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Abstract

Peptides have historically been underutilized for covalent inhibitor discovery despite their unique 

abilities to interact with protein surfaces and interfaces. This is in part due to a lack of methods for 

screening and identification of covalent peptide ligands. Here, we report a method to identify 

covalent cyclic peptide inhibitors in mRNA display. We combine co- and post-translational 

library diversification strategies to create cyclic libraries with reactive dehydroalanines (Dhas), 

which we employ in selections against two model targets. The most potent hits exhibit low 

nanomolar inhibitory activities and disrupt known protein-protein interactions of their selected 

targets. Overall, we establish Dhas as electrophiles for covalent inhibition and showcase how 

separate library diversification methods can work synergistically to dispose mRNA display to 

novel applications like covalent inhibitor discovery.
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Covalent inhibition has regained favor as a drug discovery strategy in recent years, 

as exemplified by a substantial increase in FDA approved covalent drugs in the last 

three decades.1,2 Many covalent inhibitors to date have relied on structural information 

to retrofit electrophiles onto reversible binders, optimize naturally occurring covalent 

ligands, or design covalent substrate analogs of a given protein target.2–5 However, when 

such information is not available, de novo covalent inhibitors must be discovered. In 

these endeavors, high throughput screening of electrophilic libraries can enable initial hit 

discovery. For instance, a small molecule acrylamide library screened against the G12C 

mutant of KRAS, which otherwise lacks distinct pockets for reversible ligand engagement, 

led to the discovery of a previously unknown binding site6—exploitation of which enabled 

the development of now FDA-approved Sotorasib.7,8 This success showcases the utility of 

electrophilic libraries for covalent drug development, and applications of this approach have 

continued to expand in recent years.9–14

Generation of electrophilic genetically encoded libraries (GELs), such as those in phage 

and mRNA display,15 could be significantly useful for covalent inhibitor discovery. GELs 

can be exceedingly large (>1013 molecules), are synthesized quickly and accurately by 

the ribosome, and are increasingly approaching the chemical space of natural products.16–

18 Resulting peptide inhibitors have greater propensity to occupy shallower binding 

pockets,19,20 disrupt protein-protein interactions,21–23 and have high selectivity for their 

protein target;24–26 the last characteristic may be particularly desirable in covalent drug 

discovery, where non-specific reactivity is a unique concern. Despite these advantages, 

there are relatively few examples of electrophilic GELs, with a handful of reports in phage 

display,27–29 and only cofactor-targeted examples in mRNA display.30

Dehydroalanines (Dhas) are biologically occurring electrophiles31,32 that have previously 

been incorporated in mRNA display for peptide cyclization, side chain functionalization, 

or heterocycle formation.18,33,34 We anticipated that Dhas might also serve as competent 

cysteine electrophiles for covalent inhibitor discovery. Dhas can be accessed through 

protected precursors like phenylselenocysteine (PhSec), which can be revealed after peptide 

cyclization to allow compatibility with virtually all cysteine-based cyclization methods 

common to mRNA display. Thus, we envisioned a route to cyclic electrophilic mRNA 
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display libraries involving 1) translation of PhSec with an orthogonal aminoacyl-tRNA 

synthetase (ORS),35 2) library cyclization through the robust Flexizyme-mediated thioether 

linkage,36,37 and 3) post-translational reveal of Dhas through oxidative elimination (Figure 

1A; Figures S1-2). This elimination likely also results in oxidation of the macrocyclic 

linkage, however, herein we assume this static position has minimal impact on affinity 

and elect to synthesize hits as thioethers for simplicity. Importantly, this strategy allows 

positional variation and overrepresentation of the electrophile through strategic design of 

the mRNA library (Figure 1B), which contrasts prior phage display approaches where the 

chemistry restricts electrophile incorporation to a single position immediately flanked by 

cysteines. Lastly, we sought to denature the selection targets with guanidine after incubation 

with the electrophilic libraries to encourage recovery of covalent ligands, as previously 

done in phage display.28 Herein, we report the realization of this selection strategy against 

two model targets, calcium and integrin-binding protein 1 (CIB1) and melanoma-associated 

antigen 4 (MAGE-A4).

We first confirmed the compatibility of 5 M guanidinium with cDNA amplification and 

the biotin-streptavidin interaction, then showed that guanidine could ablate the recovery of 

a previously selected non-covalent CIB1 inhibitor in mRNA display (Figure S3).38 CIB1 

is a well-behaved protein with two surface-exposed cysteines,39 making it a desirable first 

target for covalent inhibitor discovery. We designed a 9-mer mRNA library with a cysteine-

deficient NWW randomization to prevent the potential consumption of Dhas in additional 

macrocycles. Notably, this randomization also removes several amino acid residues and the 

TAG codon, resulting in a reduced theoretical library diversity of ~2E8 molecules. The TAG 

codon was scanned across all positions of the randomized library (Figure 1B), resulting in 

library members each with one Dha.

We conducted selections with denaturation against CIB1 and analyzed results by next 

generation sequencing (NGS). Significant convergence appeared in round four, with one 

sequence comprising >20% of NGS reads (Figures 2A-B). We synthesized this peptide 

as CCP1 (Figure 2C) and tested its ability to covalently modify CIB1 via MALDI-MS. 

Pleasingly, we observed a dose-dependent shift in CIB1 mass that roughly corresponds to 

CCP1 addition (Figure 2D). We did not observe CIB1 modification with a non-specific 

electrophile, iodoacetamide (Figure S4), or when the Dha of CCP1 was mutated to non-

reactive L- or D-Ala. These results suggest specificity toward CIB1 and implicate the Dha 

in covalent modification. Trypsin-MALDI-MS of the CIB1-CCP1 complex suggested that 

CCP1 modifies a protein fragment containing Cys134 (Figure S4), which was confirmed 

when CCP1 did not modify a CIB1 C134A mutant (Figure 2D).

We next sought to assess whether CCP1 can inhibit interactions in the C-terminal binding 

pocket of CIB1.40 To test this activity, we used a previously developed TR-FRET assay 

between CIB1 and a known phage display peptide.41 In this assay, CCP1 shows modest 

inhibitory activity, with an IC50 of ~0.5 μM after 1 hour incubation (Figure 2E-F; Figure 

S5). In contrast, non-covalent cyclic peptide inhibitors UNC10245131 and UNC1024523138 

display low nanomolar IC50s at this time point. The potency of CCP1 increases significantly 

over time—a hallmark of covalent inhibitors—with IC50 improving almost ten-fold after 24 

hours. In contrast, the non-covalent inhibitors largely sustain potency on longer incubation. 
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L- and D-Ala mutants of CCP1 do not display any inhibition in this assay, and CCP1 is 

inactive against the CIB1 C134A mutant (Figure S5). Notably, C134 is located ~7Å from the 

surface of the phage peptide binding pocket (Figure S6).41 Thus, lack of inhibition against 

C134A suggests that CIB1 undergoes a conformational change upon reaction with CCP1 

that prevents access to the phage peptide binding site, or that binding is lost in absence of the 

cysteine target of CCP1. We also evaluated the ability of CCP1 to label CIB1 when spiked 

into cellular lysates (MDA-MB-453); CCP1 only labels CIB1 with no additional off-target 

modifications, demonstrating its selectivity toward CIB1 in a complex environment (Figure 

2G; Figure S7).

To demonstrate the robustness of this covalent selection strategy, we performed a second 

selection against another protein target, MAGE-A4. In light of the CIB1 selection, we 

made adjustments to the selection protocol: 1) we extended incubation times of the first 

two selection rounds because these conditions appear to improve reaction between CCP1 

and CIB1 (Figure S8); 2) we employed a more comprehensive NNK library randomization 

because guanidine denaturation appears sufficient to prevent enrichment of non-covalent 

binders. We also hypothesized that the lower NWW library diversity might be partly 

responsible for the moderate activity of CCP1. With these changes, parallel selections with 

(+G) or without (-G) guanidine denaturation were performed against MAGE-A4. After 

four rounds, NGS data revealed convergence upon several families (Figure 3A). The top 

families in each selection differed significantly, and we did not observe enrichment of 

any multi-Cys families in the +G NGS data. The most enriched -G family, which appears 

similar to a previous non-covalent selection against MAGE-A4,24 was absent from the top 

200 sequences of the +G selections, demonstrating the ability of guanidine to hinder the 

emergence of non-covalent ligands by >100-fold.

We synthesized three representative peptides, MCP1, MCP2, and MCP3 (Figure 3B), from 

the +G selections, all of which are distinct from previously selected MAGE-A4 inhibitors. 

All peptides modify MAGE-A4 by MALDI-MS, with MCP1 and MCP2 performing more 

efficiently than MCP3 (Figure 3B). MCP3 may modify a second site over an extended 

time, though we note the emergent peak is several hundred Daltons heavier than MCP3. 

To crudely gauge peptide selectivity, we tested if any of the MCPs modify CIB1 and only 

observed any significant labeling with MCP3 (Figure S9). The more selective and complete 

labeling efficiencies of MCP1 and MCP2 correlate well with their increased enrichment 

over MCP3 in the NGS data. L- and D-Ala mutants of MCP1 and MCP2 did not modify 

MAGE-A4 by MALDI-MS, confirming their modifications as Dha-dependent.

MAGE-A4 has four cysteines: two within the MAGE homology domain (MHD) and two 

in the structurally undefined N-terminal region.42 We initially tested if any of the covalent 

peptides modify the MHD alone, but did not observe substantial modification by MALDI-

MS (Figure S9). GluC-MALDI-MS digests of MAGE-A4 adducts with MCP1 or MCP2 

suggested that the peptides modify a fragment containing Cys80 (Figure S10), which was 

confirmed when MCP1 and MCP2 did not label a MAGE-A4 C80A mutant (Figure 3B). 

Some modification of C80A by MCP3 was still observed, further suggesting that MCP3 may 

be capable of modifying two sites.
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Despite covalently modifying the N-terminal region, MCPs may still be able to block access 

to the MHD. Thus, we tested if the MCPs could inhibit association of a previously selected 

non-covalent MHD binder, MTP-1, in TR-FRET.24 Indeed, MCP1 and MCP2 exhibit single 

digit nanomolar IC50s of 9.0 and 6.4 nM, respectively, after 1 hour (Figure 3C-D). As 

expected, MCP3 exhibits much weaker inhibition. The L- and D- Ala mutants of MCP1 

and MCP2 are much less potent than their Dha-containing counterparts. However, the D-Ala 

mutants of both peptides are more potent than L-Ala, suggesting D-Ala stereochemistry may 

be adopted upon nucleophilic attack by C80. We observed small yet significant increases in 

potency over time only for MCP1 and MCP2, which might be further differentiated in an 

assay with sub-nanomolar sensitivity. In the presence of MAGE-A4 C80A, IC50s of MCP1 

and MCP2 fell in between those of their L- and D-Ala mutants, while MCP3 activity was 

ablated (Figure 3C-D). We also determined kinetic parameters for MCP1 through a mass 

dilution TR-FRET assay (Figure S11). MCP1 exhibits a kinact of 3.4 ± 0.3 min−1 and KI of 

7.3 ± 1.1 nM, for an inactivation efficiency (kinact/KI) of 4.9 × 108 ± 5.2 × 107 M−1 min-1. 

These values align well with the observed IC50s for MCP1 and its L- and D-Ala mutants, 

further supportting that MCP1 inhibition is reliant on covalent modification. Lastly, we 

tested if the MCPs could disrupt MAGE-A4 engagement with one of its E3 ligase binding 

partners, RAD18, in cell lysates. In a co-immunoprecipitation of the RAD18-MAGE-A4 

complex, all MCPs were able to disrupt MAGE-A4 pulldown, with MCP3 being less 

effective than MCP1 and MCP2 (Figure 3E). In contrast, none of the peptides disrupted 

the interaction between E2 ligase RAD6 and RAD18, showcasing selectivity for MAGE-A4.

In summary, we have combined multiple library diversification techniques—ORSs, post-

translational chemistry, and Flexizymes—to incorporate electrophiles into macrocyclic 

mRNA display libraries for selection of covalent binders. This strategy is theoretically 

compatible with other cysteine-based cyclizations, including chemical cyclizations such 

as dibromoxylene. We establish Dhas as electrophiles for covalent inhibitor discovery 

and demonstrate the ability of guanidine to bias mRNA display selections toward 

covalent ligands. Additionally, we show this method can identify covalent inhibitors that 

exhibit selectivity in complex environments and disrupt known protein-protein interactions. 

Although the current method incurs potential background oxidation and requires targets 

with surface exposed cysteines, future optimization of electrophile identity and selection 

conditions (e.g. time, temperature) may fine-tune the resultant covalent binders for affinity, 

expedient reactivity, and target class.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A) Strategy for Dha incorporation in mRNA display. B) Adjustments to standard selection 

process to facilitate identification of covalent binders.
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Figure 2. 
A) Top families from round 4 of Dha selections with guanidine denaturation against CIB1, 

annotated by similar (blue) and significant (red) mutations from top sequence in each family. 

B) NGS % composition of CCP1 tracked over selection rounds. C) Structure of CCP1 

with Dha highlighted. D) MALDI-MS of CIB1 when incubated with CCP1, its L/D-Ala 

mutants, or CCP1 + CIB1 C134A mutant. E) Time-dependent TR-FRET between CIB1 and 

AF647-phage peptide in the presence of CCP1, its L/D-Ala mutants, and non-covalent CIB1 

inhibitors UNC10245131 and UNC10245231. F) Calculated IC50s from TR-FRET in part E. 

G) Western blot of biotin-CCP1 titration in MDA-MB-453 cell lysates spiked with CIB1 (6 

μM). Detection enabled by neutravidin-HRP.
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Figure 3. 
A) Top families from +G (round 4) or -G (round 3) Dha selections, annotated by similar 

(blue) and significant (red) mutations from top sequence in each family. B) Structures of the 

selected peptides from MAGE-A4 +G selections with Dhas highlighted and accompanying 

MALDI-MS spectra of MAGE-A4 when incubated with each peptide, its L/D-Ala mutants, 

or when peptides are incubated with MAGE-A4 C80A. C) Time-dependent TR-FRET 

between AF647-MTP-1 and MAGE-A4 or MAGE-A4 C80A in the presence of covalent 

peptides. D) Calculated IC50s from TR-FRET curves in part C. E) Western blots of MAGE-
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A4 co-immunoprecipitation with RAD18 at 10 μM peptides, including an MTP-1 Y5A 

negative control.
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