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Abstract
Dasatinib, a second- generation tyrosine kinase inhibitor, is approved for treating 
chronic myeloid and acute lymphoblastic leukemia. As a sensitive cytochrome 
P450 (CYP) 3A4 substrate and weak base with strong pH- sensitive solubility, 
dasatinib is susceptible to enzyme- mediated drug–drug interactions (DDIs) 
with CYP3A4 perpetrators and pH- dependent DDIs with acid- reducing agents. 
This work aimed to develop a whole- body physiologically- based pharmacoki-
netic (PBPK) model of dasatinib to describe and predict enzyme- mediated and 
pH- dependent DDIs, to evaluate the impact of strong and moderate CYP3A4 
inhibitors and inducers on dasatinib exposure and to support optimized dasat-
inib dosing. Overall, 63 plasma profiles from perorally administered dasatinib in 
healthy volunteers and cancer patients were used for model development. The 
model accurately described and predicted plasma profiles with geometric mean 
fold errors (GMFEs) for area under the concentration–time curve from the first to 
the last timepoint of measurement (AUClast) and maximum plasma concentration 
(Cmax) of 1.27 and 1.29, respectively. Regarding the DDI studies used for model 
development, all (8/8) predicted AUClast and Cmax ratios were within twofold of 
observed ratios. Application of the PBPK model for dose adaptations within vari-
ous DDIs revealed dasatinib dose reductions of 50%–80% for strong and 0%–70% 
for moderate CYP3A4 inhibitors and a 2.3–3.1- fold increase of the daily dasatinib 
dose for CYP3A4 inducers to match the exposure of dasatinib administered alone. 
The developed model can be further employed to personalize dasatinib therapy, 
thereby help coping with clinical challenges resulting from DDIs and patient- 
related factors, such as elevated gastric pH.
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INTRODUCTION

The introduction of tyrosine kinase inhibitors (TKIs) 
transformed the treatment and prognosis of chronic 
myeloid leukemia (CML), a myeloproliferative disor-
der accounting for approximately 15% of all newly diag-
nosed leukemias in adults.1 Dasatinib (Sprycel®), an oral 
second- generation and multi- targeted TKI, is utilized in 
the treatment of Philadelphia chromosome positive (Ph+) 
CML in all phases and is also approved for Ph+ acute 
lymphoblastic leukemia (ALL).2 Here, a comprehensive 
understanding of its pharmacokinetics (PK), encompass-
ing absorption, distribution, metabolism and excretion 
(ADME) is vital for maximizing therapeutic efficacy and 
managing side effects.

Dasatinib, a weak base and a Biopharmaceutical 
Classification System (BCS) class II compound, demon-
strates low solubility and high permeability, making it 
prone to drug–drug interactions (DDIs) with acid- reducing 
agents (ARAs) because of its pH- dependent solubility.3 
Given its strong pH- dependent solubility with improved 
solubility in acidic conditions, co- administration with 
proton pump inhibitors (PPIs), H2- antagonists, and ant-
acids can modify its absorption and consequently, thera-
peutic efficacy.4,5

Dasatinib is primarily metabolized by cytochrome 
P450 (CYP) 3A4 via hydroxylation and N- dealkylation to 
three major metabolites.6,7 Hence, systemic exposure of 
dasatinib can be significantly impacted by DDIs with both 
CYP3A4 inhibitors and inducers. The United States Food 
and Drug Administration has listed dasatinib as a sensi-
tive CYP3A4 substrate for use in clinical DDI studies.8 
For instance, the strong CYP3A4 inhibitor ketoconazole 
increased dasatinib's area under the concentration–time 
curve (AUC) over one dosing interval nearly five- fold.9 
Conversely, pretreatment with rifampicin, a strong 
CYP3A4 inducer, can decrease the AUC by approximately 
80%.3 Moreover, dasatinib can affect the PK of other drugs, 
acting as a weak mechanism- based inhibitor of CYP3A4 
and a competitive inhibitor of CYP2C8 and several trans-
porters, such as organic anion transporting polypeptide 
(OATP) 1B1 and OATP1B3.10–12

Given dasatinib's susceptibility to both enzyme- 
mediated and pH- dependent DDIs, managing its ther-
apeutic application presents clinical challenges. Here, 
physiologically- based pharmacokinetic (PBPK) mod-
eling emerges as a valuable tool for exploring DDI sce-
narios and supporting precision dosing of dasatinib.13 
Specifically, the PBPK approach can provide insights 
into how various drugs might influence dasatinib PK 

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
As a sensitive cytochrome P450 (CYP) 3A4 substrate and weak base with strong 
pH- sensitive solubility, dasatinib is susceptible to enzyme- mediated and pH- 
dependent drug–drug interactions (DDIs) with CYP3A4 perpetrator drugs and 
acid- reducing agents, respectively.

WHAT QUESTION DID THIS STUDY ADDRESS?
This work aimed to develop a whole- body physiologically- based pharmacokinetic 
(PBPK) model of dasatinib to describe and predict enzyme- mediated and pH- 
dependent DDIs as well as to investigate a selection of clinically relevant DDIs, 
supporting optimized dasatinib precision dosing.

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
A PBPK model for the CYP3A4 substrate dasatinib was developed and coupled 
with various strong and moderate CYP3A4 perpetrator models to provide model- 
based dasatinib dosing recommendations within single as well as complex mul-
tiple DDIs.

HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
The presented dasatinib model may serve as a tool to further personalize dasat-
inib therapy, providing strategies to navigate clinical challenges that result from 
single and multiple DDIs and/or patient- related factors or to perform DDI simu-
lations with drugs under development involving dasatinib as sensitive CYP3A4 
substrate.
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by modeling their complex biological ADME and in-
teraction processes. Furthermore, these models can be 
utilized to simulate and predict the PK, guiding optimi-
zation of treatment regimens under complex conditions, 
such as multiple DDIs, thereby facilitating personalized 
and safer treatment strategies.14

Considering dasatinib's complex PK profile and its 
susceptibility to DDIs, this study aimed to develop a 
whole- body PBPK model with the objective to describe 
and predict the impact of various clinically studied DDIs 
including enzyme- mediated and pH- dependent DDIs on 
the exposure of dasatinib. As the package insert does not 
provide explicit dose adaptations for dasatinib when a 
specific perpetrator drug is co- administered,15 our PBPK 
model was applied to simulate a selection of clinically 
relevant DDI scenarios involving various CYP3A4 per-
petrator drugs, not previously explored in clinical DDI 
trials. Among others, simulations with the potent anti-
fungal agents fluconazole, itraconazole, ketoconazole, 
and voriconazole as well as macrolide antibiotics such 
as clarithromycin were performed as patients with blood 
malignancies are more susceptible to opportunistic in-
fections.16,17 Notably, since around a third of CML pa-
tients suffer on anxiety and depression particularly 
during TKI therapy,18 co- administration of selective 
serotonin reuptake inhibitors as effective antidepres-
sants (e.g., fluvoxamine) frequently occurs. As a result, 
model- based dose adaptations for dasatinib, under co- 
treatment with these CYP3A4 inhibitors and addition-
ally, with different CYP3A4 inducers, were performed 
to enhance support for precision dosing in patients. 
The model files will be made publicly available in the 
Clinical Pharmacy Saarland University GitHub reposi-
tory (http:// models. clini calph armacy. me/ ).

METHODS

Software

The dasatinib PBPK model was developed using PK- 
Sim® and MoBi® (Open Systems Pharmacology Suite 
version 11.0, http:// www. open-  syste ms-  pharm acolo gy. 
org).19 Digitization of published concentration–time 
profiles was performed with GetData Graph Digitizer 
version 2.26.0.20 (© S. Fedorov) according to Wojtyniak 
and coworkers.20 Model parameter estimation via the 
Levenberg–Marquardt algorithm and local sensitivity 
analysis were conducted within PK- Sim®. Calculation 
of PK parameters, model performance metrics as well 
as generation of graphics and dose adaptations were 
employed using R 4.2.1 (R Foundation for Statistical 
Computing, Vienna, Austria).21

PBPK model building

PBPK model development was initiated with a compre-
hensive literature search to gather information about the 
physicochemical properties and ADME processes of da-
satinib. Plasma concentration–time profiles following oral 
administration of dasatinib (as tablet, solution, or suspen-
sion) at fasted and fed state were extracted from 19 clini-
cal trials including single-  and multiple- dose studies with 
healthy volunteers and cancer patients. An overview of all 
clinical studies, including administration protocols and 
demographics of participants, is presented in Tables  S1, 
S7 and S9.

For the development of the dasatinib PBPK model, 
a middle- out approach was employed. The concen-
tration–time profiles were digitized and divided into a 
training and test dataset for model building (5 profiles) 
and evaluation (58 profiles), respectively. The middle- 
out strategy merges prior information on drug-  and 
system- specific parameters with a parameter estimation 
step based on clinical trial data.22 Initial model input 
parameters were informed through a combination of 
in  vitro, in silico, and clinical data. If model parame-
ter values could not be reliably sourced via literature or 
were pivotal for critical quantitative structure–activity 
relationship estimations, parameter estimation was per-
formed by fitting model simulations to the plasma pro-
files of the training dataset.

Dissolution kinetics of dasatinib tablets, suspensions 
and solutions were described using a mechanistic Noyes–
Whitney type model, selected for its applicability to parti-
cle dissolution processes. Model parameterization utilized 
either particle size distributions derived from the literature 
(for suspensions and tablets)23 or immediately dissolved 
particle radii of <0.01 μm (for solutions).24 Dasatinib su-
persaturation in the intestine was considered, as indicated 
by prior research,25 but redissolution processes of precip-
itated drug were discarded because of dasatinib's low in-
testinal solubility.23

Virtual “mean individuals” were created for each study 
as outlined in Section S1.2. In addition, population sim-
ulations were employed to predict the drug's PK across a 
virtual population, accounting for variability in physio-
logical factors (see Section S1.3). Here, we created virtual 
populations of 100 individuals for each study, mirroring 
the demographics of the actual study populations. The eth-
nicity and demographic characteristics for these simula-
tions were selected based on the specific study participant 
profiles, utilizing distributions from relevant databases. 
These included the third National Health and Nutrition 
Examination Survey (NHANES) for White Americans,26 
the International Commission on Radiological Protection 
(ICRP) database for Europeans27 and the integrated 

http://models.clinicalpharmacy.me/
http://www.open-systems-pharmacology.org
http://www.open-systems-pharmacology.org
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database for the Japanese population.28 Population vari-
ability in CYP3A4 expression was considered by varying 
the corresponding reference concentration within the vir-
tual population according to Table S2.

PBPK model evaluation

PBPK model performance was evaluated using graphi-
cal and quantitative approaches. The predicted plasma 
concentration–time profiles were compared with corre-
sponding observed profiles. Goodness of fit plots were 
generated to compare predicted and observed AUC from 
the first to the last timepoint of measurement (AUClast), 
maximum plasma concentration (Cmax) values and 
plasma concentrations, respectively. As quantitative 
measures, the mean relative deviation (MRD) of pre-
dicted plasma concentrations and the geometric mean 
fold error (GMFE) of predicted AUClast and Cmax values 
were calculated as previously described.29 Additionally, 
a local sensitivity analysis was performed as described 
in Section S2.4.1.

PBPK drug–drug interaction modeling

Modeling of clinically studied DDI scenarios was per-
formed with five perpetrator drugs (ketoconazole, ri-
fampicin, rabeprazole, famotidine and Maalox®, an 
over- the- counter antacid containing aluminum hydrox-
ide and magnesium hydroxide as active ingredients) 
and one victim drug (simvastatin).3–5,9 The investigated 
DDI scenarios were categorized into two primary types: 
enzyme- mediated DDIs and pH- dependent DDIs. For 
the enzyme- mediated DDIs, the dasatinib PBPK model 
was coupled with previously published PBPK models of 
ketoconazole,29 rifampicin30 and simvastatin.31 Here, 
inhibition and induction processes were implemented 
as described in the Open Systems Pharmacology Suite 
manual,32 using interaction parameters sourced from 
published PBPK models for each perpetrator drug.29,30 
For the pH- dependent DDIs, the reduced gastric solubil-
ity due to intake of the ARAs rabeprazole,4 famotidine5 
and Maalox®5 was captured by increasing the gastric pH as 
previously performed33 and adjusting the gastric emptying 
time for rabeprazole and Maalox®. Gastric pH values were 
only measured in the DDI study with rabeprazole.4 Here, 
the mean gastric pH was measured to be 4.1 (2.8–5.2) fol-
lowing the administration of 20 mg rabeprazole and 0.7 
(0.5–3.6) after intake of 20 mg rabeprazole plus 1500 mg 
betaine hydrochloride (BHCl), respectively, while the me-
dian gastric pH in the control group was 0.6 (0.5–1.8).4 For 
administration of 40 mg famotidine (10 h prior to a 50 mg 

dasatinib intake), the gastric pH was adjusted to 2.8, as 
reported in the literature.34 In a separate instance involv-
ing the concomitant administration of 30 mL Maalox®, the 
gastric pH was adjusted to 3.0, as documented in a differ-
ent study.35 For the control setting, the PK- Sim® default 
gastric pH of 2.0 in the fasted state was utilized.

PBPK drug–drug interaction 
model evaluation

Performance of the DDI model was evaluated by graphical 
comparison of predicted and observed plasma concentra-
tion–time profiles with and without concomitant use of 
the perpetrator drugs. DDI effects were evaluated by cal-
culating predicted AUClast and Cmax effect ratios accord-
ing to Equations  1 and 2 comparing predicted ratios to 
the respective observed values. Here, the prediction suc-
cess limits proposed by Guest et al. were applied to assess 
predictive accuracy for DDI ratios, representing a stricter 
criterium for DDI predictions than the traditional twofold 
range, especially when the relative AUC and Cmax change 
is small.

For DDI model performance evaluation, AUClast, effect and 
Cmax, effect represent the AUClast and Cmax values of the vic-
tim drug when administered with the perpetrator drug. 
Conversely, AUClast, control and Cmax, control represent the 
AUClast and Cmax values of the victim drug when adminis-
tered alone.

Exposure simulations for model- informed 
precision dosing

The developed PBPK model was applied to simulate da-
satinib exposure in untested DDI scenarios with moder-
ate and strong inhibitors as well as inducers of CYP3A4: 
The model was coupled with previously published PBPK 
perpetrator models of the inhibitors clarithromycin,30 
erythromycin,36 fluconazole,37 fluvoxamine,38 grapefruit 
juice,39 itraconazole,30 and voriconazole40 as well as the 
inducers carbamazepine41 and efavirenz41,42 to evaluate 
their impact on the exposure of dasatinib. Additionally, 
co- administration of dasatinib with two perpetrator 
drugs simultaneously was investigated. Inhibition and 
induction processes were implemented using interaction 

(1)AUClast ratio =
AUClast, effect

AUClast, control

(2)Cmax ratio =
Cmax, effect

Cmax, control
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parameters from the respective published PBPK models. 
The selected dosing regimens for each perpetrator drug 
and further information on the exposure simulations are 
given in Section S5.1. The magnitude of dose adjustments 
in the simulated DDI scenarios matching the exposure of 
dasatinib monotherapy was investigated for the two rec-
ommended daily dasatinib dosing regimens of 100 mg and 
140 mg. Here, the simulated dasatinib doses were adapted 
in increments of 10 mg (in a range of 20–420 mg) until 
the steady- state AUC (AUCss) matched the AUCss (80%–
125%) of the monotherapy setting.

RESULTS

PBPK model building and evaluation

The training dataset for model building included five 
mean plasma concentration–time profiles from three 
single- dose and one multiple- dose study in healthy vol-
unteers as well as a DDI study with ketoconazole in can-
cer patients, covering a dasatinib dose range from 20 to 
140 mg. The test dataset consisted of 58 mean plasma pro-
files from healthy volunteers and cancer patients, who re-
ceived single and multiple doses of dasatinib ranging from 
15 to 200 mg.

Modeled elimination processes included metabolism 
via CYP3A4, implemented as Michaelis–Menten kinet-
ics, an unspecific hepatic clearance to cover CYP3A4- 
independent metabolism and renal excretion through 
passive glomerular filtration. The Michaelis–Menten 
constant (Km) for metabolism via CYP3A4, inhibition 
constants for CYP2C8, OATP1B1, and OATP1B3 as well 
as the CYP3A4 mechanism- based inhibition parame-
ters of dasatinib were derived from the literature.7,11,12 
Catalytic rate constant for CYP3A4- mediated metabolism 
(kcat,CYP3A4) and the unspecific hepatic clearance were 
fitted. Here, kcat,CYP3A4 was informed by including the ke-
toconazole DDI study for model training. Based on the 
estimated kcat,CYP3A4 and the corresponding Km obtained 
from in vitro studies, an overall fraction metabolized via 
CYP3A4 resulting from metabolism in all tissues express-
ing this enzyme (see Table S3) was predicted to be ~92% 
of the absorbed drug. An overview of all integrated met-
abolic pathways and investigated DDIs is illustrated in 
Figure  1a–c, respectively. Drug- dependent model input 
parameters of dasatinib are listed in Table S4. The PBPK 
model file of dasatinib can be found in Appendix S2.

Plasma concentration–time profiles of the training 
dataset, a selection of plasma profiles of the test dataset 
and the corresponding goodness of fit plots showing pre-
dicted compared with observed AUClast, Cmax, and plasma 
concentrations are depicted in Figure 2.

Overall, the developed whole- body PBPK model of 
dasatinib successfully described and predicted plasma 
concentration–time profiles of the training and test data-
set including their shapes in both healthy volunteers and 
cancer patients. In addition, the model was able to capture 
minor effects of meal intake on dasatinib PK as demon-
strated in Section S4. For the entire dasatinib dataset, 96% 
of predicted AUClast, 98% of predicted Cmax values, and 90% 
of predicted plasma concentrations were within the two-
fold acceptance criterion of their observed values. GMFEs 
for predicted AUClast and Cmax values were 1.27 (train-
ing dataset: 1.12 and test dataset: 1.28) and 1.29 (training 
dataset: 1.18 and test dataset: 1.30), respectively, while the 
overall MRD value for predicted plasma concentrations 
was 1.54. Detailed values are presented in Tables S5 and 
S6. Considering the training and test dataset separately, 
MRD values were calculated to be 1.35 and 1.56, respec-
tively. Moreover, 49 out of 53 plasma concentration–times 
profiles show MRD values ≤2, supporting the adequate 
model predictions of longitudinal plasma concentration–
time profile trajectories. As shown in Figure S6, residuals 
are randomly dispersed over time with no apparent trend, 
suggesting that the model does not exhibit systematic bias 
across the range of fits and predictions.

Of note, about half of the observed plasma profiles 
of cancer patients showed consistently lower plasma 
concentrations compared with the concentrations in 
healthy volunteers receiving similar dasatinib doses. As 
mentioned before, gastric pH plays a pivotal role in mod-
ulating dasatinib absorption. Moreover, co- morbidities 
and administration of ARAs could negatively affect the 
absorption of dasatinib. To mitigate these factors and re-
fine model predictions, we adjusted the gastric pH for 
a subset of cancer patients showing consistently lower 
dasatinib exposure compared with healthy volunteers to 
the upper end of the physiological range in the fasted 
state (1.5–2.5).43 As a result, the model performance 
could be improved, reducing the MRD for the corre-
sponding plasma profiles from 1.92 to 1.60. Local sensi-
tivity analysis, conducted for a 100 mg once daily dosing 
regimen, identified the two pKa values, gastric pH and 
lipophilicity as the parameters most sensitive to dasat-
inib exposure at steady- state (details are presented in 
Section S2.4.2).

PBPK drug–drug interaction 
modeling and evaluation

Eight dasatinib plasma profiles from five clinical DDI 
studies3–5,9 were employed to prepare and evaluate the 
model predicting DDI scenarios. In enzyme- mediated 
DDI studies, dasatinib (acting as victim drug) was 
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administered with and without the perpetrator drugs 
ketoconazole (CYP3A4 competitive inhibition29) and ri-
fampicin (CYP3A4 induction and CYP3A4 competitive 
inhibition30), respectively. Furthermore, plasma profiles 
of the victim drug simvastatin lactone and its metabolite 
simvastatin acid administered with and without dasatinib 
were included for model evaluation. Here, dasatinib acts 
as a CYP3A4 mechanism- based inhibitor and CYP2C8, 
OATP1B1 and OATP1B3 competitive inhibitor. Simulated 
and observed plasma concentration–time profiles of all 
modeled enzyme- mediated DDIs are depicted in Figure 3. 
The DDI model files are included in Appendix S2.

For the investigation of pH- dependent DDIs, plasma 
profiles of dasatinib with and without administration 
of the ARAs rabeprazole,4 rabeprazole plus BHCl,4 fa-
motidine and Maalox®5 were available for model evalua-
tion. The corresponding plasma profiles of the different 
pH- dependent DDI scenarios are depicted in Figure  4. 
Additional information on the DDI studies is provided in 
Table S7.

Figure  5 depicts the goodness of fit plots, comparing 
predicted to observed AUClast and Cmax ratios for dasati-
nib — modulated by intake of perpetrators ketoconazole, 
rifampicin, the antacid Maalox®, PPI rabeprazole, and 

F I G U R E  1  Schematic overview of implemented metabolic processes in the dasatinib PBPK model (a) as well as investigated 
DDIs including enzyme- mediated (b) and pH- dependent DDIs (c). Drawings by Servier, licensed under CC BY 3.0.55 CLhep., unspecific 
hepatic clearance; CYP, cytochrome P450; DDIs, drug–drug interactions; GET, gastric emptying time; OATP, organic anion transporting 
polypeptide.

(a)

(b) (c)

F I G U R E  2  Selection of predicted and observed dasatinib plasma concentration–time profiles of the training (a–d) and the test dataset 
(e–i) on a linear scale as well as goodness of fit plots of predicted versus observed AUClast (j), Cmax (k) and plasma concentrations (l). 
Blue and light blue solid lines show predicted geometric mean concentration–time profiles in healthy volunteers and cancer patients, 
respectively, with colored ribbons illustrating the corresponding geometric standard deviation of the population simulations (n = 100). Points 
demonstrate the mean observed data of dasatinib with the corresponding standard deviation (if depicted in the respective publication). 
Linear and semilogarithmic predicted and observed plasma concentration–time profiles of all studies are shown in Sections S2.1 and S2.2. 
In the goodness of fit plots, solid lines mark the lines of identity, dotted lines indicate 1.25- fold and dashed lines twofold deviation. /, no 
information available; AUClast, areas under the plasma concentration–time curves from the first to the last timepoint of measurement; bid, 
twice a day; Cmax, maximum plasma concentration; md, multiple dose; n, number of participants; PFOS, powder for oral suspension; po, 
peroral; Q5D, five consecutive days once daily dosing followed by two nontreatment days; qd, once a day; sd, single dose; tab, tablet.
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(a) (c)(b)

(d) (f)(e)

(g) (i)(h)

(j) (l)(k)
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H2- blocker famotidine — as well as simvastatin lactone 
and its metabolite simvastatin acid, impacted by dasati-
nib administration. GMFEs for the predicted AUClast and 

Cmax ratios were 1.19 and 1.08 for pH- dependent DDIs, 
1.37 and 1.57 for enzyme- mediated DDIs with dasatinib 
acting as victim drug as well as 1.21 and 1.07 for DDIs with 

F I G U R E  3  Predicted and observed 
plasma concentration–time profiles for 
enzyme- mediated DDIs with dasatinib 
acting as victim (a, b) and perpetrator 
drug (c, d). The solid lines show predicted 
geometric mean concentration–time 
profiles with (colored) and without (gray) 
intake of the perpetrator drug and ribbons 
show the corresponding geometric 
standard deviation of the population 
simulations (n = 100). Points depict 
mean observed data with corresponding 
standard deviation of dasatinib, while 
squares and triangles depict the observed 
data with corresponding standard 
deviation of simvastatin lactone and 
simvastatin acid, respectively. Predicted 
and observed plasma concentration–time 
profiles of all studies on a semilogarithmic 
scale are shown in Section S3.2.1. DDIs, 
drug–drug interactions; n, number of 
participants.

(a) (b)

(c) (d)

F I G U R E  4  Predicted and observed plasma concentration–time profiles of dasatinib for the pH- dependent DDIs. The solid lines show 
predicted geometric mean concentration–time profiles with (colored) and without (gray) the intake of the perpetrator drug and ribbons 
show the corresponding geometric standard deviation of the population simulations (n = 100). Points depict mean observed data with 
corresponding standard deviation of dasatinib (if depicted in the respective publication). Predicted and observed plasma concentration–time 
profiles of all studies on a semilogarithmic scale are shown in Section S3.2.2. BHCl, betaine hydrochloride; DDIs, drug–drug interactions; n, 
number of participants.

(a) (b) (c)
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dasatinib acting as perpetrator drug. Moreover, all AUClast 
and Cmax ratios lie within the limits proposed by Guest 
et al. (see Figure 5). Additionally, 7 out of 8 AUClast and 
Cmax ratios were within 1.5- fold of observed ratios. Only 
the DDI with rifampicin, a strong CYP3A4 inducer and 
weak CYP3A4 inhibitor, was outside the stricter 1.5- fold 
range with AUClast and Cmax ratios of 0.64 and 1.79, re-
spectively. All predicted and observed values for AUClast 
and Cmax ratios are listed in Table S8.

Exposure simulations for model- informed 
precision dosing

The developed PBPK model was applied to simulate DDI 
scenarios of dasatinib with various strong and moderate 
CYP3A4 inhibitors and inducers. Subsequently, model- 
based dasatinib dose adaptations were simulated based on 
the exposure matching principle. A selection of the cor-
responding plasma concentration–time profiles with and 
without adapted dasatinib doses is provided in Figure  6 
and profiles for all investigated DDI settings in Figures S13 
and S14.

Model exposure simulations revealed that co- 
administration of the perpetrator drugs may result in mean 
dasatinib AUCss increases of up to 4.6- fold and reductions 
of up to 70% (see Table S12). Based on exposure matching 

simulations, this translated into a dasatinib dose range of 
20–310 (30–360) mg to match the PBPK simulated mono-
therapy AUCss from 100 (140) mg dasatinib (see Figure 7). 
Model simulations revealed dose reductions of 50%–80% 
for strong and 0%–70% for moderate inhibitors. In con-
trast, during co- administration of inducers, a 2.3–3.1- fold 
increase of dasatinib dose was required to match the expo-
sure of dasatinib monotherapy.

Additionally, co- administration with drugs like carba-
mazepine and erythromycin or itraconazole and grape-
fruit juice resulted in dose reductions of up to 20% and 
80%, respectively. Table  S12 provides an overview of all 
DDI scenarios, including AUCss effect ratios and dose ad-
justments to match monotherapy exposure for 100 mg and 
140 mg daily dasatinib.

DISCUSSION

In this study, a whole- body PBPK model of dasatinib 
was successfully developed integrating data from a total 
of 19 clinical trials. The model was able to describe and 
predict dasatinib plasma concentration–time profiles in 
healthy volunteers and cancer patients, covering a da-
satinib dose range of 15–200 mg. Several dasatinib PBPK 
models have been published in the literature, including 
three models that investigated either the DDI potential of 

F I G U R E  5  Predicted versus observed DDI AUClast ratios (a) and DDI Cmax ratios (b) of dasatinib (circles), simvastatin lactone (squares) 
and simvastatin acid (triangles). The straight solid lines mark the lines of identity, the curved lines show the limits of the predictive measure 
proposed by Guest et al. with 1.25- fold variability.56 Dotted lines indicate 1.25- fold and dashed lines twofold deviation. AUClast, area under 
the plasma concentration–time curve from the first to the last timepoint of measurement; BHCl, betaine hydrochloride; Cmax, maximum 
plasma concentration; DDI, drug–drug interaction.

(a) (b)
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F I G U R E  6  Model- based dose 
adaptations for dasatinib within single 
(a–d) and multiple DDI scenarios (e–h) 
including moderate and strong CYP3A4 
inhibitors and inducers. The first and 
second column represent the simulation 
results after administration of 100 mg 
and 140 mg dasatinib daily, respectively. 
Solid lines show the model predictions 
with (colored) and without (gray) intake 
of perpetrator drug. Colored dashed 
lines represent model predictions in 
the presence of perpetrator drug(s), 
using an adapted dasatinib dose. For the 
dosing simulations a virtual European 
male individual, 64 years of age and 
default values for body weight and 
height according to the International 
Commission on Radiological Protection 
(ICRP) database, was used. Bid, twice a 
day; CBZ, carbamazepine; DAS, dasatinib; 
DDI, drug–drug interaction; ERY, 
erythromycin; GFJ, grapefruit juice; ITZ, 
itraconazole; md, multiple dose; qd, once 
a day; tid, three times a day.

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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dasatinib mediated by enzymes and/or transporters11,12 
or the effects of varying formulations on dasatinib PK.23 
In contrast to previous work, the presented model was 
used to investigate a comprehensive range of clinically 
relevant enzyme- mediated and pH- dependent DDI sce-
narios in healthy volunteers and cancer patients within 
a single framework. For model development, a larger 
number of clinical studies involving a broader dose range 
(15–200 mg) of dasatinib was used compared with pub-
lished PBPK models. Moreover, the model was utilized 
to simulate various DDI scenarios that have not yet been 
investigated in clinical trials and to provide model- based 
dose adaptations, supporting precision dosing approaches 
for dasatinib. Furthermore, our established PBPK model 
extends the openly accessible PBPK model library with an 
additional sensitive CYP3A4 substrate and can be applied 

by the research community for various applications such 
as additional population- specific DDI simulations and 
dose adaptations, DDI simulations with drugs under de-
velopment involving dasatinib as a sensitive CYP3A4 sub-
strate, or to develop and evaluate new PBPK models.

In our PBPK model, fraction absorbed after administra-
tion of dasatinib tablets across the dose range of 20–420 mg 
varied between 80% and 41% (Table S14). Additionally, the 
respective modeled absolute bioavailability ranged from 
20% to 28% for the dose range of 20–420 mg (Table S14). 
Due to lack of intravenous data the modeled bioavailabil-
ity values could not be compared with clinically observed 
data.44 Dasatinib is primarily metabolized via CYP3A4, 
accounting for ~92% of the absorbed drug, consistent with 
literature reports.7 Moreover, only 0.1% of absorbed da-
satinib was excreted unchanged in urine, which is in line 

F I G U R E  7  Overview of model- based dose adaptations for dasatinib within single and multiple DDI scenarios based on the exposure 
matching principle, where points and squares show the percentage of the original dasatinib dose that match the PBPK simulated 
monotherapy AUCss at 100 mg and 140 mg, respectively. A virtual European male individual, 64 years of age and default values for body 
weight and height according to the International Commission on Radiological Protection (ICRP) database, was used for the dosing 
simulations. Red symbols depict dasatinib dose reductions and green symbols depict dasatinib dose elevations. The darker the color, the 
higher the magnitude of dasatinib dose adaptation. –, dose adaptations outside the simulated dose range; AUCss, steady- state area under the 
concentration–time curve; bid, twice a day; D, day; md, multiple dose; qd, once daily; qid, four times a day; sd, single dose; tab, tablet; tid, 
three times a day.

Itraconazole, 200 mg, bid

Itraconazole, 200 mg, bid
+ Grapefruit Juice, 250 ml, qd, md

Ketoconazole, 200 mg, bid

Clarithromycin, 500 mg, bid
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Carbamazepine, 400 mg, tid
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Fluvoxamine, 100 mg, qd (+12 h)
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with results from a human ADME study.6 In vitro studies 
suggested that dasatinib may be a substrate of the efflux 
transporters breast cancer resistance protein (BCRP) and 
P- glycoprotein (P- gp).45 However, recent in vivo studies by 
Kamath et al. found no significant involvement of P- gp in 
modulating the rate and extent of intestinal absorption.46 
Consequently, and due to the absence of in vitro Km val-
ues, P- gp and BCRP were not incorporated into the PBPK 
model.

A good descriptive and predictive performance for 
DDIs was demonstrated by GMFEs of 1.24 and 1.18 for 
predicted AUClast and Cmax effect ratios, respectively. The 
DDIs emphasize the significant role of CYP3A4 in dasat-
inib metabolism and the importance to adapt dasatinib 
therapy in DDI settings to increase both patient safety and 
treatment efficacy. Due to the potential risk of adverse 
events resulting from increased dasatinib exposure during 
CYP3A4 inhibition, the package insert advises against the 
concomitant use of dasatinib and strong CYP3A4 inhib-
itors.15,47 However, if such combination is unavoidable, 
the package insert recommends considering dose adap-
tations to 20 (40) mg dasatinib daily instead of 100 (140) 
mg for all strong inhibitors, while dosing recommenda-
tions for moderate CYP3A4 inhibitors are not provided.15 
Consequently, our developed PBPK model was applied 
in tandem with models of various strong and moderate 
CYP3A4 perpetrators to conduct DDI simulations to sup-
port dasatinib precision dosing.

The performed model simulations suggest that a “one- 
dose- fits- all” approach during co- treatment with strong 
or moderate inhibitors may lead to suboptimal dasati-
nib exposures: If combination of dasatinib with strong 
CYP3A4 inhibitors is unavoidable, dasatinib dose reduc-
tions of 50%–80% should be considered, depending on the 
inhibitor and selected dosing regimen, to match dasatinib 
AUCss during monotherapy. This translates into a dasati-
nib dose range of 20–50 mg for the 100 mg dosing regimen 
and 30–70 mg for the 140 mg dosing regimen. Moreover, 
simulations suggest dose reductions of 0%–70% for co- 
treatment with moderate CYP3A4 inhibitors, depending 
on individual factors such as perpetrator drug and timing 
of drug administration (detailed numeric dasatinib dose 
adaptations are listed in Table S12). Furthermore, while 
simulations with a single dose of 250 mL grapefruit juice 
showed only a marginal increase in dasatinib exposure 
(~15%), a daily intake led to an AUCss increase of up to 
40%, supporting the package insert guidance to avoid con-
comitant intake of dasatinib with grapefruit juice.

The PBPK model was additionally used to simulate 
the impact of CYP3A4 induction on dasatinib exposure, 
a situation for which only qualitative recommendations 
are available in the package insert: Concomitant strong 
inducers should be avoided, and if co- administration is 

inevitable, a dose increase considered.15 Our model sim-
ulations suggest that a 2.3–3.1- fold increase in dasatinib 
dose would match the exposure of dasatinib monotherapy. 
However, if adapting the dasatinib dose to higher values 
that were neither part of the model training/test dataset 
nor clinically studied, it is crucial to carefully monitor pa-
tients for potential toxicities (e.g., pleural effusion or he-
matological toxicities).15,47

Moreover, the effect of dose staggering was exemplar-
ily investigated for fluvoxamine (moderate competitive 
CYP3A4 inhibitor) and efavirenz (moderate CYP3A4 in-
ducer) as both drugs should be preferably taken in the 
evening according to the package insert. While no dose 
adaptations were needed for fluvoxamine with a 12 h 
staggered intake, the effect on dasatinib's AUCss increased 
when efavirenz was given 12 h staggered to dasatinib (see 
Figure 7 and Table S12).

Dasatinib's pH- dependent DDIs represent another type 
of clinical interaction. In the investigated pH- dependent 
DDIs, rabeprazole, famotidine and Maalox® co- treatment 
showed strong impact on dasatinib PK with simulated 
AUClast effect ratios of 0.10, 0.24 and 0.31, respectively. 
Successful predictions of the DDI scenarios were attained 
by elevating the gastric pH constantly over time to the lit-
erature values of 4.1, 2.8, and 3.0, respectively, and esti-
mating the elevated gastric emptying times to be 60.1 min 
for rabeprazole and 31.3 min for Maalox®. The impact of 
Maalox® on gastric emptying time has been reported in 
the literature,48 while the effect of PPIs is volunteers of 
ongoing debate and necessitates further investigation.49,50 
Given the dynamic changes in gastric pH following the 
administration of ARAs, offering precise dosing recom-
mendations for such DDI scenarios becomes challenging. 
However, the effect of antacids, which directly neutralize 
gastric acid, diminishes approximately 2 h post- dose.51 
Consequently, antacids taken 2 h before dasatinib do not 
significantly alter dasatinib exposure.5 In contrast, the re-
duction in gastric acid production through H2- antagonists 
can persist for up to 12 h and the suppression induced by 
PPIs can continue for several days after stopping the PPI 
treatment.51 Therefore, ARAs that have a shorter duration 
of pH elevation, such as antacids, should be preferred.

Besides single DDIs, two exemplary multiple DDIs 
were investigated. While the single DDI with carba-
mazepine (strong CYP3A4 inducer) required a 2.4- fold 
increase in dasatinib dose to match the exposure of da-
satinib monotherapy, the additional administration of 
erythromycin (moderate, irreversible CYP3A4 inhibitor) 
compensated this effect, overall resulting in a 20% dose 
reduction. In contrast, the additional intake of grapefruit 
juice to the strong CYP3A4 inhibitor itraconazole did not 
impact the simulated dose adaptation for the single dasat-
inib–itraconazole–DDI (80% dose reduction).
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The dasatinib model was evaluated in a comprehen-
sive PBPK DDI network, offering predictions for various 
clinical situations. It can explore single and multiple DDIs 
with dasatinib as the victim drug. The dasatinib perpe-
trator model, tested with the dasatinib–simvastatin DDI, 
holds potential for future research, especially concerning 
CYP3A4, CYP2C8, OATP1B1, and OATP1B3 substrates 
with a narrow therapeutic index. This underscores the im-
portance of DDIs in long- term dasatinib treatment.

There are limitations to this study, which merit con-
sideration and will be explored in the forthcoming para-
graphs. Metabolites of dasatinib were not incorporated 
into the PBPK model, as they are not considered clinically 
relevant.6 However, during strong CYP3A4 induction, 
plasma concentrations of active metabolites could poten-
tially increase to clinically relevant exposures, which was 
not addressed in our dosing recommendations. Contrary 
to CYP3A4 genetic variants, CYP3A5 polymorphisms are 
known to significantly affect the PK of many CYP3A sub-
strates.52 Consequently, due to the minor contribution of 
CYP3A5 to the metabolism of dasatinib,7 CYP3A genetic 
variants were not considered in this work. While our PBPK 
model accounts for differences in patient demographics, 
such as age, which affects various physiological parame-
ters including glomerular filtration rate (GFR), blood flow 
rates and tissue volumes, pathophysiologic changes for 
cancer patients (e.g., enzyme expression or α1- acid gly-
coprotein levels [AGP]) were not integrated because of 
lack of specific information from clinical study reports. 
However, population variability in CYP3A4 enzyme ex-
pression or AGP levels was considered in the population 
simulations.

A less precise prediction performance compared with 
other explored DDIs could be observed for the DDI with 
rifampicin applying a stricter criterium of 1.5- fold range. 
Here, predicted AUClast and Cmax ratios deviated more 
than 1.5- fold from the observed ratios. Of note, rifampicin 
is not only an inhibitor and inducer of several enzymes, 
but also of several transporters like the efflux transporter 
P- gp. Incorporation of P- gp in the dasatinib PBPK model 
was investigated during model building; however, no sig-
nificant improvement of DDI predictions involving ri-
fampicin could be observed that has further encouraged 
to not include P- gp in the final model. Similar limitations 
regarding DDI predictions with rifampicin have also been 
reported in previous work because of the complex inhibi-
tion and induction mechanisms for several enzymes and 
transporters.53,54

The dosing simulations and subsequent dose adap-
tations were based on the exposure matching principle, 
utilizing dasatinib AUCss as exposure metric as described 
in the package insert.15 However, it should be noted that 
despite achieving similar AUCss values for the control and 

DDI scenarios through dose adaptations, differences in 
plasma profile trajectories and thus Cmax and trough con-
centrations (Cmin) can lead to differences in drug efficacy 
and safety. Dose- adapted plasma profiles during CYP3A4 
inducer co- treatment showed higher Cmax values while 
plasma profiles during inhibitor co- treatment showed 
higher Cmin values compared with the simulated plasma 
profiles during monotherapy. An exposure–response anal-
ysis identified elevation in Cmin as the most significant 
predictor for pleural effusion, a key adverse event during 
dasatinib therapy.47 Hence, close monitoring of patients 
for toxicities is inevitable particularly during CYP3A4 in-
hibitor co- treatment and concomitant use with strong in-
hibitors should be avoided in clinical practice.

Finally, the recommended dasatinib dose for each DDI 
scenario represents an estimated average dose that can be 
affected by different sources of variability and uncertainties 
(e.g., enzyme abundance). For dosing simulations, a vir-
tual European male individual, 64 years of age and default 
values for body weight and height according to the ICRP 
database was used. While also complex scenarios like mul-
tiple DDIs were simulated, the applicability of the provided 
dosing recommendations to patients with diverse clinical 
characteristics (e.g., hepatic impairment) is not warranted 
and was beyond the scope of this study. However, our PBPK 
model offers a foundation for future applications to person-
alize dasatinib therapy by using individual demographics, 
physiology, and enzyme activity, creating a “virtual twin” 
of the patient. Clinical studies are yet required to confirm 
the advantage of such a precision dosing approach for da-
satinib therapy including efficacy and safety over the broad 
dose range that was required in the various DDI simula-
tions to match the dasatinib exposure during monotherapy.

To conclude, a comprehensive whole- body PBPK 
model was successfully developed for dasatinib, a sensi-
tive CYP3A4 substrate. The established model was lev-
eraged to simulate several previously unexplored DDI 
scenarios, resulting in model- based dosing recommenda-
tions for dasatinib. Moreover, the model could serve as a 
tool to further optimize and personalize dasatinib therapy, 
providing strategies to navigate clinical challenges that re-
sult from single and multiple DDIs and/or patient- related 
factors, such as elevated gastric pH. Finally, it extends the 
openly accessible PBPK model library with an additional 
sensitive CYP3A4 substrate and can be applied by the re-
search community to investigate future single and multi-
ple DDI scenarios involving dasatinib.
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