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Abstract

Objective.—The genome-wide profiling of 5-hydroxymethylcytosines (5hmC) on circulating 

cell-free DNA (cfDNA) has revealed promising biomarkers for various diseases. The purpose 

of this study was to investigate 5hmC signals in serum cfDNA and identify novel predictive 

biomarkers for the development of chemoresistance in high-grade serous ovarian cancer 

(HGSOC). We hypothesized that 5hmC profiles in cfDNA reflect the development of 

chemoresistance and elucidate pathways that may drive chemoresistance in HGSOC. Moreover, 

we sought to identify predictors that would better stratify outcomes for women with intermediate-

sensitive HGSOC.
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Methods.—Women diagnosed with HGSOC and known platinum sensitivity status were selected 

for this study. Nano-hmC-Seal was performed on cfDNA isolated from archived serum samples, 

and differential 5hmC features were identified using DESeq2 to establish a model predictive of 

chemoresistance.

Results.—A multivariate model consisting of three features (preoperative CA-125, largest 

residual implant after surgery, 5hmC level of OSGEPL), stratified samples from intermediate 

sensitive, chemo-naive women diagnosed with HGSOC into chemotherapy-resistant- and 

sensitive-like strata with a significant difference in overall survival (OS). Independent analysis 

of The Cancer Genome Atlas data further confirmed that high OSGEPL1 expression is a favorable 

prognostic factor for HGSOC.

Conclusions.—We have developed a novel multivariate model based on clinico-pathologic data 

and a cfDNA-derived 5hmC modified gene, OSGEPL1, that predicted response to platinum-based 

chemotherapy in intermediate-sensitive HGSOC. Our multivariate model applies to chemo-naïve 

samples regardless if the patint was treated with adjuvant or neoadjuvant chemotherapy. These 

results merit further investigation of the predictive capability of our model in larger cohorts.

Keywords

High-grade serous ovarian cancer; Chemotherapy resistance; Biomarkers; Cell-free DNA, liquid 
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1. Introduction

High-grade serous ovarian cancer (HGSOC) is the most common subtype of ovarian 

cancer (OvCa), and, in its advanced stages, accounts for most OvCa-related mortality. 

Current standard treatment strategies for advanced-stage HGSOC are primary debulking 

surgery paired with taxane- and platinum-based chemotherapy or neoadjuvant chemotherapy 

(NACT) followed by interval debulking surgery (IDS). The initial response rate to platinum-

based chemotherapy is high, with only 20–30% of women exhibiting primary resistance. 

However, most of the remaining 70–80% of women will acquire therapeutic resistance over 

time, relapse, and succumb to their disease [1].

Response to platinum-based adjuvant chemotherapy (AC) is clinically classified into four 

categories: (1) platinum-refractory (progression during treatment), (2) platinum-resistant 

(recurrence within less than six months), (3) intermediate-sensitive (recurrence between 6 

and 12 months), and (4) platinum-sensitive (recurrence after 12 months) [2,3]. Multiple 

mechanisms involved in developing platinum resistance have been elucidated [4], but no 

biomarkers have yet been identified that can reliably predict which women will develop 

therapy resistance. Therefore, we continue to classify patient response as we did 30 years 

ago; by the timing of the first recurrence. A reliable biomarker, predictive of platinum 

response, should prospectively identify women who will respond or continue to respond to 

platinum-based chemotherapy after retreatment and allow clinicians to provide alternative 

options sooner to those who lack a durable response.

Malignant transformation is driven by genetic aberrations and wide-spread epigenetic 

changes such as DNA methylation [5,6]. Modifications of the DNA base cytosine in the 
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form of 5-methylcytosine (5mC) can create a repressed chromatin environment, leading 

to gene suppression. In contrast, the oxidation product of 5mC, 5-hydroxymethylcytosine 

(5hmC), likely creates an open chromatin environment that enables active gene transcription 

[7,8] (Fig. S1A). In 2011, the 5hmC-Seal method was developed to allow genome-wide 

profiling of 5hmC modifications on genomic DNA [9]. Later, the method was adapted for 

circulating cell-free DNA (cfDNA) and termed nano-hmC-Seal [10–12]. Since then, 5hmC 

modifications on genomic DNA have been studied using nano-hmC-Seal in a variety of solid 

and hematological cancers as diagnostic or prognostic biomarkers [13–15].

We report the genome-wide profiling of 5hmC on cfDNA isolated from serum samples 

from women with HGSOC at the time of surgery to determine the molecular features 

of HGSOC and to discover biomarkers predictive of carboplatin response. We found that 

5hmC-modified genes and genomic regions can be used to predict chemoresistance in 

chemo-naïve samples from women with HGSOC.

2. Materials and methods

2.1. Inclusion criteria

Women diagnosed with HGSOC, undergoing surgical treatment by a gynecologic oncologist 

at the University of Chicago Medical Center and receiving carboplatin and paclitaxel-based 

first line adjuvant or neoadjuvant chemotherapy were included in this study. Please refer to 

Table S1 for patient meta data.

Study design, patient cohort, and definitions.

Women treated with adjuvant chemotherapty (AC) underwent upfront surgery followed by 

6 cycles of carboplatin/paclitaxel-based chemotherapy. Women treated with NACT received 

between one to seven cycles of chemotherapy with carboplatin and paclitaxel, followed by 

interval debulking surgery (IDS) and postoperative chemotherapy. Clinico-pathological data 

were prospectively collected in a MS ACCESS database [16].

Platinum sensitivity was determined based on the number of days after the last cycle of 

chemotherapy until disease recurrence or progression. Women who recurred within 182 

days were considered resistant, women who recurred within 182–365 days were considered 

intermediate-sensitive, and women who recurred after 365 days were considered sensitive 

[2,3]. Platinum refractory women were not included in this study. Platinum resistant days 

were calculated based on the date of the last chemotherapy treatment of the first line 

chemotherapy and the date the first recurrence/progression was diagnosed. Disease-free 

intervals (DFI) were calculated as days from the treatment start date (either surgery or the 

first cycle of chemotherapy) to the first recurrence or last follow-up date. Overall survival 

(OS) days were determined based on days between the treatment start date and the date 

of death. Recurrence was defined as either a) tripling in CA-125 (>100 U/mL), b) new 

disease detected on CT, MRI or sonographic imaging, or c) disease detected by clinical 

exam (preferentially with biopsy or presence of ascites). Disease-free intervals and OS, 

platinum resistance, disease recurrence, and subsequent chemotherapies were updated every 

three months by experienced clinicians (M. K.). Since most women in the NACT cohort had 
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no chemotherapy response score (CRS) associated with pathology, hematoxylin and eosin-

stained omental tumor slides were retrospectively pulled and given a CRS score by a trained 

gynecologic pathologist (A. J. B.) using the International Collaboration on Cancer Reporting 

recommendations for CRS [17,18]. CA-125 ratio was determined for NACT women using 

the following formula: CA-125 ratio = pre-NACT CA-125/(pre-IDS CA-125+ post-IDS 

CA-125). CA-125 ratio was only determined for women who had all three CA-125 values 

recorded. The University of Chicago Institutional Review Board approved all protocols.

2.2. Blood samples and processing

Blood samples were prospectively collected from women with HGSOC before their surgery. 

For serum collection, blood was collected in red top tubes (without anti-coagulant) and 

allowed to clot for 30 min at room temperature. For plasma collection, blood samples 

were collected in purple top tubes (containing EDTA) and processed immediately. The 

blood was centrifuged at 3000 rpm at 4 °C for 11 min to separate serum from the clot 

or to separate the plasma respectively. Genomic DNA (gDNA) was isolated from whole 

human blood cells (WBC) using the Wizard Genomic DNA purification kit (Promega) 

according to the manufacturer’s instructions. The serum, plasma and gDNA (WBC) were 

transferred to cryotubes and stored at −80 °C until further use. cfDNA was extracted 

using the QIAamp Circulating Nucleic Acid kit (Qiagen, Valencia, CA) according to the 

manufacturer’s instructions.

2.3. Nano-hmC-Seal library preparation and sequencing

All samples were divided into equal assay batches so that each batch contained samples 

from all demographics and chemo-response categories. Technical and biological replicates 

were included in each batch for inter and intra-assay controls. Nano-hmC-Seal libraries 

were constructed from 6 to 10 ng of cfDNA or from 100 ng of gDNA as previously 

described [10–12,19]. Briefly, 1) 5hmC modifications on cfDNA were enzymatically 

labeled, 2) biotinylation was performed, 3) 5hmC-specific pull-down was accomplished 

using streptavidin Dynabeads, and 4) libraries were amplified by PCR. Libraries were 

sequenced using fifty base-pair, paired-end sequencing on an Illumina NovaSeq 6000. 

FASTQC [20], version 0.11.9 was used to assess sequence quality. Raw reads were 

trimmed using Trim Galore (RRID:SCR_011847) and mapped to the human genome (hg19) 

using Bowtie2 (RRID:SCR_016368), version 2.2.5 [21]. PCR duplications were removed 

by Samtools (RRID:SCR_002105), version 1.14[22]. Only uniquely mapped reads were 

retained for further analysis.

2.4. 5hmC distribution by genomic feature

Reads on genome-wide 5-kb sliding windows were counted by FeatureCounts, version 

2.0.1. All sliding windows were annotated to different genomic features by bedtools 

(RRID:SCR_006646), version 2.30.0 DESeq2 (RRID:SCR_000154) -normalized read 

counts on different genomic features related to sliding windows were compared. The 

Kruskal-Wallis test was used to assess differences between normalized levels of 5hmC 

between groups according to a particular genomic feature type (e.g., gene body). CpG 

islands were downloaded from the, UCSC Genome Browser (University of California, Santa 
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Cruz) and CpG shores were defined as 2-kb regions adjacent to each CpG island. Enhancer 

regions were annotated according to the GeneHancer database (RRID:SCR_023953) [23].

2.5. Identification of genes with differential 5hmC and functional enrichment analysis

Aligned reads on gene bodies with a mapping quality score of 10 or higher were calculated 

using FeatureCounts [24]. Read counts were then normalized with corrected batch effects 

and compared by DESeq2 version 1.34.0 [25]. Pheatmap package, version 1.0.12 (R 

Project), was used to determine the distance matrix between samples for hierarchical 

clustering. Functional enrichment analysis was performed using a Metascape tool [26]. 

Differentially highly- and lowly hydroxymethylated genes with a p-value <0.05 were used to 

find relative enrichment of functional items according to the default settings of Metascape. 

Genes that had increased and decreased 5hmC within each treatment/ analysis group were 

used for functional enrichment analysis.

2.6. Generation and validation of the chemo-response prediction model

Normalized read counts for all chemo-naïve- or chemo-treated and chemo-sensitive or 

chemo-resistant samples were used to calculate the coefficient of variation. The top 500 

age- and batch-corrected genes with the largest coefficients of variation were kept for 

further feature selection, together with additional clinical factors. Elastic net with 5-fold 

cross-validation, optimized for the area under the curve (AUC), was repeated 100 times, 

and the frequencies of each feature selected were calculated. The top three biomarkers were 

selected for the final model building. The final models were used on intermediate samples 

for classification. Kaplan-Meier survival analysis with log-rank test was performed using 

the Survminer package in R project to examine the OS difference across different groups. 

The model for chemo-naïve samples was built using the following three features: “Largest 

residual implant,” “Pre-operative CA-125 (PreOPCA125),” and “Top one gene,” while 

the model for chemotherapy-treated samples was built using the following three features: 

“Largest residual implant,” “CRS” and “Top one gene.”

2.7. Data analysis using cBioportal.org and GEPIA

The OncoPrint plot was generated using cBioPortal. The Ovarian Serous 

Cystadenocarcinoma (TCGA, PanCancer Atlas) cohort was selected for this analysis. 

Samples that were profiled for mutations, structural variants, putative copy-number 

alterations, and mRNA expression z-scores relative to diploid samples with a z-score 

threshold of ±1.5 were included. Only case sets with mRNA data were selected, resulting in 

a total cohort of 300 samples. Box plots, stage plots, and survival data were generated with 

GEPIA using a |Log2FC| cutoff of 1.5. Matching of TCGA normal and GTEx data was used. 

OSGEPL1 survival plots were created using the median gene expression cutoff.

2.8. Statistical analysis

All statistical analyses were performed in GraphPad Prism (version 10.0.0). Significance 

between cohorts and sensitivities for OS (Fig. S1B) was determined using the Kruskal-

Wallis test, taking multiple comparisons into consideration. Wilcoxon signed-rank test 

was used to determine if CA-125 was significantly reduced before IDS (Fig. S1B). 
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Spearman correlation was used to determine positive and negative correlations between 

clinico-pathologic factors (Fig. S1D and Fig. 2A). For Spearman correlation, approximate p-

values were reported. Only correlation coefficients with significance p < 0.05 were reported 

in the heatmap. Kaplan-Meier survival analysis with log-rank test was performed to examine 

the OS difference across different groups (Fig. 5C, F). All tests for clinical analysis were 

two-tailed, and p < 0.05 and q < 0.05 were considered statistically significant.

3. Results

3.1. Validation of nano-hmC-Seal using serum samples

Nano-hmC-Seal has been extensively studied using gDNA and plasma-derived cfDNA as 

an analyte, but its applicability to serum-derived cfDNA remains unexplored. To validate 

nano-hmC-Seal on serum samples, patient-matched serum, plasma and gDNA (WBC) 

samples, were analyzed. Cell-free DNA was isolated from plasma and serum samples 

showing no significant difference in cfDNA yield (Fig. 1A). Following nano-hmC-Seal 

and sequencing, the mapping ratio, non-redundant fraction, ratio of assigned reads, principal 

component analysis (PCA), saturation analysis and density plot analysis were performed to 

asses performance differences between analytes (Fig. S1). Analysis revealed no significant 

differences between 5hmC annotations from serum- or plasma-derived cfDNA and that 

cfDNA is different from gDNA. Spearman correlation coefficient analysis further confirmed 

that serum and plasma were highly correlated (Fig. 1B). This data demonstrates that serum-

derived cfDNA may be used for nano-hmC-Seal.

3.2. Clinico-pathologic characteristics and genome-wide 5hmC profiling in high-grade 
serous ovarian cancer

To study the role of 5hmC in chemotherapy resistance, archived serum samples from women 

with HGSOC were selected for the study based on treatment approach (AC and NACT), 

chemotherapy treatment (chemo-naïve and -treated samples) and platinum sensitivity (Fig. 

2A). The median follow-up for living women was 58 months. The final cohort included 

58 chemo-naïve samples and 53 chemo-treated samples (Table S1–2). As expected, OS 

was significantly different between platinum-sensitive, –intermediate, and -resistant women, 

while there was no difference in treatment approach (AC or NACT) (Fig. S2B) [27,28]. 

NACT led to a significant reduction in CA-125 before IDS in all three platinum response 

subgroups (Fig. S2C), but did not correlate with chemotherapy response score (CRS) (Fig. 

S2D–E) [18]. Spearman correlation coefficient analysis of clinico-pathologic factors was 

performed to identify clinical factors that significantly correlate with survival and platinum 

sensitivity. Disease-free days, platinum-resistant days, platinum sensitivity, and the largest 

residual implant showed a significant positive correlation with OS, while pre-operative 

CA-125 showed a significant negative correlation with the factors mentioned above in 

the chemo-naïve and -treaded cohorts. Additionally, a significant positive correlation was 

observed for CRS and OS, while post-operative CA-125 and post-operative chemotherapy 

response showed a significant negative correlation in chemo-treated/ NACT (Fig. S2E).

Nano-hmC-Seal and next-generation sequencing (NGS) were performed to profile genome-

wide 5hmC distributions [10–12]. The sample volumes, —age, and degree of hemolysis was 
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not correlated with clinico-pathologic data (Fig. 2B). Principle component analysis (PCA) 

confirmed that no known factors (i.e., disease characteristics, treatment variability, or batch 

effects) introduced significant bias to the dataset (Fig. 2C). Nano-hmC-Seal [11,12] was 

performed on all samples and 5hmC distribution (Fig. S2F) and distribution enrichment 

by genomic features (Fig. 2D) were assessed. Exons, promoters, transcription termination 

sites (TTS), 3′- and 5′-UTRs made up 13.51% of annotated 5hmC regions (Fig. S2F). 

Distribution enrichment by genomic features showed that 5hmC was reduced in non-coding 

regions (satellite, LINE, and simple repeats) (Fig. 2D). As expected, platinum sensitivity and 

treatment type did not affect global 5hmC distribution in genomic features (Fig. S2G). Taken 

together, this demonstrates that our nano-hmC-Seal data is suitable for further downstream 

discovery.

3.3. 5hmC patterns differ across women and undergo changes during treatment

Neoadjuvant chemotherapy treatment is used for women with advanced FIGO stage IIIC-IV 

HGSOC presenting with high tumor burden and multiple comorbidities [29]. If the patient 

is referred for IDS from a different provider or hospital, the acquisition of chemo-naïve 

samples may prove difficult. We attempted to assess if a signature can be identified 

and applied to samples from women that already received chemotherapy. To determine if 

differentially hydroxymethylated genes (DhMGs) reflect changes induced by chemotherapy 

treatment, we compared matched samples from women before NACT (i.e. chemo-naïve) and 

after 1–3 cycles of carboplatin and paclitaxel (but before IDS) (Table S3). We also compared 

the chemo-naïve and -treated cohorts (Table S1–2).

As expected, chemotherapy did not alter global 5hmC deposition patterns on genomic 

features (Fig. S3A and S3D). A differential comparison was performed to identify DhMGs 

that could separate chemo-naïve from chemotherapy-treated samples (Table S45). Using 

PCA and hierarchical clustering analyses, DhMGs of patient-matched serum separated 

samples by treatment (Fig. S3B), while unmatched chemo-naïve and -treated samples 

resulted only in partial separation (Fig. 3A and S3E). Next, functional pathway enrichment 

analysis was performed. Before chemotherapy, serum samples were enriched in pathways 

associated with neuron development, differentiation, and synapse organization (Table S4–5, 

Fig. 3B and D). After chemotherapy, serum samples were enriched in inflammation and 

immune cell regulation pathways (Fig. 3B and S3C).

3.4. Pathways driving chemoresistance in HGSOC

To assess if serum-derived DhMGs can separate chemotherapy-sensitive from -resistant 

women, PCA and hierarchical clustering were performed for the combined cohort (Fig. S4A, 

S4C and Table S6), the chemo-naïve cohort (Fig. 4A, Fig. S4A and Table S7), and for the 

chemo-treated cohort (Fig. 4C, Fig. S4A and Table S10). Hierarchical clustering identified 

DhMGs in chemo-naïve and -treated samples (Fig. 3A and C). Comparison of DhMGs 

in sensitive (>12 months DFI) and resistant women (<6 months DFI) revealed no overlap 

in identified DhMGs by chemotherapy status (Fig. S4B). Functional pathway enrichment 

analysis for the combined cohorts revealed that platinum-resistant disease was enriched in 

cellular response to stress (Fig. S4D and Table S6). chemo-naïve samples from-therapy 

resistant women were enriched in several metabolic pathways (e.g., monocarboxylic acid 
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metabolic process, pyruvate metabolism, etc.) and drug metabolism (e.g., drug ADME) 

(Fig. 4B). Chemo-treated samples from -resistant women were enriched in cellular stress 

response and canonical Wnt signaling pathways known to facilitate cancer stemness and 

chemo-resistance [30] (Fig. 4D and Table S8).

3.5. 5hmC is a predictive biomarker of chemo-response and overall survival in HGSOC

Given that intermediate-sensitive women develop recurrence within 6 to 12 months, it 

is clinically challenging to predict chemotherapy response. Using clinico-pathologic data 

and the top DhMGs identified in chemo-naïve and -treated samples, a model was built 

to stratify intermediate-sensitive women into platinum sensitive- and resistant-like groups 

(Fig. 5A and D). The chemo-naïve model was built using a combination of the largest 

residual implant, pre-operative CA-125, and the DhMGs “OSEGPL1”, a tRNA-modifying 

gene found in mitochondria [31]. The resulting model was trained on chemo-naïve, therapy-

sensitive and -resistant patient serum (i.e., training set), and the area under the curve (AUC) 

calculated to assess predictive performance. The model achieved an AUC of 0.91 (95% CI, 

0.82–0.99.85) in the training set (Fig. 5B). The model was then validated on intermediate 

sensitive samples and successfully stratified intermediate-sensitive women into resistant- and 

sensitive-like groups (Fig. 5C; p = 0.033). Based on the models stratification, Kaplan-Meier 

plots were generated showing a significant difference in OS. TCGA analysis revealed that 

approximately 25% of OSGEPL1-profiled HGSOC showed genetic alterations and changes 

in transcription levels (Fig. S5A). Further analysis revealed that OSGEPL1 is downregulated 

in HGSOC, and that expression decreases with higher stage (Fig. S5B–C). OSGEPL1 

was favorably prognostic for overall survival (Fig. S5D) in the TCGA dataset. Similarly, 

a model for chemo-treated samples was built using a combination of CRS, the largest 

residual implant, and the DhMGs “ALG1L2” (Fig. 5D), a glycosylation modifying enzyme 

[32], achieving an AUC of 0.927 (95% CI, 0.84–1.00) (Fig. 5E). Though the model for 

chemo-treated samples achieved a slightly higher AUC than the model for chemo-naïve 

samples in their respective testing sets, there was no significant difference in the survival 

curves for intermediate-sensitive women if the sample was taken after chemotherapy, but 

before IDS (Fig. 5F; p = 0.34). Taken together, these data demonstrate that 5hmC-modified 

genes combined with clinico-pathologic features are capable of predicting survival outcomes 

in chemo-naïve samples of AC and NACT-treated women with HGSOC.

4. Discussion

Most women (70–80%) with HGSOC will suffer from disease progression due to 

chemotherapy resistance, and no single mechanism explains how resistance develops [33]. 

In addition, tumor heterogeneity of HGSOC metastasis makes it difficult to understand 

drug resistance, determine patient response, and requires invasive biopsies. Non-invasive 

methods, such as liquid biopsies, can help overcome some of these issues since they contain 

diverse tumor-derived analytes from primary and distant tumor sites [34]. The contribution 

of the methylome to tumor development and progression has revealed that methylation 

changes occur early in tumorigenesis, are highly pervasive across tumor types, and can be 

easily detected in cfDNA from liquid biopsies [5,15]. Therefore, methylation changes and 

liquid biopsies have been the focus of biomarker development. Platinum-free intervals are 
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used clinically to determine if women with recurrence will benefit from further platinum-

based therapy. While this measure may be helpful in women with platinum-sensitive 

recurrence, its helpfulness for women with refractory-, intermediate-sensitive or platinum-

resistant disease is less established. We therefore sought to identify methylation-based 

biomarkers predictive of chemoresistance and to identify their underlying epigenetically 

regulated genes and pathways.

In our study, DhMGs identified in the chemo-naïve, treatment-resistant group were enriched 

in xenobiotic (CYP2B6, CYP3A7, GSTA2), lipid (ACOT12, AGPAT1, PLIN2) and fatty 

acid metabolism (SLC27A5, PTGR1, GCDH). The cytochrome P450 (CYP) superfamily 

of enzymes catalyzes xenobiotic oxidations (and lipid hydroxylations), which can create 

reactive oxygen species [35], leading to the upregulation of antioxidant genes (GSTA2, 

GSS, PTGR1) [36]. Chemo-treated, serum samples from therapy-resistant women showed 

enrichment in DhMGs associated with various metabolic and catabolic processes suggesting 

that changes in metabolism and stress response provide a selection advantage for therapy 

resistant HGSOC. Metabolic reprogramming inducing fatty acid uptake and β-oxidation has 

been observed in platinum-resistant OvCa [37].

Half of all recurrent patients will suffer from platinum-resistant (25%) or -intermediate-

sensitive HGSOC (25%). While <10% of women with resistant HGSOC will respond 

to further platinum treatment, most uncertainty arises when selecting treatments for 

women with intermediate-sensitive HGSOC, who have an approximately 30% response 

rate to additional platinum therapy [38]. Using the top DhMG for chemo-naïve 

samples O-sialoglycoprotein endopeptidase like 1 (OSGEPL1), the pre-operative CA-125, 

and largest residual implant at the end of surgery, we build a model that can 

stratify intermediate-sensitive patients as sensitive (into a more sensitive group), who 

could benefit from further platinum treatment, and a more resistant group, likely to 

benefit from non-platinum therapies, regardless of treatment approach. An independent 

analysis of TCGA data confirmed that high OSGEPL1 expression is a favorable 

prognostic marker for OvCa. OSGEPL1 is a protein located in mitochondria, and is 

involved in tRNA threonylcarbamoyladenosine modifications and mitochondrial genome 

maintenance [31]. Knock down of OSGEPL1 in HEK293T cells causes mitochondrial 

dysfunction [39], lower oxygen consumption rates and ATP levels, indicative of damage 

to oxidative phosphorylation (“electron transfer chain”), and reduced mitochondrial 

translation. Therefore, OSGEPL1 may promote platinum sensitivity by maintaining normal 

mitochondrial functions (e.g., activation of intrinsic apoptosis etc.) [40]. In chemo-treated 

samples, ALG1L2 was the top DhMG. Though the resultant chemo-treated model had a 

high AUC, it was not able to efficiently stratify intermediate-sensitive women. The number 

of upfront chemotherapy cycles and inherent patient heterogeneity might have influenced 

model performance. Like OSGEPL1, the role of ALG1L2 in chemoresistance and OvCa 

is currently unknown. If validated, our predictor may help identify women at risk of 

developing therapy resistance prior to intervention and identify women with intermediate-

sensitive disease that may profit from further platinum-based chemotherapy.
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4.1. Limitations

Limitations of our study include low samples numbers, especially in the validation cohorts 

(chemo-naïve- and -treated, intermediate-sensitive women). This, in addition to patient 

heterogeneity, may explain why the model for chemo-treated samples could not stratify the 

intermediate-sensitive group. Women undergoing NACT often have widespread metastatic 

disease that can not be completely surgically removed without prior chemotherapy. The 

number of neoadjuvant cycles can rage from 1 to 8 with a general median of four cycles, 

further increasing heterogeneity. Another limitation of this study was the use of a few 

archived serum samples that were up to ten years old. This was not a prospective clinical 

trial, therefore follow-up (CA-125 and imaging) was variable making the precise time of 

progression and recurrence a less accurate than in a prospective trial. While we showed no 

correlations between storage age, hemolysis, and cfDNA content, we had limited records on 

how older serum samples were processed. Furthermore, while there are published studies 

that show 5hmC in gene bodies, promoters, and enhancers is correlated with gene expression 

(Cui et al., 2020), we did not perform RNA-sequencing on matched tumor samples to 

validate these findings, due to a lack of frozen tissue availability. Therefore, conclusions 

drawn from our data rely on literature references. Of note clinical practices have changed in 

the last years with increased use of PARP inhibitors and universal BRCA testing. While we 

did not observe a significant number of BRCA carriers and usage of PARP inhibitors in our 

dataset, their use impacts treatment response and prognosis.
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Abbreviations:

5hmC 5-hydroxymethylcytosine

AC Adjuvant chemotherapy

cfDNA Cell-free DNA

CRS Chemotherapy response score

DFI Disease-free intervals

DhMGs Differentially hydroxymethylated genes

HGSOC High-grade serous ovarian cancer

IDS Interval debulking surgery

LINE Long interspersed nuclear element

LTR Long terminal repeat

NACT Neoadjuvant chemotherapy

SINE Short interspersed nuclear element

TSS Transcription start site

TTS Transcription termination site

UTR Untranslated region
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HIGHLIGHTS

• Chemotherapy does not alter global 5hmC deposition patterns on genomic 

features.

• Neoadjuvant-treated platinum resistant disease is enriched in pathways 

associated with cellular responses to stress.

• Adjuvant-treated platinum resistant disease is enriched in pathways associated 

with drug- and metabolism pathways.

• An adjuvant chemotherapy-specific model stratifies intermediate sensitive 

disease into resistant- and sensitive-like groups.
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Fig. 1. 
Serum-derived cfDNA as an analyte for nano-hmC-Seal. (A) Normalized cfDNA yield from 

patient-matched serum and plasma samples. (B) Spearman correlation coefficient matrix of 

serum-, plasma- and gDNA (WBC)-derived 5hmC annotated reads using a 10 kb sliding 

window.
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Fig. 2. 
Clinical cohort characteristics and serum-based 5hmC profiling in women with HGSOC. 

(A) Flowchart illustrating the sample selection and inclusion criteria for the final cohort and 

(B) Heatmap of spearman correlation matrix for factors influencing cfDNA concentration. 

Spearman rank correlation coefficient (r) for each comparison is shown in individual 

cells that have a p-value of <0.05. (C) Principal component analysis (PCA) plot of 

global differentially hydroxymethylated genes (DhMGs) by platinum sensitivity. (D) 5hmC 

distribution enrichment by genomic features for all samples. LINE: Long-interspersed 

nuclear element, SINE: Short-interspersed nuclear element, LTR: Long terminal repeat, 

TTS: Transcription termination site, 3’UTR: 3’ prime untranslated region, CpG-Island: 

palindromic cytosine-phosphate-linked-guanine islands, ncRNA: Non-coding RNA and 

5’UTR: 5’ prime untranslated regions.

Weigert et al. Page 16

Gynecol Oncol. Author manuscript; available in PMC 2024 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
5hmC patterns during treatment in HGSOC.A, B) Hierarchical clustering based on 129 

DhMGs (A) and functional enrichment analysis (B) of all samples by chemotherapy-

treatment.
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Fig. 4. 
DhMGs can separate platinum sensitive from -resistant women. A, B) Hierarchical 

clustering based on 29 DhMGs (A) and functional enrichment analysis of chemo-naïve 

samples from women with platinum-sensitive and –resistant HGSOC. C, D) Hierarchical 

clustering based on 32 DhMGs (C) and functional enrichment analysis of 5hmC modified 

genes (D) in women with prior chemotherapy treatment. A, C) Rows indicate DhMGs.

Weigert et al. Page 18

Gynecol Oncol. Author manuscript; available in PMC 2024 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
DhMGs can be used as biomarkers to predict survival. A, D) Overview of the steps involved 

in model building and validation. B, E) Receiver operating curves optimized for the area 

under the curve for the AC- (B) and NACT-model (E). C, F) Survival curve analysis of 

AC-treated intermediate sensitive (C) and NACT-treated intermediate sensitive women (F) as 

classified by the model.
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