MCM) gene 
families. Several studies have found that CDC family genes are associated with  apoptosis17, which induces cel-
lular senescence owing to its apoptotic mechanism, with the induction of cell senescence possibly resulting in 
numerous ocular surface disorders, including  DED18. Simultaneously, cellular senescence, as one of the key causes 
of DED, is associated with alterations in the structure and function of the lachrymal gland, such as atrophy and 
reduced protein  secretion19, with a higher probability of lacrimal gland lesions in older  females20. The MCM 
gene family is widely found in eukaryotes such as humans, plays a role in regulating cell division, and is a key 
factor in initiating DNA  replication21. Abnormalities in DNA replication are key to inducing reduced tearing 

Figure 9.  miRNAs-lncRNAs shared genes network. Red circles are mrnas, blue quadrangles are miRNAs, and 
green triangles are lncRNAs.
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and episodes of DED, which is consistent with the results of gene enrichment analysis. Primordial follicle deple-
tion or dysfunction is key to the development of POF caused by MCM5, increasing the proliferation of primary 
granulosa cells, which, in turn, promotes the activation of primordial follicles in neonatal mouse  ovaries22. The 
growth and development of mouse oocytes were found to be associated with three proteins of the MCM family: 
MCM2, MCM6, and  MCM723. The expression levels of these pivotal genes were validated using the POF-related 
dataset GSE48873 and DED-related dataset GSE171043, suggesting that CDC20, CDCA8, PLK1, TOP2A, MCM5, 

Figure 10.  Drug-gene interaction network and docking analysis. (A) Drug-gene interaction network. Orange 
circles represent genes, blue circles represent predictive drugs for PLK1, purple circles represent predictive 
drugs for BIRC5, pink circles represent predictive drugs for TOP2A, and green circles represent predictive drugs 
associated with tow genes. (B) The docking of BIRC5 with VALDECOXIB, the docking energe is − 5.51 kJ/
mol. (C) The docking of PLK1 with AMORFRUTIN A, the docking energe is − 1.19 kJ/mol. (D) The docking of 
TOP2A with KAEMPFERITRIN, the docking energe is − 1.84 kJ/mol.

Table 1.  Drug-gene docking analysis.

Gene Drugs Interaction score Molecular formula 3D Conformer Molecular docking score (KJ/mol)

BIRC5 VALDECOXIB 1.72 C16H14N2O3S  − 5.51

PLK1 AMORFRUTIN A 0.09 C21H24O4  − 1.19

TOP2A KAEMPFERITRIN 1.55 C27H30O14  − 1.84
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MCM6, MCM7, MCM2, CENPA, FOXM1, GINS1, TIPIN, MAD2L1, and CDCA3 are potential comorbid genes 
in POF and DED. Notably, TIPIN, GINS1, MAD2L1, and CDC20 were differentially expressed. Meanwhile, to 
clarify the diagnostic performance of hub genes, we performed a rich machine-learning analysis, revealing that 
under the SVM-RFE algorithm, all 15 hub genes screened were characterized as genes. Using the LASSO algo-
rithm and ROC analysis, CDC20, CDCA3, MCM5, PLK1, TOP2A, MAD2L1, and TIPIN showed good diagnostic 
performance. CDC20 is a key player involved in the cell  cycle24,25. Silencing CDC20 expression was found to 
activate  apoptosis26. In addition, CDC20 expression is closely related to oocyte development. Insufficient expres-
sion of CDC20 can suppress the development of  oocytes27, and the abnormal development of oocytes inevitably 
leads to the occurrence of POF, which is consistent with the results of our analysis. Moreover, CDC20 can be 
regulated by estrogen and progesterone, which could offer a new strategy to improve the success rate of assisted 
 reproduction28. Using bioinformatics analysis, CDC20 and TOP2A were found to be differentially expressed in 
POF, revealing low  expression29. CDCA8 encodes Borealin/Desra B protein, which is an important component of 
the chromosome passenger  complex30. The transcriptional activity of CDCA8 is increased in embryos, embryonic 
stem cells, and cancer cells, whereas it is weakly or unexpressed in normal  tissues31. CDCA8 affects cell prolifera-
tion by regulating the cell  cycle32. CDCA8 is also associated with cellular immune infiltration, and overexpres-
sion can lead to decreased cellular immune  infiltration33. CDCA3, also known as mitotic entry trigger factor 1, 
has been identified in several studies and reportedly mediates cell-cycle  progression34. TIPIN, a key factor in 
the cell cycle, is closely associated with DNA replication and interacts with the core circadian protein to form 
the Timeless-TIPIN complex, which is involved in normal DNA replication and maintains genomic  stability35. 
During DNA replication, the Timeless-TIPIN complex moves along the replication fork through its checkpoint-
adjustment or independent adjustment function to maintain the integrity and stability of the replication fork 
and facilitate the return of the DNA replication process to  normal36. Downregulation of the timeless-TIPIN 
complex was shown to reduce the rate of DNA  synthesis37. Disease manifestation is reflected by the fact that 
low TIPIN expression leads to apoptosis owing to aberrant DNA replication. Silencing of the highly expressed 
TIPIN inhibits cell proliferation. The timeless-TIPIN complex is closely related to the MCM family genes in the 
regulation of  apoptosis38. MAD2L1 is a component of the mitotic spindle assembly checkpoint that prevents 
late-stage initiation until all chromosomes are correctly aligned at mid-stage. As a major mitotic checkpoint gene, 
MAD2L1 is closely associated with cellular replication; thus, high MAD2L1 expression can lead to abnormal 
cell proliferation. MAD2L1 knockdown reportedly accelerates the production of reactive active species (ROS), 
which mediates mitochondrial DNA  damage39. Meanwhile, the inhibition of MAD2L1 disrupts mitochondria, 
and mitochondrial dysfunction leads to increased ROS production and inflammatory responses. Furthermore, 

Figure 11.  (A) Regression of the 15 shared genes using LASSO in GSE39501. (B) Regression of the 15 shared 
genes using SVM-RFE in GSE39501. (C) ROC of characteristic genes in GSE39501. (D) Regression of the 15 
shared genes using LASSO in GSE44101. (B) Regression of the 15 shared genes using SVM-RFE in GSE44101. 
(C) ROC of characteristic genes in GSE44101.
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mitochondrial dysfunction is a feature of cellular senescence, which also contributes to cellular  senescence40. 
Therefore, it is crucial to alleviate abnormal apoptosis and senescence when treating comorbid POF and DED.

After preliminary mining of the comorbid genes of POF and DED, we performed gene enrichment analysis 
and functional annotation and found that the comorbidity mechanism of POF and DED was predominantly 
related to DNA replication (Fig. 12A, a figure from the KEGG pathway  database41), cell cycle (Fig. 12B, a figure 
from the KEGG pathway  database41), and the IL-17 signaling pathway. Researche shows that cisplatin reduces 
DNA replication and thus alleviates tumorigenesis; however, it also affects ovarian function, leading to  POF42. 
Additionally, abnormalities in DNA replication can lead to the development of DED. The proliferation of vesicu-
lar cells due to abnormalities in DNA replication and the cell cycle can reduce tearing and episodes of  DED43. 
The IL-17 family of proteins plays crucial roles in the development of inflammatory diseases. IL-17 can drive 
autoimmune  diseases44. IL-17 was found to be closely related to the development of  DED45, as well as an effector 
of immune cells Th-1746, given that Th17 is crucially involved in autoimmune diseases and the body’s defense 
response, and IL-17 in the body is typically involved in inflammatory reactions and autoimmune diseases. This 
has important research significance for autoimmunity-related POF. Despite the promising potential of these 
mechanisms, it is crucial to recognize the current gaps in our understanding of their regulatory mechanisms 
within the comorbid framework of DED and POF. Further investigations are necessary to elucidate their precise 
roles and interactions with transcription factors that are pivotal for the comorbid regulation of DED and POF. 
These mechanistic insights will considerably advance our comprehension of the biological processes underly-
ing the development and progression of comorbid DED and POF, thereby opening new avenues for targeted 
therapeutic interventions.

By leveraging the identified hub genes, we constructed a comprehensive network of shared RNAs encom-
passing both miRNAs and lncRNAs. This intricate network comprised 57 lncRNAs, including CTA-414D7.1, 
LINC01043, GAS6-AS1, RP11-326C3.10, RP11-10J21.4, and MUC19. Additionally, it incorporated 174 miR-
NAs, including hsa-miR-802, hsa-miR-1200, hsa-miR-765, hsa-miR-612, hsa-miR-767-5p, hsa-miR-570-3p, 
hsa-miR-1207-3p, and hsa-miR-326, hsa-miR-218-5p. The construction of this shared gene network represents 
a pivotal step in comprehensively clarifying the molecular interactions and regulatory mechanisms underlying 
complex diseases. Integrating lncRNAs and miRNAs into a unified network framework enables the exploration 
of their synergistic roles and potential regulatory crosstalk in disease pathology. This network serves as a valuable 
resource for future research, providing a foundation for investigating the functional relevance of these noncod-
ing RNAs in the context of comorbid POF and DED. Although direct evidence linking these RNAs with POF or 
DED is lacking, several studies have identified a regulatory role for their expression in ovarian tissues. The main 
mechanism may involve the regulation of cell proliferation and apoptosis. For example, microRNA-802 was 
found to suppress the growth of epithelial ovarian cancer cells by regulating cell proliferation and apoptosis in 
the ovarian  tissue47. Additionally, has-miR-218-5p was highly expressed in HPV-infected ovarian tumor  tissues48 
lUCAT1 promotes the expression of HOXA13 by inhibiting hsa-miR-612, which ultimately leads to ovarian 
 cancerdevelopment49. Silencing of BRD4 by hsa-miR-765 resulted in substantial anti-ovarian cancer  activity50. 
Future research should focus on elucidating the specific functions and interactions between lncRNAs and miR-
NAs within the network. Detailed functional analyses and experimental validations are imperative to uncover 
their roles in gene regulation, signaling pathways, and disease progression. By advancing our understanding 
of these shared RNAs, we can identify novel biomarkers for early diagnosis and develop targeted therapeutic 

Figure 12.  The key signaling pathways. (A) DNA replication. (B) Cell cycle.
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strategies to mitigate the effects of POF and DED. This integrative approach sheds light on the complex regulatory 
networks that drive disease comorbidity and paves the way for innovative interventions in precision medicine.

Further analysis revealed that the potential therapeutic agents used were valdecoxib for BIRC5, amorfrutin A 
for PLK1, and kaempferitrin for TOP2A. Valdecoxib is a non-steroidal anti-inflammatory drug that reportedly 
inhibits phagocytosis by  macrophages51 and can prevent apoptosis induced by endoplasmic reticulum  stress52. 
BIRC5 is a cell cycle-related regulator of  apoptosis53. Valdecoxib has high structural stability with BIRC5 dock-
ing, as well as a high potential to act via a mechanism possibly related to anti-apoptosis. Amorfrutin A exerts 
potent anti-inflammatory effects and can be used to treat inflammatory  diseases54. PLK1 is closely associated 
with inflammation and plays a role in inflammatory response via ROS-mediated NLRP3 inflammatory vesicles. 
Kaempferitrin is the main compound in Chenopodium ambrosioides extract, a natural herbal ingredient with 
anti-inflammatory and antioxidant  activities55. TOP2A, topoisomerase II α, was found to be closely associated 
with sepsis-induced acute lung injury, which involves a variety of responses, including inflammatory responses 
and  apoptosis56. Importantly, the mechanism underlying comorbid POF and DED cannot be distinguished from 
the occurrence of an inflammatory response, especially when an autoimmune-related inflammatory response is 
common. Moreover, amorfrutin A, PLK1, kaempferitrin, or TOP2A can be explored to achieve anti-inflammatory 
responses.

There have been noteworthy efforts to utilize bioinformatics analyses to elucidate the links between metabolic 
processes and eye and gynecological diseases. Wang et al. highlighted MMP1 and MMP9 as promising predictive 
indicators and therapeutic targets for uveal  melanoma57. Hu et al. developed a bioinformatics model for thyroid-
eye disease and identified 11 hub genes (ATP6V1A, PTGES3, and PSMD12) with potential implications in these 
 conditions58. In a seminal  investigation59. Qin et al. reported a breakthrough with the identification of a CXCL10-
based model exhibiting excellent diagnostic precision for POF. This model, encapsulating CXCL10 alongside 
Itga2 and Raf1, not only demonstrated robust diagnostic accuracy but also stands poised as a prospective and 
invaluable diagnostic biomarker. Thus, the collective expression profiles of these genes represent a reservoir of 
pertinent diagnostic information for POF. Furthermore, comprehensive research endeavors by Liu et al. shed 
light on a distinct set of six pivotal genes: SRSF1, PDIA5, NEURL1B, UNK, CELF2, and CFL2. Augmenting this 
discovery, the investigation also identified five hub miRNAs—hsa-miR-27a-3p, hsa-miR-24-3p, hsa-miR-22-3p, 
hsa-miR-129-5p, and hsa-miR-17-5p. Intriguingly, these findings suggest a regulatory nexus wherein the expres-
sion of these key genes appears to be orchestrated by two central hub miRNAs: hsa-miR-27a-3p and hsa-miR-
17-5p60. These findings not only augment our understanding of the intricate molecular landscape associated with 
POF but also herald a paradigm shift in diagnostic possibilities. However, the exploration of the mechanisms of 
co-morbidity between the two diseases, POF and DED, is still in a lacklustre stage.

The objective of the current study was to bridge this gap using a novel methodology. We enriched our analysis 
by incorporating extensive POF and DED datasets from a continuously refined GEO database. Our predictive 
model for comorbidity provides a theoretical framework and charts a course for forthcoming metabolic research 
and the therapeutic modulation of metabolic perturbations in POF and DED. The novelty of comorbidity research 
lies in the fact that it breaks away from the traditional concept of treating different diseases as independent enti-
ties in the field of medicine, and takes into account the correlation and interaction between different diseases. 
By studying the phenomenon of comorbidity, the interactions and influences between diseases can be better 
understood, providing more comprehensive guidance for diagnosis and treatment in clinical medicine. By taking 
multiple factors into account, the complexity and diversity of diseases can be better grasped, providing more 
effective strategies for prevention and treatment. Besides, the novelty of this study is mainly reflected in the 
use of cutting-edge and rich bioinformatics analyses in order to comprehensively and systematically reveal the 
association and interactions between POF and DED. Through big data analysis, potential associations hidden in 
massive data were mined to provide more precise and in-depth analyses for co-morbidity studies. Meanwhile, 
through the mining of mechanisms combined with bidirectional causality, it provides theoretical basis and 
practical guidance for in-depth understanding and intervention of POF and DED comorbidity. Nevertheless, 
our investigation has some limitations. The fundamental mechanisms underlying POF and DED require further 
empirical validation through comprehensive in vitro and in vivo studies. In addition, the prognostic implications 
of comorbid genes remain elusive, presenting a valuable opportunity for future research. However, the intricate 
relationship between these comorbid genes in POF and DED remains elusive. Unraveling this relationship could 
provide critical insights into the pathophysiology of these conditions and reveal novel targets for therapeutic 
intervention. This represents fertile ground for future inquiry, with the potential to substantially advance our 
understanding of the molecular underpinnings and prognostic markers of comorbid POF and DED. Future 
investigations should focus on detailed functional analyses of the identified hub genes and their interactions. This 
includes exploring their roles in key signaling pathways, regulatory networks, and disease processes. Addition-
ally, large-scale clinical studies are necessary to validate the prognostic value of these genes and translate these 
findings into clinical practice.

Materials and methods
Data source and preprocessing
GEO (http:// www. ncbi. nlm. nih. gov/ geo/) is an extensive and publicly available gene expression database created 
and maintained by the National Center for Biotechnology Information (NCBI), containing high-throughput 
gene expression data submitted by research institutions worldwide. We used the inputs “dry eye” and “premature 
ovarian failure” to retrieve gene expression datasets for DED and POF. Inclusion criteria were as follows: (i) the 
sample size of each group was ≥ 3, (ii) the samples in the normal and control groups were included, and (iii) 
the two datasets used for analyses were of the same species, and the dataset used for validation and analyses, 
respectively, should preferably be of different species. (iv) The data set must have access to raw and complete 

http://www.ncbi.nlm.nih.gov/geo/
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data that can be exported for analysis. After screening the dataset, we preprocessed the matrix files obtained 
from the platform and matched the probes with their gene symbols according to the corresponding annotation 
files of the platform. Finally, we obtained gene matrices with row names as gene symbols and column names as 
sample names for subsequent analyses.

WGCNA
WGCNA considers biological functions as a whole using a gene network construction algorithm based on the 
expression similarity between genes. To identify DED- and POF-related gene coexpression modules, we used 
gene expression profiles to eliminate the top 50% genes with the smallest MAD and removed outlier genes 
and samples using the good-samples-genes method of the R package WGCNA, which was used to construct 
scale-free coexpression networks using a power function to construct a weighted neighbor-joining matrix. β 
is a soft-threshold parameter that emphasizes inter-gene strong correlations and penalizes weak correlations. 
Genes with similar expression profiles were grouped into gene modules, and the minimum size of the gene 
dendrogram was 30. The sensitivity was set to 3. To further analyze the modules, we computed the similarity of 
genes characterized by the modules, selected the cut lines of the module dendrograms, and merged the modules 
with distances < 0.25. Modules with high correlation coefficients for DED and POF were selected, and genes 
from these modules were obtained for further analysis. We used an online tool (https:// jvenn. toulo use. sra. fr/ 
app/ examp le. html) to determine the intersection of obtained genes using a Venn diagram, which can be used to 
obtain genes coexpressed in DED and POF.

Identification of DEGs
DEGs in DED and POF were identified using the R software limma package. Specifically, datasets were processed, 
converted into expression matrices, and grouped. The datasets were normalized and analyzed by using the limma 
software package and set adjusted with P < 0.05 and log2|FC (fold change)|≥ 1. The analysis identified DEGs, 
along with relevant information regarding their upregulated and downregulated expression. Considering the 
intersection between upregulated and downregulated expressed genes using the Venn diagram, genes common 
to DED and POF, respectively, were identified.

Enrichment analysis and functional annotation
To further elucidate the functions of the screened genes, we performed KEGG enrichment analysis and GO func-
tional annotation of genes associated with the comorbidity of DED and POF, which were obtained using WGCNA 
and DEG analyses. For gene set functional enrichment analysis, we employed the KEGG rest API (https:// www. 
kegg. jp/ kegg/ rest/ kegga pi. html) to obtain the latest gene annotations of the KEGG Pathway, and the R package 
clusterProfiler (version 3.14.3) to perform enrichment analysis. Enrichment analysis was performed with GO 
annotations of genes in the R package org.Hs.eg.db (version 3.1.0), including biological processes (BP), cellular 
components (CC), and molecular functions (MF), to obtain gene set enrichment results. A minimum gene set 
of 5 and a maximum gene set of 5000 were set, with P < 0.05 and FDR < 0.1 deemed statistically significant.

PPI network construction and modular analysis
To clarify the interaction relationship between the genes derived from the WGCNA and DEG analyses, STRING 
(https:// string- db. org), an online tool for retrieving interacting genes, was used to construct a PPI network. The 
species was set as "homo sapiens,” and the minimum required interaction score was set as high confidence (0.9), 
with obtained protein data imported into Cytoscape (http:// www. cytos cape. org; version 3.8.2) for PPI network 
analysis and visualization. Network analysis was then performed using relevant tools (Analyze Network). The 
PPI network was analyzed for key functional modules using the MCODE plug-in to obtain closely functioning 
subnetworks in the network, with the following specific parameters: degree cutoff = 2, max depth = 100, node 
score cutoff = 0.2, and K-core = 2.

Identification and analysis of hub genes
The PPI genes were analyzed according to the degree-value algorithm using the CytoHubba plugin to understand 
the importance of individual genes in this network and identify hub genes. Using MCC, MNC, and Degree val-
ues as reference standards, we selected the top 15 hub genes and used GeneMANIA (https:// genem ania. org/) to 
generate the coexpression networks for identified hub genes.

Validation of hub genes
To further strengthen the confidence of the results, we used R software to validate the expression of hub genes 
using the GSE171043 and GSE48873 datasets. Statistical significance was set at P < 0.05.

Identification of common miRNAs and lncRNAs
Noncoding RNA transcripts, such as miRNAs and lncRNAs, play crucial roles in genetic  regulation61. MiRNAs 
influence gene expression by either enhancing or inhibiting mRNA degradation and  translation62. Conversely, 
lncRNAs are noncoding RNA molecules that typically comprise ~ 200 nucleotides and regulate various physi-
ological and biochemical cellular processes by mediating chromosomal changes, transcriptional activation, and 
 interference63. Recent studies have highlighted the extensive crosstalk between miRNAs and lncRNAs, which 
involves competition for binding between miRNAs, lncRNAs, and other regulatory  targets64. Notably, competitive 
endogenous RNAs have been identified in which lncRNAs function by sequestering miRNAs. Therefore, in this 
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study, we aimed to investigate whether specific miRNAs and lncRNAs exhibit shared regulatory mechanisms 
and developmental processes in DED and POF using the Perl software.

Drug forecasting and drug-gene interaction analysis
To further understand the value of hub genes in clinical settings, we utilized the DGIdb database (https:// dgidb. 
genome. wustl. edu/) for drug prediction and their interactions with the identified hub genes, thus exploring the 
treatment of comorbid POF and DED. Docking was performed after converting the compound and target protein 
formats to *pdbqt format using AutoDock software, setting up the folder and working directory, respectively, 
placing the prepared files, ensuring that the software was running, and adopting the default parameters of Auto-
Dock Vina for docking. After obtaining the docking results, the docking results were converted from *pdbqt 
format to *pdb format using Open Babel (https:// openb abel. org/) and then imported into PyMOL (https:// 
pymol. org/2/) for visualization.

Machine learning model building
To further explore the diagnostic value of intersecting genes, we constructed a reliability predictive model using 
machine learning. Regression analysis was performed using LASSO with the glmnet package in R. Hub gene 
expression values in the GSE44101 and GSE39501 datasets were used as predictor variables, and their sample 
groups were used as response variables. Cross-validation (cv) of the model was performed using the cv.glmnet 
function, and CV plots were plotted to determine the optimal regularization parameters. Based on the coefficients 
of the LASSO regression, genes with non-zero coefficients were identified as selected signature genes. Next, we 
employed the sophisticated SVM-RFE algorithm with the e1071 package to construct another machine-learning 
model. These analyses provided a more nuanced understanding of these genes. Subsequently, we performed ROC 
analysis to construct models for assessing the predictive performance of the results and the diagnostic value of 
a factor. AUC values ˃ 0.5 and approaching 1 indicate high diagnostic accuracy. AUC values between 0.5 and 
0.7 indicate low accuracy, 0.7 to 0.9 moderate accuracy, and ˃ 0.9 high accuracy. We used the R package pROC 
(v1.17.0.1) to perform the ROC analysis and obtain AUC values. Specifically, we obtained the disease status of 
the patient along with gene expression and evaluated the AUC and confidence intervals to clarify the diagnostic 
value of the genes in the disease.

Conclusion
The pathobiology of DED and POF involves an intricate tableau of multifactorial interactions encompassing a 
wide array of gene targets, pathways, signaling modalities, and regulatory frameworks. These components engage 
in a complex, often bidirectional interplay that exhibits both synergistic and antagonistic effects. Comorbid 
genes, including CDC20, BIRC5, PLK1, CDCA8, TOP2A, MCM5, MCM6, MCM7, MCM2, CENPA, FOXM1, 
GINS1, TIPIN, MAD2L1, and CDCA3, with processes encompassing DNA replication, the cell cycle, and the 
IL-17 signaling pathway, are central to this biological mosaic and are pivotal in catalyzing the biosynthesis of a 
spectrum of critical entities. The spotlight in this constellation of genes falls on CDC20, MAD2L1, and TIPIN, 
which is closely related to abnormal apoptosis and senescence. The functionality of these genes, whether in the 
activation or inhibition of metabolic pathways, is emblematic of the metabolic versatility integral to the patho-
genesis of DED and POF.

Data availability
The datasets presented in this study can be found in GEO (https:// www. ncbi. nlm. nih. gov/ geo/). GSE44101, 
GSE39501, GSE171043, GSE48873 datasets were downloaded from the GEO database.
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