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Abstract
The recent SarsCov2 pandemic has disrupted healthcare system notably impact-
ing intensive care units (ICU). In severe cases, the immune system is dysregulated, 
associating signs of hyperinflammation and immunosuppression. In the present 
work, we investigated, using a joint modeling approach, whether the trajectories 
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INTRODUCTION

The appearance of severe acute respiratory coronavirus- 2 
(SARS- CoV- 2) has led to a rapidly spreading pandemic. 
Since the first cases of coronavirus disease- 19 (COVID- 19), 
more than 675 million cases and about 7 million deaths 
have been reported worldwide (by February 2023—Johns 
Hopkins University). Moreover, many intensive care units 

(ICUs) were overwhelmed due to an insufficient number 
of beds at the time of the outbreak peak. The local capac-
ity to manage ICU beds availability in a given area was 
revealed of utmost importance.1,2

In critically ill COVID- 19 patients, the initial response 
to SARS- CoV- 2 infection is characterized by major im-
mune dysfunctions associating a systemic inflammatory 
response and the development of altered innate and 

of cellular immunological parameters were associated with survival of COVID- 19 
ICU patients. This study is based on the REA- IMMUNO- COVID cohort includ-
ing 538 COVID- 19 patients admitted to ICU between March 2020 and May 2022. 
Measurements of monocyte HLA- DR expression (mHLA- DR), counts of neutro-
phils, of total lymphocytes, and of CD4+ and CD8+ subsets were performed five 
times during the first month after ICU admission. Univariate joint models com-
bining survival at day 28 (D28), hospital discharge and longitudinal analysis of 
those biomarkers’ kinetics with mixed- effects models were performed prior to 
the building of a multivariate joint model. We showed that a higher mHLA- DR 
value was associated with a lower risk of death. Predicted mHLA- DR nadir cutoff 
value that maximized the Youden index was 5414 Ab/C and led to an AUC = 0.70 
confidence interval (95%CI) = [0.65; 0.75] regarding association with D28 mortal-
ity while dynamic predictions using mHLA- DR kinetics until D7, D12 and D20 
showed AUCs of 0.82 [0.77; 0.87], 0.81 [0.75; 0.87] and 0.84 [0.75; 0.93]. Therefore, 
the final joint model provided adequate discrimination performances at D28 after 
collection of biomarker samples until D7, which improved as more samples were 
collected. After severe COVID- 19, decreased mHLA- DR expression is associated 
with a greater risk of death at D28 independently of usual clinical confounders.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
In critically ill COVID- 19 patients, the initial response to SARS- CoV- 2 infection 
is characterized by major immune dysfunctions similar to those in septic patients 
with bacterial infections. However, the exploration of the immune trajectories of 
these critically ill patients during their stay in intensive care units (ICU) and their 
relationship with survival has not been performed yet.
WHAT QUESTION DID THIS STUDY ADDRESS?
The present work aims to investigate, using a joint nonlinear modeling approach, 
whether the trajectories of cellular immunological parameters were associated 
with the survival in 538 patients included in the REA- IMMUNO- COVID (RICO) 
cohort from five ICU from Lyon academic hospitals.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
An exhaustive analysis of baseline covariates and immune biomarkers was per-
formed where monocyte HLA- DR emerged as the most interesting in terms of its 
association with 28- day mortality.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
In routine care, a value of monocyte HLA- DR below 5500 AB/C could be consid-
ered as an alarming sign, requiring a reconsideration of the patient's management.
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adaptive immune responses similar to those in septic 
patients with bacterial infections.3 On myeloid side, ele-
vation of the proportion of immature neutrophils and de-
creased HLA- DR expression on monocytes (mHLA- DR) 
have been reported, while adaptive immune response was 
markedly affected since severe lymphopenia, phenotypic, 
and functional T- cell alterations have been associated 
with patients worsening.

The aim of the present work was thus to investigate, 
using a joint modeling approach, whether the kinetics 
(trajectories) of cellular immunological parameters were 
associated with the survival of COVID- 19 ICU patients.4 
Here, using a joint modeling approach prevents mak-
ing the hypothesis that the marker does not change be-
tween measurements and neglecting measurement errors. 
Further, Latouche et al. in,5 and Rizopoulos et al. in6 have 
shown joint models should be used to handle endogenous 
time- varying covariate. Indeed, modeling simultaneously 
the survival and the kinetics of biomarkers4,7 with shared 
random effects is important to get precise and unbiased 
estimates of longitudinal and survival parameters, and 
thus enables to precisely characterize the association be-
tween these processes.8–10 This approach also provides 
dynamic individual predictions,11 accounting not only for 
the baseline information but also for the longitudinal data 
available until a certain time point, that is, until a given 
landmark time. For this purpose, we took advantage of 
the REA- IMMUNO- COVID (RICO) cohort that included 
more than 500 COVID- 19 ICU patients for which cellular 

immunological parameters were repeatedly monitored 
during 3 weeks after ICU admission. Figure 1 summarizes 
schematically the data at hand, the modeling strategy, and 
the model evaluation we performed.

METHODS

Clinical study design, patient population, 
and approval

Between March 2020 and May 2022, critically ill patients 
admitted to five ICUs from Lyon academic hospitals 
(Hospices Civils de Lyon, Lyon, France) who presented 
with pulmonary infection with SARS- CoV- 2 were pro-
spectively included in RICO clinical study. Preliminary 
results from subgroups of the cohort were published pre-
viously.12–16 This study was approved by an ethics com-
mittee (Comité de Protection des Personnes Ile de France 
1 – N°IRB/IORG #: IORG0009918) under agreement 
number 2020- A01079- 30. This clinical study was regis-
tered at Clini calTr ials. gov (NCT04392401). More details 
can be found in Section S1.1.

Patient characteristics

For each patient, demographics, comorbidities, time from 
onset of COVID- 19 symptoms to ICU admission, initial 

F I G U R E  1  Scheme of the data used in this analysis, the modeling steps and evaluation procedures.

http://clinicaltrials.gov


   | 1133MHLA- DR AND MORTALITY IN COVID19 ICU PATIENTS

presentation of the disease in the ICU including the ratio 
of the arterial partial pressure of oxygen to the fractional 
inspired oxygen (PaO2/FiO2 ratio) at admission and organ 
supports were documented. Organ dysfunctions accord-
ing to Sequential Organ Failure Assessment (SOFA) Score 
(range 0–24, with higher scores indicating more severe 
organ failures), and Simplified Acute Physiology Score 
II (SAPS II; range, 0–164, with higher scores indicating 
greater severity of illness) were documented on patients' 
admission in the ICU. Presence of acute respiratory dis-
tress syndrome (ARDS) was based on the Berlin criteria 
for ARDS.17 Follow- up included ICU length of stay, in- 
hospital mortality, day- 28 (D28) mortality, day- 90 (D90) 
mortality, as well as occurrence of a secondary infection. 
Occurrence of secondary nosocomial infection was de-
fined based on recommendation from “Comité technique 
des infections nosocomiales et des infections liées aux 
soins”.18

Blood samples

Ethylenediaminetetraacetic acid (EDTA- ) anticoagulated 
blood was drawn five times during the first month after 
ICU admission: within the first 48 h after admission (Day 
0: D0), between 72 h and 96 h after admission (D3), be-
tween D7 and D9 (D7), between D12 and D15 (D12), be-
tween D20 and D25 (D20). Blood was stored at 4–8°C and 
processed within 4 h after withdrawal.

Statistical analyses

As defined in the clinical protocol, primary study end 
point was patients' status (alive or deceased) 28 days after 
ICU admission. To model the survival and longitudinal 
data, submodels for each aspect were first defined sepa-
rately before being modeled simultaneously. Another sub-
model was defined to consider the attrition phenomenon: 
the discharge from ICU submodel. Indeed, biomarker 
data were not collected in patients discharged from the 
ICU between D3 and D20.

Survival covariate model

Survival at D28 was modeled using a parametric propor-
tional hazard model. Let Xs be the survival time between 
inclusion and death, and Cs be the censoring time between 
inclusion and the date of lost to follow- up, here up to 
28 days. The time- to- event Ts was defined as the minimum 
between Xs and Cs. The D28 vital status indicator �s was 
either 1 if the patient died before D28 or 0 if the patient 

was censored (i.e., lost- to- follow- up or still alive) at D28. 
Survival at D28 was modeled using a parametric propor-
tional hazard model:

with hs the instantaneous probability of death at time t, 
hs
0
 the survival baseline hazard function, and �cov the vec-

tor of regression coefficients associated with the baseline 
covariate vector z. hs

0
 was selected among seven functions 

(Section S1.3.1).
Then, a forward covariate selection based on the 

Bayesian Information Criteria (BIC) was performed con-
sidering the following baseline patient characteristics: 
age, gender, body mass index (BMI), admission SOFA 
score,19 admission Charlson index,20 time elapsed be-
tween the first symptoms and ICU admission, presence of 
invasive or noninvasive mechanical ventilation before the 
third ICU day, and COVID wave based on the date of di-
agnostic or hospital admission (wave 1: from March 2020 
to July 5th 2020, wave 2: from July 6th 2020 to January 
3rd, 2021, wave 3: from January 4th 2021 to July 4th 2021 
and wave 4: after July 5th 2021). These covariates were 
derived from a review of the existing literature, curated to 
capture the essential factors that have been consistently 
associated with survival in hospitalized patients present-
ing pulmonary infection with SARS- CoV- 2.21

Discharge model

The discharge model was defined and built in the same 
manner as the survival model. However, the censoring 
time Cd was the time between inclusion and death, and Xd 
was the discharge time. This allows to define the time to 
discharge Td and the D28 discharge indicator, respectively, 
as follows: Td =min

(
Xd,Cd

)
 and �d = 1{Xd≤Cd} . The para-

metric proportional hazard function (hd ) has been selected 
among the same functions as for the survival baseline haz-
ard function.

Univariate joint models

The biomarkers under study (i.e. mHLA- DR, CD4+ and 
CD8+ lymphocyte counts, total neutrophil and lympho-
cyte counts) were first log- transformed to ensure numerical 
stability and were then modeled using linear or nonlinear 
structural functions and shared random effects with the 
D28 survival covariate model described above.22–24

Formally, yij denotes the jth biomarker measurement of 
subject i at a given time tij, and the model was defined by 
the following equation:

(1)hs(t| z) = hs0(t)exp
(
�Tcovz

)
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where �i is the vector of individual parameters depend-
ing on fixed � and random effects �i ∼MV (0,Ω), with 
Ω the variance–covariance matrix with diagonal ele-
ments �2

k
 (k the number of structural model parameters). 

�ij ∼ (0, 1) is the residual error at time tij for subject i, 
and g

(
tij,�i,Σ

)
�ij is the residual error variance model, se-

lected among the following: constant: Σ =
{
�inter, 0

}
, pro-

portional: Σ =
{
0, �slope

}
 and combined: Σ =

{
�inter, �slope

}
.

The instantaneous risk of death was thus:

And the instantaneous chance of discharge was:

where hd
0
 represent the baseline hazard function for the 

discharge submodel. �s and �d were the link functions for 
survival and discharge submodels, respectively, that is, ei-
ther the current value or the slope of the biomarker, and 
�s and �d were the link parameters associated to the link 
functions �s and �d, respectively.

We explored 9 mathematical functions to describe bio-
markers' kinetics, based on visual inspection of the data on 
their natural scale (6 and 3 functions corresponding to con-
vex and concave trajectories respectively, cf. Section S1.3.2). 
To best capture the link between the biomarker and the 
survival, we considered the following metrics: the cur-
rent value or the slope of mHLA- DR, CD4+ and CD8+ 
lymphocyte counts, CD4+/CD8+ ratio and neutrophil- to- 
lymphocyte ratio (NLR). Indeed, we modeled the biolog-
ical entities and we explored the link with survival using 
metrics derived from these entities which clinicians use in 
clinical routine. Second, we explored whether it is the bio-
marker value at a given time that influenced the instanta-
neous risk or its change over a short period of time.

The best combination of mathematical function for the 
longitudinal data and link function within the survival co-
variate model was selected based on BIC,25 ensuring rela-
tive standard errors (RSE) below 50%.

We also accounted for the attrition in the longitudinal 
data by using another joint model linking longitudinal 
data to the ICU discharge with, for a given model, the 
same link function as for the survival data.

Multivariate joint model

First, a screening of all biomarkers was performed by com-
paring the BIC of each biomarker univariate joint model 

when estimating the link coefficient effect (existence of a 
biomarker–survival association) versus fixing that coef-
ficient to 0 (absence of a biomarker–survival association). 
Then, after inclusion in a multivariate joint model of all 
the remaining biomarkers, a backward selection was per-
formed based on BIC, using two points decrease in BIC as 
stopping rule.26

Evaluation

In order to assess the goodness- of- fit of the selected mod-
els to the data, visual predictive checks (VPC) plots were 
used.27 Goodness- of- fit plots compare percentiles derived 
from 500 datasets simulated with the model to percentiles 
derived from the observed data. Using both the discharge 
and survival model made sure unrealistic trajectories were 
not simulated.

Using the survival covariate and the final joint model 
of survival and biomarker kinetic data, dynamic predic-
tions were derived28 at pre- specified clinically relevant 
landmark times: D7, D12, and D20. These dynamic pre-
dictions were used to derive time- dependent area under 
the receiver operating characteristic (ROC) curve (AUC
), corresponding to a cumulative sensitivity (or recall) 
and a dynamic specificity, for the prediction of D28 
mortality.29–31

The AUCs of the survival covariate model and the final 
joint model and the associated 95% confidence intervals 
(95% CI) were compared, for each landmark times, and 
at D28.32 The discrimination and calibration of the sur-
vival covariate model and the final joint model were also 
evaluated with dynamic predictions- derived Brier Scores 
(BS)29,31 (cf. Section S1.4) which enable to quantify the error 
between the observations and the predictions: the smallest 
the BS, the smallest the error. This score was initially used 
to quantify the precision of meteorologic predictions. The 
scaled Brier Score (sBS) was also computed to assess the 
improvement, in terms of discrimination and calibration, 
of the final joint model over the covariate survival model.

Using the observed nadir and the final joint model pre-
dicted nadir for all patients, ROC curves at horizon D28 
were plotted and cutoff values were derived according to 
the maximization of the Youden Index.

Softwares

Data management, VPCs (vpc package)33 and time- 
dependent AUCs (timeROC package)30,34 were performed 
using R version 4.1.3 and data modeling was performed 
using Monolix 2018R2.35

(2)log
(
yij+1

)
= log

(
f
(
tij,�i

)
+1

)
+g

(
tij,�i,Σ

)
�ij

(3)hsi
(
t|�i

)
=hs0(t)e

�Tcovzi e�
s�s(t,�i)

(4)hdi
(
t|�i

)
=hd0(t)e

�d�d(t,�i)
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Ethics statement

This project was part of an ongoing prospective observa-
tional clinical study (RICO, REA- IMMUNO- COVID). It 
was approved by ethics committee (Comité de Protection 
des Personnes Ile de France 1 – N°IRB/IORG #: 
IORG0009918) under agreement number 2020- A01079- 30. 
This clinical study was registered at Clini calTr ials. gov 
(NCT04392401).

RESULTS

Patients' characteristics

A total of 538 patients were included in the cohort, 383 
(71%) were males. The baseline clinical characteristics 
are summarized in Table 1. Briefly, median [interquartile 
range (IQR)] age at admission was 65 [56;72] years old 
and median BMI was 29 [26;33] kg/m2. The median [IQR] 
Charlson Index and SOFA score were 2 [1;3] and 3 [1;5], 
respectively. The median [IQR] time between first symp-
toms and ICU admission was 9 [6;11] days. Thirty- two 
percent of patients were on mechanical ventilation before 
the 3rd day of their ICU stay and 47% developed an ARDS 
during their ICU stay. Twelve percent of the patients were 
part of the first COVID wave, 35% of the 2nd, 32% of the 
3rd and 21% of the 4th.

Twenty- eight days after admission, 94 (17%) patients 
had died (Figure 2) and 86 (16%) remained hospitalized in 
the ICU. The vital status at D28 was unknown for 19 (4%) 
patients and their outcome was consequently censored at 
the date of ICU discharge.

Ninety days after admission, 121 (22%) patients had 
died out of which 120 (99%) had died in the hospital. 
Nosocomial infections occurred for 167 (31%) patients.

Predictors of survival

Selection of clinical variables

Based on BIC, the survival curve was best described using 
an exponential baseline hazard function (Model selec-
tion steps detailed in Section S2.1; Table S1 and VPC in 
Figure  S1). The selected model estimated the median 
length of survival at 401 days. Being older than 65 years 
old, having a higher Charlson Index and the presence of 
mechanical ventilation before the 3rd day of ICU were 
found as risk factors for death (Covariate selection de-
tailed in Section S2.1; Tables S2–S6).

Selection of biomarkers

As shown in Figure 3, mHLA- DR individual profiles ex-
hibited a convex- shaped kinetics. We selected the Stein- 
Fojo model and the model predicted mHLA- DR value at 
a given time rather than its slope as a link function in the 
survival model as it corresponded to the lowest BIC also 
ensuring RSE below 50% for all parameters (Section S2.2; 
Tables S7, S8; Figure S2).

The individual profiles of all other immune parameters 
under study (i.e., absolute count of total lymphocytes, T 
CD4+ lymphocytes, T CD8+ lymphocytes and neutro-
phils) had concave- shaped kinetics (Figure 3). A linear re-
gression best characterized the CD4+ lymphocyte kinetics 
with the predicted CD4+ count at a given time as a link 
function in the survival model (Section S2.3; Tables S9, S10; 
Figure S3). The CD8+ lymphocyte kinetics (Section S2.4; 
Tables  S11, S12; Figure  S4) was also best described by a 
linear regression but with the model instantaneous slope 
as a link function in the survival model.

Once the structural model for both entities was selected 
accounting for patient survival, we derived CD4+

/CD8+ ratio 
and found the best link function of this metric with the sur-
vival was the instantaneous slope (Section S2.5; Tables S13, 
S14; Figure  S5). The neutrophils kinetics was best de-
scribed using a Bateman model with the biomarker value 
at a given time as link function (Section S2.6; Tables S15, 
S16; Figure S6) and the lymphocyte kinetics using a linear 
regression with the slope as link function (Section  S2.7; 
Tables S17, S18; Figure S7). Here as well we used the models 
selected for both entities to derive NLR and explore the best 
link with survival, which happened to be the current value 
(Section S2.8; Tables S19, S20; Figure S8).

Only the univariate joint model with the mHLA- DR 
level at a given time obtained a better BIC than fitting the 
longitudinal and survival data separately (Table 2).

Final joint model including mHLA- DR instant 
value and selected clinical variables

We observed that a higher mHLA- DR value was associ-
ated with a lower risk of death at D28 independently of se-
lected clinical variables whose hazard ratios and confidence 
intervals were respectively of 1.079 [1.077;1.080], 1.349 
[1.342;1.356], and 2.243 [2.196;2.292] for the age, Charlson 
Index and presence of mechanical ventilation before the 3rd 
day of ICU (all model parameters estimates, standard errors, 
and hazard ratios can be found in Section S2.2; Table S8).

A log- logistic baseline hazard function was selected 
for the discharge, enabling to account for the longitudinal 

http://clinicaltrials.gov
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T A B L E  1  Baseline characteristics of the 538 patients included depending on their vital status at D28. The median and interquartile 
range is given for continuous covariates, and the percentage is given for categorical covariates.

Alive,  
N = 425

Dead,  
N = 94

Censored, 
N = 19

Overall population,  
N = 538 Missing

Continuous covariates – Median [Q1;Q3]

Age (years) 64 [54;70] 71 [64;78] 72 [57;74] 65 [56;72] 0

Weight (kg) 85 [74;97] 80 [70;91] 80 [68;90] 84 [73;96] 1

Height (cm) 170 [165;176] 170 [164;174] 168 [160;177] 170 [164;176] 6

BMI (kg/m2) 29 [26;33] 28 [25;31] 28 [27;33] 29 [26;33] 6

Charlson index 2 [1;2] 3 [1;4] 1 [1;2] 2 [1;3] 0

Time between first symptoms and ICU 
admission (days)

9 [7;11] 7 [4;9] 10 [3;11] 9 [6;11] 10

Length of hospital stay (days) 19 [11;41] 14 [8;21] 10 [8;16] 18 [11;34] 5

Length of ICU stay (days) 8 [4;21] 12 [7;19] 7 [3;10] 9 [5;20] 1

SOFA score 2 [1;4] 4 [2;7] 1 [0;4.5] 3 [1;5] 0

SAPSII score 30 [22;37] 38 [30;47] 30 [22;44] 31 [24;40] 0

Glasgow coma scale 15 [15;15] 15 [15;15] 15 [14.5;15] 15 [15;15] 1

Categorical covariates – n (%)

Male gender 298 (70) 75 (80) 19 (53) 383 (71) 0

Mechanical ventilation before 3rd day in 
ICU

122 (29) 45 (48) 6 (32) 173 (32) 0

Mac Cabe index 209

Stage 1a 1 (0.4) 3 (5.3) 0 (0) 4 (1)

Stage 2b 20 (7.6) 10 (18) 2 (25) 32 (10)

Stage 3c 243 (92) 44 (77) 6 (75) 293 (89)

Preexisting immunological disease 32 (7.5) 17 (18) 0 (0) 49 (9) 0

Treatment by ARA IId 59 (14) 15 (16) 2 (11) 76 (14) 0

Origin 0

Exterior 260 (61) 60 (64) 12 (63) 332 (62)

COVID unit 75 (18) 8 (9) 1 (5) 84 (16)

Hospitale 76 (18) 24 (26) 6 (32) 106 (20)

Other 14 (3) 2 (2) 0 (0) 16 (3)

ARDSf 165 (41) 69 (78) 8 (42) 242 (47) 26

Nosocomial infections 117 (32) 45 (57) 5 (26) 167 (36) 79

Vital status at day 90

Alive 353 (93) 0 (0) 0 (0) 353 (74) 64

Dead 27 (7) 94 (100) 0 (0) 121 (26)

COVID waveg 0

1 51 (12) 16 (17) 0 (0) 67 (12)

2 142 (33) 36 (38) 8 (42) 186 (35)

3 142 (33) 21 (22) 9 (47) 172 (32)

4 90 (21) 21 (22) 2 (11) 113 (21)
aDisease deadly within a year.
bLife threatening disease at 5 years.
cNo threatening disease.
dAngiotensin II Receptor Antagonist.
eExcept COVID unit.
fAcute Respiratory Distress Syndrome.
gCOVID wave: 1: from March 2020 to July 5th 2020. 2: from July 6th 2020 to January 3rd 2021. 3: from January 4th 2021 to July 4th 2021. 4: after July 5th 2021.
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data attrition in the VPCs (Section S2.9; Tables S21, S22; 
Figure S9).

Finally, the observed mHLA- DR nadir cutoff value that 
maximized the Youden index was 5107 Ab/C for predic-
tion of mortality at D28 which led to an AUC [95% CI] 
of 0.65 [0.60;0.71], a sensitivity of 0.68 and a specificity of 
0.63, whereas, using the final joint model predictions, the 
mHLA- DR nadir cutoff value that maximized the Youden 
index was 5414 Ab/C and led to an AUC of 0.70 [0.65;0.75], 
a sensitivity of 0.76 and a specificity of 0.64.

Dynamic predictions of D28 mortality

Dynamic predictions of death at D28 computed with the final 
joint model had an adequate discrimination at landmark 

days 7, 12, and 20 post- admission, with AUCs [95% CI] of 
0.82 [0.77;0.87], 0.81 [0.75;0.87], and 0.84 [0.75;0.93], respec-
tively. The latter were systematically greater than those ob-
tained with the survival covariate model only (Table 3).

In the same manner, the BS of the final joint model 
were systematically lower compared with those of the 
survival covariates model, highlighting the better calibra-
tion and discrimination abilities of the joint modeling ap-
proach (Section S2.10; Tables S23–S25).

Figure  4 shows the individual predictions from the 
final joint model in terms of mHLA- DR evolution and 
survival rate compared with their outcome for six patients 
with different numbers of mHLA- DR observations. Early 
steep decreasing mHLA- DR kinetic profiles on the left led 
to rapidly decreasing predicted survival rates and death, 
whereas flat or rapidly increasing mHLA- DR kinetic 

F I G U R E  2  Kaplan–Meier of the overall survival until Day 28 (D28). The gray area around the survival curve represents the associated 
95% confidence interval (95% CI). The numbers of patients at risk and the cumulative numbers of censored patients along time are displayed 
under the plot.

T A B L E  2  Bayesian information criterion (BIC) of the selected univariate joint model for each biomarker and those same models with 
no link between the different biomarkers and survival. The lowest BIC is indicated in bold.

Biomarker
Structural  
model

Link  
function

Association  
(�s ≠ 0)

No association 
(�s = 0)

HLA- DR Stein Fojo Current value 6273 6280

CD4+ lymphocytes Linear regression Current value 6659 6657

CD8+ lymphocytes Linear regression Slope 6470 6465

CD4+/CD8+ Slope 41,729 41,724

Neutrophils Bateman Current value

Lymphocytes Linear regression Slope

Neutrophils/Lymphocytes Current value 12,499 12,497

Note: The instantaneous risk of death is modeled as hs
i

(
t|Φi

)
=

1

�
e�

s�s (t|Φi) with � the median length of survival, �s the link function of the structural 
longitudinal model and �s the association coefficient between the longitudinal and the survival parts of the model.
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profiles on the right led to flat survival rates and survival 
at D28. Also, the prediction intervals decreased with the 
number of samples and increased with time since the last 
sample.

DISCUSSION

In the current work, we present a joint model quanti-
fying the association between mHLA- DR expression 

F I G U R E  3  Spaghetti plots of mHLA- DR, CD4+ lymphocytes, CD8+ lymphocytes, Neutrophils and lymphocytes according to vital 
status at Day 28 (D28). The blue curve represents the smoothed conditional mean at each time.
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trajectory and the risk of death in critically ill COVID- 19 
ICU patients.

The immune response in severe COVID- 19 is a complex 
and multifaceted process involving various components of 
the immune system. Severe COVID- 19 cases often exhibit 
lymphopenia, and dysfunction and exhaustion of T cells. 
This impairs the ability to clear the virus and compro-
mises immune surveillance.3 Decreased mHLA- DR has 
also been reported.36 Collectively, the interplay between 
dysregulated immune responses, excessive inflammation, 
lymphocyte dysfunction, and immunosuppression con-
tributes to the complexity and severity of the immune re-
sponse in severe COVID- 19 patients.

T A B L E  3  Area under the receiver operating characteristic 
(ROC) curve (AUC) and its confidence interval at 95% for the 
prediction of D28- mortality using the HLA- DR and survival data 
available at landmark time day 7, 12, and 20 up to horizon time day 
28 for the survival model with baseline covariate only and the final 
joint model.

Landmark

Day 7 Day 12 Day 20

Survival 
model

0.80 [0.75;0.86] 0.79 [0.72;0.86] 0.79 [0.68;0.90]

Final joint 
model

0.82 [0.77;0.87] 0.81 [0.75;0.87] 0.84 [0.75;0.93]

F I G U R E  4  Individual fits of mHLA- DR kinetics and survival rate for six patients. Solid vertical lines indicate the D28 vital status: 
green if the patient is still alive and red in case of death with the discharge time represented by dashed green vertical lines. The blue 
dots are observed levels of mHLA- DR, the solid and dashed blue curves are the 2.5th, 50th, and 97.5th percentiles of model predicted 
mHLA- DR levels and the solid and dashed black curves are the estimated 2.5th, 50th, and 97.5th percentiles of individual model 
predicted survival rates. Patients were selected to represent profiles with data up until D7, D12, and D20 each and for both survival 
status.
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Beyond the use of biomarkers at a specific time point, 
the evaluation of immune parameters kinetics is also very 
important. The temporal immuno- inflammatory trajecto-
ries of patients have been shown to be crucial in sepsis, 
where they help define patient's endotypes and enrich pa-
tient's groups with individuals most likely to respond to a 
given treatment.37–41 It is necessary to apply holistic ap-
proaches including both patients' characteristics (e.g., age, 
comorbidities, initial severity) and the adjustment of risk 
over the course of days based on the evolution of relevant 
biomarkers. To this end, joint models are well appropriate 
as they enable the monitoring of multiple parameters over 
an extended period, facilitating early detection of changes 
and adaptation of treatment strategies.

To the best of our knowledge, the use of joint models has 
not been reported regarding immune parameters in severe 
COVID- 19 patients. As a first approach, we utilized data 
from the RICO study,16 which monitored several cellular pa-
rameters over a period of 3 weeks in 538 COVID- 19 patients 
hospitalized in the ICU during the pandemic. mHLA- DR 
emerged as interesting in terms of its association with 28- 
day mortality. Decreased mHLA- DR expression has been 
described on circulating monocytes from patients infected 
with SARS- CoV- 2 both in lung and circulating cells in asso-
ciation with increasing severity.42 While persistent decrease 
in mHLA- DR has been repeatedly associated with increased 
risk of death and higher risk of secondary infections in pa-
tients with bacterial sepsis, no robust data were available so 
far in critically ill patients with COVID- 19. Consequently, 
our subsequent focus was on this particular marker.

The most important finding of this study is that, in-
deed, the analysis of mHLA- DR expression or its kinetics 
over time using a joint model provided added value com-
pared with the survival covariate model alone in terms of 
discrimination. Considering the evolution of mHLA- DR 
levels up to day 7, day 12, or day 20 after ICU admission 
enables the prediction of vital status at day 28. Here, the 
joint model was not expected to subsequently shorten the 
time to assess the treatment effect as can be seen in cancer. 
But these specific landmark times are particularly relevant 
for COVID- 19 patients who tend to have prolonged ICU 
stays. Moreover, they align well with the recommended 
10- day dexamethasone treatment duration.43,44 At the end 
of this treatment period, therapeutic decisions may differ, 
including discontinuation of dexamethasone or consider-
ation of immunostimulation strategies.45–47

Another notable result emerges from the current study. 
In addition to mHLA- DR trajectories, the nadir (lowest 
point) during the entire monitoring period also appears to 
be of interest to predict D28 mortality. Therefore, in rou-
tine care, a value below 5500 AB/C could be considered as 
an alarming sign, requiring a reconsideration of the pa-
tient's management. However, it should be noted that the 

predictive performance of the joint model is superior to 
that of the nadir alone.

Our study has certain limitations due to its exploratory 
nature. The first limitation is related to the relatively low 
number of measurements per patient, averaging about 2.5 
measurements. This limited number of measurements 
made it challenging to fit complex longitudinal models 
with multiple parameters. Another limitation, associ-
ated with the first one, is that the large 95% confidence 
intervals in modeling resulted in the lack of statistical sig-
nificance in terms of the discrimination gain of the joint 
model compared with the survival model with baseline 
covariates only. However, the gain in discrimination was 
consistent and increased as the landmark times moved 
further from admission, indicating potential clinical rele-
vance. Lastly, due to missing information, we were unable 
to incorporate certain parameters that could contribute to 
immune trajectories and patients' recovery, such as viral 
load, soluble markers, and treatment regimens. These 
factors should be considered and included in the design 
of future studies. Also, other inflammatory response bio-
markers such as C- reactive protein, tumor necrosis factors, 
interleukins, etc. were not systematically measured in all 
samples collected longitudinally in the present study, yet 
the samples are available and represent an interesting per-
spective, pending fund obtention.

In conclusion, this study showed that after severe 
COVID- 19 infection, decreased mHLA- DR expression 
is associated with a greater risk of death at D28 inde-
pendently of usual clinical confounders. Considering 
the nadir value of mHLA- DR or gathering information 
about its kinetics until 7, 12, or 20 days after ICU admis-
sion improved the discrimination between survivors and 
non- survivors. With further validation and refinements, 
the findings of this study open the door to enhancing indi-
vidualized patient care based on their day- to- day immune 
trajectory monitoring.
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