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SUMMARY
Joint modeling of longitudinal data such as quality of life data and survival data is important for palliative
care researchers to draw efficient inferences because it can account for the associations between those two
types of data. Modeling quality of life on a retrospective from death time scale is useful for investigators to
interpret the analysis results of palliative care studies which have relatively short life expectancies.However,
informative censoring remains a complex challenge for modeling quality of life on the retrospective time
scale although it has been addressed for joint models on the prospective time scale. To fill this gap, we
develop a novel joint modeling approach that can address the challenge by allowing informative censoring
events to be dependent on patients’ quality of life and survival through a random effect. There are two sub-
models in our approach: a linearmixed effectmodel for the longitudinal quality of life and a competing-risk
model for the death time and dropout time that share the same random effect as the longitudinal model.
Our approach can provide unbiased estimates for parameters of interest by appropriately modeling the
informative censoring time. Model performance is assessed with a simulation study and compared with
existing approaches. A real-world study is presented to illustrate the application of the new approach.
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1. IN TRODUCTION
Palliative care specialty focuses on improving quality of life (QOL) for patients and is appropriate
at any age and at any stage in a serious illness; it can be provided along with curative treatment
(Kelley andMorrison, 2015). Palliative care research has led to a paradigm shift in clinical practice.
This includes early integration of palliative care for seriously ill older adults, such as advanced
cancer patients (Temel and others, 2010; Parikh and others, 2013; Bakitas and others, 2009) and a
3-fold increase in palliative care programs at hospitals with 50+ beds across the nation since 2000
(Dumanovsky and others, 2016).With the rapid growth, it is critical that high-quality palliative care
research studies are appropriately performed to generate results that can inform clinical and nursing
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Figure 1. This figure is extracted from Li and others (2017) where the means and 95% CI of the QOL
score (FACIT-pal) were presented on the prospective time scale (left panel) and on the retrospective time
scale (right panel) for a two-arm randomized trial. Number of patients surviving at each time point was
also presented in the left panel.

practice for palliative medicine to maximize its potential value throughout the health care system
(Kelley andMorrison, 2015).However, despite the progress, there is still a lack of statistical analysis
methods to appropriately analyze the longitudinalQOLdata and survival datawhich are commonly
seen in palliative care studies. One of the challenges is how to handle dropouts in palliative care
studies when the data are analyzed with a joint model andQOL is modeled on a retrospective time
scale from death (Chan andWang, 2010; Li and others, 2013, 2017; Kong and others, 2018). Drop-
ping out is often associated with QOL and survival. Such dropouts are called informative dropouts
and lead to informative censoring. Missing QOL due to informative censoring is expected to be
systematically different than uncensored QOL; noninformative censoring does not systematically
mask lowor highQOL.Both types of censoring canbeobserved in a typical palliative care study and
should be treated differently in a statisticalmodel because they have systematically different impacts
onQOLdata. To address this analysis issue in palliative care research, we propose a semiparametric
model that jointlymodels longitudinalQOLdata, death time and informative censoring time in the
terminal trend model framework (Kurland and others, 2009; Li and others, 2017) to make efficient
and valid inference.
It is well known in the statistical literature that joint modeling of longitudinal data and survival

data can improve efficiency and reduce bias (Hogan and Laird, 1997; Tsiatis and Davidian, 2004;
Rizopoulos and Lesaffre, 2014; Dempsey andMcCullagh, 2018; Elashoff and others, 2017). Joint
models can be roughly classified based on whether the longitudinal data is modeled on the
retrospective time scale from death, or prospectively from study entry, involving death as an event
(Wulfsohn and Tsiatis, 1997; Hogan and Laird, 1997; Henderson and others, 2000; Li and others,
2010; Su and Hogan, 2010). The estimated longitudinal trajectories from the latter class do not
have direct interpretation relative to death time(Kurland and Heagerty, 2005; Li and others, 2017).
Another major issue, as Li and others (2017) pointed out (see Figure 1), is that longitudinal
trajectories on the prospective time scale could be misleading for making inference on termi-
nal trend. As shown in Figure 1, the longitudinal trajectories on the left panel (on prospective
time scale) were clearly not correct patterns for terminal trends in the two treatment arms of
a randomized trial, whereas the right panel (on retrospective scale) shows decreasing terminal
trends as expected. Joint models on the prospective time scale could also extrapolate the lon-
gitudinal trajectories beyond death as pointed out by Kurland and Heagerty (2005) who pro-
posed a partly conditional model that can address the risk of extrapolation beyond death by
modeling the longitudinal data conditional on subjects being alive. Joint models on the retro-
spective time scale from death (Liu and others, 2007; Chan andWang, 2010; Li and others, 2013;
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Chan andWang, 2017; Li and others, 2017; Kong and others, 2018) often have a different target of
inference (i.e., the terminal trend relative to death) than modeling the longitudinal data on the
prospective time scale. Terminal trend models (TTM) (Kurland and others, 2009; Li and others,
2013, 2017) have been proposed for jointly analyzing longitudinal QOL data and survival data
in palliative care studies and have advantages for estimating QOL on the retrospective time scale
and interpreting the results for studies that have relatively short life expectancies. Under the
assumption of noninformative censoring, there have been developments such as Chan andWang
(2017) which excluded the longitudinal data of subjects whose death times are censored from
the analysis which results in efficiency loss and others (Liu and others, 2007; Li and others, 2013,
2017;Kong and others, 2018) that include all longitudinal data in the analysis. Although informative
censoring have been extensively addressed in the literature formodeling the longitudinal data on the
prospective time scale (Daniels and Hogan, 2008;Elashoff and others, 2017), informative censoring
remains an unresolved issue for modeling longitudinal data on the retrospective time scale because
the time points of the longitudinal measures are unknown on the retrospective time scale when
death time is censored and the censoring time is associated with the longitudinal data and death
time.
To fill this gap, we develop a new semiparametricmodel under theTTM framework for analyzing

data in palliative care studies or other studies with relatively short life expectancy. The joint model
has two submodels: a semiparametric mixed effect submodel for the longitudinal QOL data and
a competing-risk survival submodel with piecewise hazards for the death time and dropout time.
Dropout and death can be modeled as competing risks because the event of dropout prevents the
event of death to occur in the study (Putter and others, 2007). The mixed effect submodel uses
splines to model the longitudinal trajectory, making it flexible enough to approximate linear and
nonlinear curves. The piecewise hazards for the death time and dropout time are also flexible to
account for variation of hazard over time in palliative care studies. Both submodels share a common
random effect that is used to handle the association between dropout time, QOL, and death time.
Wewill use a real-world study, the ENABLE III study (Bakitas and others, 2015), to illustrate our

proposedmethod. The ENABLE III study was a two-arm randomized clinical trial comparing early
palliative care with delayed palliative care for patients with advanced cancer to evaluate and test the
benefit of introducing early palliative care versus delayed palliative care. The primary endpoint was
QOL assessed by the 46-item Functional Assessment of Chronic Illness Therapy-Palliative Care
(FACIT-pal), the higher the better. The treatment arm received palliative care immediately after
enrollment (early treatment arm) and the control arm received standard care for the first 12 weeks
and then switched to palliative care (delayed treatment arm). There were 207 patients enrolled
in the study between October, 2009 and March, 2013 with 103 patients randomized to the early
treatment arm and 104 patients randomized to the delayed treatment arm.QOLdatawere collected
at baseline (i.e., enrollment) and at 6, 12, 18, and 24 weeks and every 12 weeks thereafter post
enrollment until death, dropout or study completion. Survival data were collected as well. Given
the strong association between QOL and survival for patients with short life expectancies, it is
important to jointly model the QOL and survival data to estimate and test the treatment effect on
QOL because better QOL in an arm could simply be due to longer survival in that arm.
This article is organized as follows. Models and notation are introduced in Section 2 with

details on the longitudinal model and hazard models for the death time and the dropout time.
Section 3 describes the calculation of the full log-likelihood function and the estimation procedure.
A simulation study to assess the model performance is given in Section 4. A real study application
is presented in Section 5 followed by a discussion in Section 6.

2. MODEL A ND NOTATION
In this article, we focus on two-arm palliative care trials. The method can be naturally extended to
trials with more than two arms or studies with binary independent variables. Let Yi, Di, Wi, and Ci
denote the vector of longitudinalQOLmeasurements, death time, dropout time, and administrative
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censoring time (e.g., study completion) respectively for the ith subject. We will treat death and
dropout as competing risks in ourmodel. The administrative censoring timeCi can be calculated as
the duration between the study completion time and the enrollment time. LetTi = min(Di,Wi,Ci)
which is the observed event time and�i take value of 0, 1, or 2, with�i = 0 indicating a censored
event (i.e., survived beyond the end of the study),�i = 1 indicating a death and�i = 2 indicating
a dropout. Let Ai denote the binary treatment assignment in a two-arm palliative care trial and Xi
denote a P × 1 vector of potential confounders or covariates including baseline quality of life. We
specify the following longitudinalmodel forQOL, constructedon a retrospective time scale starting
from the death time:

Yi(t∗) = βμ(t∗) + AiβA(t∗) + XT
i ψX + Z(t∗)Ui + εi(t∗), (2.1)

where βμ(t∗) denotes the mean trajectory in the control group and the βA(t∗) denotes the time-
varying treatment effect at time t∗ counting backward from the time of death. Both of these
functions are unspecified and assumed to be continuous. The time-varying coefficients allow for
a flexible time-varying treatment effect during the terminal phase of life and testing the treatment
effect at any specific time point prior to death. Here,ψX is the P-dimensional vector of coefficients
of Xi. Ui is a scalar random effect following the standard normal distribution N(0, 1). The function
Z(t∗) is an unspecified and continuous function of t∗. For identifiability of the model, the function
Z(t∗) is constrained to be positive. Typical assumptions for mixed effects models are retained
here. The residual error εi(t∗) is assumed to be normally distributed with mean E[εi(t∗)] = 0 and
var[εi(t∗)] = τ 2, where εi(t∗) and εi(s∗) are independent for any t∗ �= s∗; The random effects Ui
and residual error εi(t∗) are assumed independent.

Remark 2.1 (Flexible random effect) Notice that the term Z(t∗)Ui in model (2.1) has a
normal distribution with mean of 0 and variance of Z(t∗)2. So model (2.1) is equivalent to
the model below where U∗

i (t∗) is a random effect with the normal distribution
N(0,Z(t∗)2) and its variance Z(t∗)2 is a nonparametric function of t∗. Therefore, the
model is flexible to account for a variety of different random effects with the
nonparametric variance for the random effect U∗

i (t∗).

Yi(t∗) = βμ(t∗) + AiβA(t∗) + XT
i ψX + U∗

i (t∗) + εi(t∗),

Remark 2.2 (Connection with prospective models) Let t denote time on the prospective
time scale counting from enrollment. Model (2.1) can be rewritten on the prospective
time scale as follows:

Yi(t) = βμ(Di − t) + AiβA(Di − t) + XT
i ψX + Z(Di − t)Ui + εi(t).

It is straightforward to see that QOL, Yi(t), depends on the death time through Di − t
which measures how soon the subject will die after time t. Later we will see that QOL also
depends on the death time through the random effect Ui. Let ni denote the total number
of follow-up longitudinal measurements, tij denote the measurement time of the jth
measure on the prospective time scale and t∗ij denote the measurement time of the jth
measure on the retrospective time scale for the ith subject; Note t∗ij = Di − tij. When Di is
censored, t∗ij cannot be observed which is a challenge for parameter estimation under
informative censoring, such as dropouts, when modeling the longitudinal data on the
retrospective time scale.

Let δ take values in {1, 2} with δ=1 indicating the event of death and δ=2 indicating the event of
dropout. We use a piecewise-exponential competing-risk model for the time to event data (Ti,�i).
Dropout and death can be modeled as competing risks because the event of dropout prevents
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the event of death to occur in the study (Putter and others, 2007). The hazard function for the
competing risk model is given by:

λδ
i (t) = exp

(
αδ

0(t) + Aiα
δ
A(t) + αδ

UUi

)
, for δ = 1, 2,

whereλδ
i (t) is the hazard rate for type δ event at time t given treatment statusAi and frailtyUi. Here,

we assume (α1
0(t),α2

0(t)) and (α1
A(t),α2

A(t)) are piecewise-exponential hazard; andαU = (α1
U ,α

2
U)

are the coefficients of the frailty Ui for the two competing risks. Without loss of generality, we
assume the piecewise-constant hazards, α1

0(t) and α1
A(t), have the same J breakpoints denoted by

{tα1 , . . . , tαJ }, 0 < tα1 < · · · < tαJ < ∞. We also assume the piecewise-constant hazards of dropout,
α2

0(t) and α2
A(t), have the same J′ breakpoints denoted by {tγ1 , . . . , tγJ′ }, 0 < tγ1 < · · · < tγJ′ < ∞.

We can write the piecewise-constant hazards as follows:

α1
0(t) =

J+1∑
j=1

η
j
0Bj(t),α1

A(t) =
J+1∑
j=1

η
j
ABj(t),α2

0(t) =
J′+1∑
j′=1

γ
j′
0 B

γ

j′ (t),α2
A(t) =

J′+1∑
j′=1

γ
j′
AB

γ

j′ (t),

where Bj(t) = 1(tαj−1≤t<tαj ) and Bγ

j′ (t) = 1(tγj′−1≤t<tγj′ )
are binary indicator functions, tα0 = tγ0 = 0,

tαJ+1 = tγJ′+1 = ∞ and the coefficients: {ηj
0, η

j
A, γ

j′
0 , γ

j′
A }, j = 1, . . . , J + 1, j′ = 1, . . . , J′ + 1 of the

indicator functions determine the constant hazard on each piece. Note that this model shares the
same random effect, Ui with the longitudinal model (2.1). We can add covariates, Xi, in the model
as follows:

λδ
i (t) = exp

(
αδ

0(t) + Aiα
δ
A(t) + αδ

UUi + XT
i αδ

X

)
, for δ = 1, 2, (2.2)

where αX = (α1
X ,α

2
X) are the parameters associated with Xi for the two competing risks, respec-

tively. Notice that the above model can be also written in the form of a Cox model:

λδ
i (t) = λδ

0(t) exp
(

Aiα
δ
A(t) + αδ

UUi + XT
i αδ

X

)
, for δ = 1, 2,

where λ1
0(t) and λ2

0(t) are the baseline hazard functions for the two competing risks, respectively,
in the Cox model, and λ1

0(t) = exp (α1
0(t)) and λ2

0(t) = exp (α2
0(t)).

Taken together, (2.1) and (2.2) form our joint model of longitudinal QOL, death time, and
dropout time.

3. PA R A M ETER E STI M ATION WITH R EGR E SSION SPLINES
Maximum likelihood estimation (MLE) will be used to estimate the parameters. We use regression
splines to handle the nonparametric functionsβμ(t∗),βA(t∗), andZ(t∗).Without loss of generality,
we use the same knots for the regression splines of the three functions and the knots will be placed
at equally spaced quantiles of the observed times of the longitudinal measurements. In particular,
βμ(t∗), βA(t∗), and Z(t∗) will be approximated by linear splines with K knots:

βμ(t∗) = β0 +
K∑

k=1

βkBk(t∗), βA(t∗) = βA
0 +

K∑
k=1

βA
k Bk(t∗),Z(t∗) = ζ0 +

K∑
k=1

ζkBk(t∗), (3.3)

whereBk(t∗) = (t∗ − tk−1)1(tk−1≤t∗<tk) + (tk − tk−1)1(tk≤t∗) are the linear spline basis functions,
t0 = 0 and 0 < t1 < · · · < tK < ∞ are the knots which will be placed at the equally spaced sample
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quantiles of the data. Notice that the curves become flat after the last knot. Equation (2.1) can be
rewritten as:

Yi(t∗) = Xi(t∗)Tβ + Z(t∗)Ui + εi(t∗), (3.4)

where Xi(t∗)T = (1,B1(t∗), ...,BK(t∗), 1,AiB1(t∗), ...,AiBK(t∗),XT
i ) is a (2K + P)-dimensional

vector of variables, β = (β0,β1, ....βK ,βA
0 ,β

A
1 , ...,β

A
K ,ψ

T
X )T . As defined previously, ni denotes the

number of measurements of the longitudinal outcome for the ith subject. Since εi(t∗) follows a
normal distribution, conditional on Ui, the outcome variable vector Yi = (Yi(t∗i1), ..., Yi(t∗ini))

T has
a ni-dimensional multivariate normal distribution N(μi,Vi) with mean vector μi having its jth
element equal to Xi(t∗ij)Tβ + Z(t∗ij)Ui and covariance matrix Vi = τ 2Ini , where Ini is the ni × ni
identity matrix. Here, t∗ij denotes the measurement time of the jth measure on the retrospective
time scale for the ith subject. Using equations (2.2)–(3.4), the log-likelihood function can be
constructed to obtain MLE, given prespecified knots, for all the parameters denoted by θ =(
β , ζ ,�, τ , {ηj

0, η
j
A, j = 1, . . . , J}, {γ j

0, γ
j
A, j = 1, . . . , J′},αU ,αX

)
, where ζ = (ζ0, ζ1, . . . , ζK). We

will use equally spaced quantiles as candidates for knots and the optimal number of knots will be
determined by using AIC (Akaike, 1974).

3.1. The log-likelihood function
Let (yi, ti, δi, xi) denote the observed data for subject i, where yi is the vector of observed longi-
tudinal outcomes (yi(t∗i1), ..., yi(t∗ini))

T , ti is the observed event time or censoring time and δi is the
observed value of�i. Due to the randomeffectUi, we need to integrate over the distributionofUi to
calculate the log-likelihood function. To derive the log-likelihood function, we divide the subjects
into six groups based on the value of δi andwhether they have any longitudinalQOLmeasurements.
Details of the derivation can be found in the Supplementarymaterial available atBiostatistics online.
For each of the six groups, we show the log-likelihood contribution of the ith subject if they are
in that group. Group 1 consists of subjects who had death times observed (i.e., δi = 1) and had
longitudinal QOLmeasurements. The log-likelihood contribution of subject i is given by:

�i
1(θ) = log

( ∫ ∞

−∞
exp

(
�i1

1 (θ |u)
)
du

)
− 0.5(ni + 1) log (2π) + log(1 − FCi(ti)), (3.5)

where

�i1
1 (θ |u) = −ni log (τ ) − 0.5(yi − μi)

T(yi − μi)

τ 2 − Hi(ti, u)

+ α1
Uu + α1

0(ti) + Aiα
1
A(ti) + xT

i α1
X − �i(ti, u) − 0.5u2,

Hi(t, u) = ∫ t
0 λ2

i (v|Ui = u)dv,�i(t, u) = ∫ t
0 λ1

i (v|Ui = u)dv, and FCi(t) is the cumulative distribu-
tion function (CDF) of Ci.
Group2 consists of subjectswhodroppedout (δi = 2) andhad longitudinalQOLmeasurements

before dropout. The log-likelihood contribution of subject i is given by:

�i
2(θ) = log

( ∫ ∞

−∞
exp

(
�i1

2 (θ |u)
)
du

)
− 0.5(ni + 1) log (2π) + log(1 − FCi(ti)), (3.6)

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad028#supplementary-data
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where

�i1
2 (θ |u) = −ni log (τ )

+ log
( ∫ ∞

ti

exp
(

− 0.5(yi − μi)
T(yi − μi)

τ 2

)
λ1

i (s|Ui = u)

exp
(
�i(ti, u) − �i(s, u)

)
ds

)

− �i(ti, u) + α2
Uu + α2

0(ti) + Aiα
2
A(ti) + xT

i α2
X − Hi(ti, u) − 0.5u2.

Group 3 consists of subjects who survived beyond the end of the study (δi = 0) and had longitudi-
nal QOLmeasurements. The log-likelihood contribution of subject i is given by:

�i
3(θ) = log

( ∫ ∞

−∞
exp

(
�i1

3 (θ |u)
)
du

)
− 0.5(ni + 1) log (2π) + log(fCi(ti)), (3.7)

where

�i1
3 (θ |u) = −ni log (τ )

+ log
( ∫ ∞

ti

exp
(

− 0.5(yi − μi)
T(yi − μi)

τ 2

)
λ1

i (s|Ui = u)

exp
(
�i(ti, u) − �i(s, u)

)
ds

)

− �i(ti, u) − Hi(ti, u) − 0.5u2,

and fCi(t) is the density function of Ci.
Group 4 consists of subjects who had death times observed (δi = 1) but had no longitudinal

QOLmeasurements. The log-likelihood contribution of subject i is given by:

�i
4(θ) = log

( ∫ ∞

−∞
exp

(
�i1

4 (θ |u)
)
du

)
− 0.5 log (2π) + log(1 − FCi(ti)), (3.8)

where

�i1
4 (θ |u) = −Hi(ti, u) + α1

Uu + α1
0(ti) + Aiα

1
A(ti) + xT

i α1
X − �i(ti, u) − 0.5u2.

Group 5 consists of subjects who dropped out (δi = 2) and had no longitudinal QOL measure-
ments before dropout. The log-likelihood contribution of subject i is given by:

�i
5(θ) = log

( ∫ ∞

−∞
exp

(
�i1

5 (θ |u)
)
du

)
− 0.5 log (2π) + log(1 − FCi(ti)), (3.9)

where

�i1
5 (θ |u) = −�i(ti, u) + α2

Uu + α2
0(ti) + Aiα

2
A(ti) + xT

i α2
X − Hi(ti, u) − 0.5u2.

Group 6 consists of subjects who survived beyond the end of the study (δi = 0) but had no
longitudinal QOLmeasurements. The log-likelihood contribution of subject i is given by:

�i
6(θ) = log

( ∫ ∞

−∞
exp

(
�i1

6 (θ |u)
)
du

)
− 0.5 log (2π) + log(fCi(ti)),
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where

�i1
6 (θ |u) = −�i(ti, u) − Hi(ti, u) − 0.5u2. (3.10)

Notice that the terms involvingπ , FCi(t), and fCi(t) can be ignored because they are constants with
respect to the parameter vector θ . Thus, we just need to maximize the following objective function
to compute the MLE:

�(θ) =
6∑

h=1

∑
i∈group h

log
( ∫ ∞

−∞
exp

(
�i1

h (θ |u)
)
du

)
.

Standard errors will be obtained using the observed Fisher information. Details of calculating
the integrals with Gauss–Hermite quadrature (Takahasi andMori, 1973) can be found in the
Supplementary material available at Biostatistics online.

3.2. Computational challenge
An alternative way to obtain the MLE is to use an EM algorithm (Rizopoulos, 2012; Li and others,
2022) where the random effect Ui is treated as missing data. For joint models on the prospective
time scale, the M-step of an EM algorithm typically has closed-form solutions for the coefficient
and variance parameters of the longitudinal submodel and for the cumulative baseline hazard of
survival submodel. And it can use one-step Newton–Raphson method to update the coefficient
parameters of the survival submodel. All integrations can be calculated with Gauss–Hermite
quadrature approximations (Li and others, 2022). The entire process of an EM algorithm for joint
models on the prospective time scale is reasonably fast because it does not involve optimization,
thanks to the closed-form solutions and one-step Newton–Raphson method in the M-step.
However, for our jointmodel on the retrospective time scale, due to the integrations with respect

to ds in �i1
2 (θ) and �i1

3 (θ), the M-step of an EM algorithm does not have closed-form solutions
for the coefficient parameters in the longitudinal submodel, and thus optimization is needed in
each iteration of the M-step which is very computationally demanding. The root of this challenge
comes from the unknown time origins of the terminal trends in groups 2 and 3 where death times
are censored and thus the integrations with respect to death time is needed to construct the log-
likelihood function. Because of the computational challenge for using anEMalgorithm,we propose
to directly maximize the log-likelihood function to obtain the MLE.

3.3. Choosing the optimal number of knots
The advantage of a regression splines approach is that it can transform anonparametric or semipara-
metric model into a parametric model by approximating the nonparametric functions with linear
combinations of the spline basis functions once the knots are determined. There are many ways
for choosing the optimal number of knots such as AIC, BIC, cross-validation, and general cross
validation. In our setting, since we have a log-likelihood function, it is natural to use AIC or BIC for
selecting the optimal knots for βμ(t∗), βA(t∗), and Z(t∗) because both AIC and BIC statistics are
functions of the log-likelihood function. In the simulation Section 4 and the real study Section 5,
we use AIC since it puts smaller penalty than BIC on the number of parameters. The set of knots
that minimizes the AIC statistic will be our set of optimal knots.

4. SI MUL ATION
Model performance was evaluated by a simulation study where 100 datasets were randomly gen-
erated with 200 patients in each dataset. The binary treatment variable Ai was generated using a
Bernoulli distribution with parameter p = 0.5. Two covariates were also generated with one from
theUniformdistributionU(0, 1), denoted byX1, and the other one from the Bernoulli distribution

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad028#supplementary-data
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with the parameter p = 0.5, denoted byX2. The death time and dropout timewere generated based
on the following two-piece piecewise hazard:

λδ
i (t) = exp

(
αδ

0(t) + Aiα
δ
A(t) + αδ

UUi + αδ
1X1 + αδ

2X2
)
, for δ = 1, 2,

whereα1
0(t) = η1

01(0≤t<tα1 ) + η2
01(tα1 ≤t),α1

A(t) = η1
A1(0≤t<tα1 ) + η2

A1(tα1 ≤t),α2
0(t) = γ 1

0 1(0≤t<tγ1 ) +
γ 2

0 1(tγ1 ≤t), α
2
A(t) = γ 1

A1(0≤t<tγ1 ) + γ 2
A1(tγ1 ≤t), tα1 = tγ1 = 3, η1

0 = −2.5, η2
0 = −3, η1

A = −1, η2
A =

−0.5, γ 1
0 = −2.5, γ 2

0 = −3, γ 1
A = −1, γ 2

A = −0.5, α1
U = −1.5, α2

U = 1.5, α1
1 = −0.2, α1

2 = 0.1,
α2

1 = −0.2, and α2
2 = 0.1. The parameter values were chosen to mimic the distribution of the six

groups in the real data.
Here, η1

0 and η2
0 are the hazards of death for the first piece and second piece respectively in the

control arm, and η1
0 + η1

A and η2
0 + η2

A are the hazards of death for the first piece and second piece
respectively in the treatment arm. The parameters γ 1

0 and γ 2
0 can be interpreted as the hazards

of dropout for the first piece and the second piece respectively in the control arm, and γ 1
0 + γ 1

A
and γ 2

0 + γ 2
A are the hazards of dropout for the first piece and the second piece respectively in the

treatment arm. The length of the study was set to be 25 months. Enrollment times are generated
from the Uniform distribution U(0, 20) meaning that enrollment stops at 20 months and patients
are entering the study at a stable speedwhich implies that the administrative censoring time follows
the Uniform distribution U(5, 25).
After the death time was generated, the longitudinal data Yi was generated with the following

model:

Yi(t∗) = βμ(t∗) + AiβA(t∗) + ψ1X1 + ψ2X2 + Z(t∗)Ui + εi(t∗),

whereβμ(t∗) = 20 − 4
1+exp(0.3t∗) ,βA(t∗) = 10 + 4 exp(−0.3t∗ − 0.5),Z(t∗) = 10 − 4

1+exp(0.3t∗) ,
ψ1 = 2, and ψ2 = 1. And Ui and εi(t∗) were generated from the standard normal distribution
N(0, 1) and N(0, 22) respectively. Here, the curves βμ(t∗) and βA(t∗) were chosen such that they
proportionally mimic trajectories in a real study (Bakitas and others, 2009; Li and others, 2013).
TheQOLmeasurements are assumed to be collected every 2months until death, dropout, or study
end.On average, there are 38.8%, 38.8%, 19.6%, 1.4%, 1.5%, and 0.0% of subjects in groups 1, 2, 3, 4,
5, and 6, respectively in the simulated data sets. In the estimation, the optimal number of knots for
estimating βμ(t∗) and βA(t∗) were selected using AIC (Akaike, 1974) within the range [2, 7]. We
compared the proposed approach with the naive approach that only analyzed subjects whose death
time were observed and another method (Li and others, 2017) assuming noninformative censoring
(referred to as NIC herein). The average bias magnitude was calculated as the average of the bias
magnitudes at 100 points equally taken within (0, 25).
Figures 2 show that the estimates from the proposed approach (green curves) were virtually

unbiased with the average bias magnitude over the interval (0, 25) being 0.321 (1.63%) for β̂μ and
0.380 (3.69%) for β̂A, whereas the naive approach (blue curves) had larger average biasmagnitudes:
5.75 (29.3%) for β̂μ and 1.59 (15.7%) for β̂A, and NIC approach (red curves) also had much
larger bias magnitudes: 1.36 (6.90%) for β̂μ and 0.91 (8.89%) for β̂A. The naive approach also had
35.3% wider point-wise 95% confidence intervals for βA. The CP of point-wise 95% CI showed
that proposed approach had a CP closer to the nominal level 95% than the NIC approach (0.900
vs 0.767 for βμ, 0.925 vs 0.854 for βA). Hence, the proposed approach was more efficient than
naive approach, and more accurate than both the naive approach and the NIC approach. The
underestimated coverage probabilities from the naive method and theNICmethod were likely due
to their estimation bias.
For the parametric part of the model, estimates showed similar pattern (see Table 1) that the

proposed approach produced nearly unbiased estimates with theCP of 95%CI around the nominal
level of 95%whereas parameter estimates from the naive approach and theNIC approach had large
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Figure 2. Comparison with the naive method and NICmethod for the estimate of βμ and βA. The
proposed method, naive method and NICmethod were colored as green, blue, and red, respectively. The
mean bias, bias percentage, and CP were calculated from the average of 100 equally taken points.

biases and several CP’s of their 95%CI’s were significantly less than 95% although some are around
or above 95%.

5. A PPLIC ATION
As described in Section 1, we use the ENABLE III study (Bakitas and others, 2015) to illustrate
the proposed model. It was a two-arm randomized clinical trial to investigate the effect of early



764 · Q.Wu and others

Table 1. Simulation results for parameters in the model
Parameters True Bias Naive bias NIC bias Bias (%) Naive bias (%) NIC bias (%) CP (%) Naive CP (%) NIC CP (%)

η1
0 −2.5 0.023 0.644 0.412 0.920 25.760 16.480 90 37 65

η1
A −1.0 −0.062 0.140 0.259 −6.200 14.000 25.900 91 88 87

α1
U −1.5 −0.008 — — −1.733 — — 90 — —

τ 2.0 0.003 −0.003 0.028 0.150 −0.150 1.400 93 93 92
γ 1

0 −2.5 −0.044 0.664 — −1.760 26.560 — 95 35 —
γ 1

A −1.0 −0.117 0.089 — −11.700 8.900 — 96 92 —
α2

U 1.5 0.063 — — 4.200 — — 96 — —
η2

0 −3.0 −0.040 0.090 −0.789 −1.333 3.000 −26.300 91 89 33
η2

A −0.5 0.049 0.347 0.729 9.800 69.400 145.800 94 77 44
γ 2

0 −3.0 −0.011 0.324 — −0.367 10.800 — 91 79 —
γ 2

A −0.5 −0.108 0.067 — −21.600 13.400 — 89 93 -
α1

1 −0.2 −0.041 −0.016 0.051 −20.500 −8.000 25.500 94 95 94
α1

2 0.1 −0.013 −0.020 −0.034 −13.000 −20.000 −34.000 91 95 89
α2

1 −0.2 0.030 0.053 — 15.000 26.500 — 92 97 —
α2

2 0.1 −0.009 −0.041 — −9.000 −41.000 — 87 95 —
ψ1 2.0 0.106 −0.276 0.048 5.300 −13.800 2.400 90 100 91
ψ2 1.0 0.004 0.080 0.074 0.400 8.000 7.400 87 100 86

introduction of palliative care (treatment arm) for advanced cancer patients versus delayed in-
troduction (control arm). We jointly analyzed the longitudinal QOL data and the time-to-event
data using the proposed approach. Unlike the previous analysis in (Li and others, 2017) where
no dropout was defined because death times were extracted from cancer registries and study
completion was used as the censoring time for subjects who survived beyond the study end, here a
patient was considered a dropout if s/he did not have any data at the last visit and the dropout time
was defined as the last visit time that had longitudinal QOL data. Based on the censoring status
and the availability of longitudinal QOL data, there were 33.8%, 28.0%, 13.0%, 10.6%, 14.5%, and
0.0% patients in groups 1, 2, 3, 4, 5, and 6 respectively (as defined in Section 3.1). Two covariates,
baseline QOL (QOL0) and sex (Sex), were included in the submodels. The data were analyzed
using the following submodels:

Yi(t∗) = βμ(t∗) + AiβA(t∗) + ψ1QoL0 + ψ2Sex + Z(t∗)Ui + εi(t∗),

λδ
i (t) = exp

(
αδ

0(t) + Aiα
δ
A(t) + αδ

UUi + αδ
1QoL0 + αδ

2Sex
)
, for δ = 1, 2,

where the survival model is a three-piece exponential model with tertiles of observed times
being the breakpoints for the pieces, α1

0(t) = ∑3
j=1 η

j
0Bj(t), α1

A(t) = ∑3
j=1 η

j
ABj(t), Bj(t) =

1(tαj−1≤t<tαj ), tα1 = 6.51, and tα2 = 10.26 are the tertiles of the observed death times, and α2
0(t) =∑3

j=1 γ
j
0B

γ
j (t), α2

A(t) = ∑3
j=1 γ

j
AB

γ
j (t), Bγ

j (t) = 1(tγj−1≤t<tγj ), tγ1 = 3.19, and tγ2 = 9.15 are the
tertiles of observed dropout times.
We followed the estimation procedure as described in Section 3 and determined the optimal

number of knots for estimating βμ(t∗), βA(t∗), andZ(t∗) over the range [2, 7] for the linear splines
in the longitudinal submodel using AIC. The entire analysis took 8 h. The final model had 2 knots
for the longitudinal submodel. The estimated trajectory of the longitudinal submodel is shown in
Figure 3; QOL declines faster near end of life which is consistent with what has been observed
in the literature (Bakitas and others, 2009; El-Jawahri and others, 2017; Bakitas and others, 2015). It
also showed that the early treatment arm had better QOL but did not reach statistical significance
based on pointwiseWald test whichwas consistentwith themain finding (Bakitas and others, 2015)
of the ENABLE III study.
The estimation results for parameters were presented in Table 2 and showed the longitudinal

QOLwas significantly associatedwith the baselineQOL (ψ1 = 0.54, p < 0.05). Patients with early
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Figure 3. Fitted QOL trajectories for early and late treatment arms with 95% in ENABLE III data.

Table 2. Estimation of model parameters
Longitudinal model Survival model Dropout model

Parameters Estimate(SE) Parameters Estimate(SE) Parameters Estimate(SE)

ψ1 0.54 (0.07) η1
0 −1.56 (0.60) γ 1

0 −2.18 (0.70)
ψ2 4.31 (2.97) η1

A −0.29 (0.32) γ 1
A 0.79 (0.37)

τ 13.31 (0.42) α1
U 0.08 (0.03) α2

U −0.07 (0.04)
η2

0 −0.78 (0.63) γ 2
0 −2.94 (0.75)

η3
0 −0.97 (0.64) γ 3

0 −2.99 (0.83)
η2

A −0.32 (0.43) γ 2
A 0.19 (0.57)

η3
A −0.27 (0.43) γ 3

A 0.30 (0.62)
α1

1 −0.015 (0.004) α2
1 −0.010 (0.005)

α1
2 0.61 (0.24) α2

2 0.51 (0.25)

treatment had lower hazard of death compared to late treatment group although this impact was not
statistically significant according to theWald tests forη1

A, η
2
A, and η3

A. Patients in the early treatment
group tended to drop out faster compared to late treatment group, and this effect was statistically
significant during the first 3 months but not significant after that according to theWald tests for γ 1

A ,
γ 2

A , and γ 3
A .

6. DISCUSSION
In this article, we proposed a novel and flexible semiparametric joint modeling approach under
the TTM framework (Li and others, 2013, 2017) to account for informative censoring in palliative
care studies where longitudinal QOL trajectories are often truncated by informative dropouts. The
proposed method could serve as a useful data analysis tool for investigators in palliative research.
The model was developed for analyzing data in two-arm clinical trials. However, it can be easily
extended to trials withmore than two arms and can also be used in observational studies to compare
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two longitudinal trajectories because potential confounders can be adjusted for in the model. The
longitudinal QOL data aremodeled on the retrospective time scale from death which can provide a
direct estimate of the terminal trajectory and thus a convenient interpretation for palliative care
investigators. The submodels for death time and dropout time are frailty models that share the
same random effect with the submodel of longitudinal QOL. The piecewise hazard for both the
death time and dropout time is a flexible feature of our approach that can accommodate a variety of
different survival distributions and dropout patterns. It is worth noting that QOL data missing due
to missed patients’ visits before dropout is assumed to be missing at random.
An improvement of the proposed approach over existing retrospective joint models

(Chan andWang, 2017;Kong and others, 2018; Li and others, 2017) is that it can handle informative
censoring, such as informative dropouts, that are associated with lowQOL. And the improvements
were demonstrated in the simulation results where the proposed model had better performance
with respect to bias and coverage probability in the presence of informative censoring. A
possible extension of the proposed model is to use cubic splines (e.g., B-splines) instead of
linear splines for the longitudinal submodel since cubic splines have more degrees of freedom.
However, with cubic splines, it would be more time-consuming to calculate the integrals for
groups 2 and 3 as described in Supplementary material available at Biostatistics online because
there would be no explicit formulas for calculating the nested integrations. A second possible
extension is to conduct sensitivity analysis to study the unverifiable assumption of conditional
independence between the longitudinal trajectory and informative dropout in joint models
(Daniels and Hogan, 2008; Harel and Schafer, 2009). There are existing approaches on sensitivity
analysis (Creemers and others, 2010; Su and others, 2019) for traditional shared parameter models
and those may be adapted under the TTM framework. Another possible extension is to remove
the normality assumption on the distribution of the random effect Ui such that its distribution
is unspecified. That way, the longitudinal model would have a fully nonparametric random effect
(Wu and Zhang, 2006) which would give a little more flexibility over the current model.
There are two other factors that have significant impact on the computing time: the number

of knots for the longitudinal model and the number of random effects. Due to the computational
challenge, we only included one random effect Ui in the longitudinal submodel in (2.1). In theory,
more than one random effects can be included like a typical mixed effect model. For example, we
can use the longitudinal submodel as follows:

Yi(t∗) = βμ(t∗) + AiβA(t∗) + XT
i ψX + Zi(t∗)Tbi + εi(t∗),

whereZi(t∗) is the designmatrix for the randomeffect bi which could be a vector including random
intercept and slopes. Correlations between bi andUi can be allowed to account for the dependence
between the longitudinal outcome and the events (i.e., death and dropout). However, this will
substantially increase the already-heavy computational burden due to the added integrations with
respect to the different random effects. Note that we are also not treating the piecewise survival
submodel as semiparametric because of the computational burden thatwould be added by selecting
the optimal breakpoints for the survival submodel. In theory, the piecewise survival submodel can
also be semiparametric if the breakpoints for the pieces are selected similarly as how the knots are
selected for the longitudinal submodel.
Ourmodel can be used for a variety of QOLmeasures. In addition to FACIT-pal, commonQOL

measures such as EORTC-QLQ-C30, McGill QOL questionnaire and EQ-5D can be modeled
similarly. Furthermore, other continuous measures such as Edmonton Symptom Assessment Scale
(Hui and Bruera, 2017), Karnofsky Performance Scale (Mor and others, 1984), andHADSDepres-
sion and Anxiety Scales (Snaith, 2003) can be also modeled. Notice that although our model can
accommodate a broad range of patterns for the longitudinal trajectories by employing the linear
splines, it assumes continuous longitudinal trajectories for the outcome variables. In the presence
of sudden changes in the outcomes (e.g., for heart failure patients) whichmay cause noncontinuous

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad028#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxad028#supplementary-data
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longitudinal trajectories, the model may not provide optimal results in which case wavelet-based
models (Morris and Carroll, 2006) could be adopted for the analysis.

SOFT WA R E
Software in the form of R code, together with a sample input data set and complete documentation
is available on Github: https://github.com/quranwu/RetroJM.
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Supplementary material is available at http://biostatistics.oxfordjournals.
org.
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