
INTRODUCTION

Humans are increasingly exposed to light-emitting diodes 
(LEDs) through various electronic digital devices such as smart-
phones. Potential harmful effects of LED lamps on the eye have 
been reported, particularly owing to their high blue wavelength 

emission [1, 2]. Several studies have reported that prolonged expo-
sure to blue light (400~500 nm) can cause oxidative stress in the 
retina, leading to significant damage to retinal tissues, especially 
retinal pigment epithelium (RPE) cells [3, 4], and photoreceptor 
death [5]. Blue light exposure is considered a risk factor for age-
related macular degeneration (AMD) [6, 7], a common form of 
retinal degeneration (RD) that leads to permanent vision loss 
and eventual blindness in older individuals [8, 9]. The blue LED-
induced photoreceptor degeneration model has been widely 
employed to mimic AMD in mice because it can lead to photo-
receptor death, as demonstrated in previous studies [10, 11]. Blue 
LED-induced RD in albino mice has been employed in several 
previous studies that explored the mechanism of oxidative stress 
and repeatedly verified the dangers of blue light to the retina [12, 
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13]. Pigmented mice have also been used as models of RD induced 
by blue light [14]. While blue light is effective in inducing RD, 
sensitivity to light varies in albino and pigmented mice, which is 
attributed to differences in the maturation of their visual systems 
that are related to melanin. In C57BL/6J mice, the melanin-rich 
pigment epithelium may slow the rate of retinal damage caused by 
excessive light exposure [15].

A flicker is defined as a rapid change in the light output of a lamp. 
In addition to the rapid change, the frequency of this change is im-
portant. Steady light is referred to as zero flicker. The critical flicker 
fusion frequency (CFF) is the frequency at which the flickering 
light ceases to be visible and begins to be perceived as a steady 
light. CFF has been used in several fields of study on dementia [16-
18], cognitive functioning [19-22], and visual perception disorder 
[23]. Several studies on CFF have been limited to perceptive and 
cognitive performance associated with neurophysiology or neuro-
psychology, and knowledge related to retinal disease is limited [24-
26]. Recent reports have revealed an association of unstable flick-
ering LED lights with several diseases, regardless of the wavelength 
of the light. Flickering light combined with blue light emitted by 
several digital devices can yield an even more threatening envi-
ronment for the retina, resulting in various potential health con-
cerns in humans, including fatigue, eye strain, blurred vision, and 
headaches [24, 27, 28]. However, few studies have reported on the 
effects of visible flicker at frequencies around the CFF on retinal 
diseases, including AMD and RD that can occur with continuous 
exposure to blue light at such frequencies [29, 30]. Thus, it is neces-
sary to ascertain whether blue LED light emitted at frequencies as 
low as 20 Hz affects the retinas of mice.

In this study, we induced retinal damage in albino and pigment-
ed mice by exposing them to excessively flickering blue light and 
non-invasively assessed the changes in retinal structure and func-

tion. The use of electroretinography (ERG) and spectral-domain 
optical coherence tomography (SD-OCT) allows the simultane-
ous observation of changes in retinal structure and function. This 
study aimed to determine whether flickering light causes more se-
vere damage than non-flickering blue light through non-invasive 
quantitative and qualitative evaluation of functional and structural 
changes in the retina. 

MATERIALS AND METHODS

Animals

Six-week-old male BALB/c (n=8) and C57BL/6J mice (n=20) 
were used for this study. All animals were housed under temper-
ature-controlled conditions with a 12-hour light/dark cycle. The 
research protocol was approved by the Institutional Animal Care 
and Use Committee of the School of Medicine, Catholic Univer-
sity of Korea (approval number CUMS-2022-0152-04). 

Exposure to blue light

The procedures used to expose the mice to blue LED light are 
described in our previous studies [10, 11, 31]. The mice were 
placed in a dark room for at least 12 h before blue LED exposure, 
and their pupils were dilated using Mydrin P (Santen Pharma-
ceutical Co., Osaka, Japan) under low-intensity red light 15 min 
before LED exposure. The non-anesthetized BALB/c mice were 
exposed to 1500-lux non-flickering or 20-Hz flickering blue LED 
(460±10 nm) light for 2 h in cages with reflective interior walls. 
The C57BL/6J mice were damaged similarly, except that they were 
exposed to a 1950-lux blue LED for 3 h on three consecutive days. 
The illuminance intensity of the flickering blue light was measured 
using the same LED light meter (TM-201L; Tenmars Electronics 
Co., Taipei, Taiwan) used for the stable blue light, which was set as 
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Fig. 1. Flicker quantification and duty cycle of 20 Hz flicker used in the study. (A) Two methods for quantifying flicker are presented with a drawing of a 
typical sine wave-like pulse. The percent flicker is the simplest to calculate showing the percentage difference between the minimum and maximum light 
output (percent flicker =100% × M-m

M+m ), while the flicker index is more indicative of changes over time and harder to manipulate (Flicker index = area1
area1+area2). (B) The blue light 

stimulator used in our study generates a flicker pulse according to duty cycle, which is the amount of time the signal is in the high (on) state as a percent-
age of the total time it takes to complete a cycle (Duty Cycle = ton × 100%

T ). The duty cycle is expressed as a percentage, where a 100% duty cycle is the same as the 
signal being fully turned on with maximum voltage, and a 0% duty cycle is the same as the signal being grounded. The 20-Hz used in our experiment is 
equal to 0.2 when the total pulse duration is assumed to be 1, thus it can be calculated to provide 20% of the total amount of luminous flux generated by 
non-flickering.
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Fig. 2. Dark-adapted amplitudes of a- and b-waves of BALB/c mice after blue light-emitting diode (LED) light exposure. (A) Representative electroreti-
nography (ERG) waveforms before injury and blue LED exposure at 3, 7, 14, and 42 days. The intensity of the stimulus flashes was 1 log cd s/m2. (B, C) 
ERG changes in dark-adapted amplitudes of a-wave after non-flickering and flickering blue LED light exposure at -2 to 1.5 log cd s/m2. (D) Comparison 
of a-wave changes of non-flickering and flickering blue LED light exposure at 0, 0.5, and 1 log cd s/m2. (E, F) ERG changes in dark-adapted b-wave am-
plitudes after non-flickering and flickering blue LED light exposure at -2 to 1.5 log cd s/m2. (G) Comparison of b-wave changes of non-flickering and 
flickering blue LED light exposure at 0, 0.5, and 1 log cd s/m2. The amplitudes of the a- and b-waves reduced more significantly for the flickering blue 
LED light exposure group at 3 days than for the non-flickering group. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.
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the standard before each experiment. The illuminance of the flick-
ering blue light obtained using the LED lux meter was converted 
from 1500 lux for BALB/c mice and 1950 lux for C57BL/6J mice 
to 710 and 920 lux, respectively. For more accurate quantification 
of the flicker light output voltage, the flashing light can be calcu-
lated as a percentage flicker or flicker index (Fig. 1). The flicker 
stimulus generated by the blue led light in our apparatus had an 
average effective voltage of 20% with a duty cycle based on a flicker 
on and off interval of approximately 20 Hz [32].

The temperature during the exposure was maintained at 
27.5±1.0°C. After exposure to LED light, the mice were kept in a 
dark room for 1 h and moved to climate-controlled conditions 
with 12-hour cycles of light and darkness.

ERG

ERG recordings were conducted according to the procedures 
described in our previous studies [12, 33]. The mice were kept in 
total darkness for 12 hours before ERG recording, and all the pro-
tocols were performed under low-intensity red light (λ>600 nm). 
The mice were anesthetized by intraperitoneal injections of 20 mg/
kg zolazepam and 7.5 mg/kg xylazine. The mice were placed on 
a heating pad during the ERG recordings to maintain their body 
temperature. The corneas were covered with gold-ring contact 
electrodes. The ground electrode was subcutaneously positioned 
in the tail, and the reference electrode was placed in the ear. Short-
term white flashes were administered as stimuli using a Ganzfeld 
stimulator (UTAS-3000; LKC Technologies, Gaithersburg, MD, 
USA). Under dark-adapted conditions, flash ERG recordings were 
obtained from both eyes, utilizing white light stimulation with in-
tensities set at -2, -1.5, -1, -0.5, 0, 0.5, 1, and 1.5 log cd s/m2 for sco-
topic ERG measurements. The mice were adapted in a photopic 
background with an intensity of 20 cd s/m2 for 10 min. Stimulus 
intensities for photopic ERG were set at -0.5, 0, 0.5, 1, and 1.5 log cd 

s/m2. Recordings were averaged five times. The scotopic and phot-
opic ERG data values were obtained by averaging single responses 
recorded three times at 15-second intervals and five times at 3-sec-
ond intervals, respectively. ERG data analysis was performed using 
UTAS software (EMWin, LKC Technologies, Gaithersburg, MD, 
USA) and GraphPad Prism 9.5.0 (GraphPad Software; San Diego, 
CA, USA).

SD-OCT

SD-OCT scanning was performed after the ERG recordings 
were completed to assess the correlation of structural changes with 
function in the same mice. First, the mice were anesthetized using 
a zolethyl/rompun cocktail (100/10 mg/kg), and both eyes were 
imaged using an SD-OCT ophthalmic imaging system (II Sci-
ence, Busan, Korea) through pupils dilated with Mydrin P (Santen 
Pharmaceutical Co., Osaka, Japan). The corneas were treated with 
hydroxypropyl methylcellulose gel to prevent dehydration. For im-
age acquisition, the mice were placed on a holding plate to stabilize 
fixation, and 27 B-scans were averaged to enhance the S/N ratio. 
SD-OCT images were obtained from cross-sectional en-face scans 
in normal mice and at 3, 7, 14, and 42 days after blue light expo-
sure. The recordings were measured at several positions for each 
eye using commercial OCT software (II Science, Busan, Korea). 
Using this software, retinal thickness was evaluated for each eye. 
Eight equal distances (±150, ±300, ±450, ±600) in both the nasal 
and temporal directions from the optic nerve head were used for 
measurements.

Statistical analysis

Data are presented as mean±standard error of mean. All statisti-
cal analyses of ERG amplitude and retinal layer thickness were 
performed using GraphPad Prism 9.5.0 (GraphPad Software; San 
Diego, CA, USA) by two-way analysis of variance with Bonfer-
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Fig. 2. Continued.
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roni’s multiple comparison test. Statistical significance was defined 
as p<0.05.

RESULTS

Functional changes in response to blue light exposure in 

albino mouse retina

Retinal damage was induced by excessive exposure to flickering 
and non-flickering blue light, and their functional changes were 
recorded and traced using ERG (Fig. 2). Fig. 2A shows the scotopic 
ERG response in normal and damaged mice at 3, 7, 14, and 42 
days after non-flickering and 20-Hz flickering blue light exposure, 

respectively, as representative waveforms of a flash at 1 log cd s/m2. 
The a-wave amplitudes of the ERG responses were significantly 
reduced 3 days after both blue light exposure (p<0.05) compared 
to those of the normal group (Fig. 2B, C). To compare the flicker-
ing and non-flickering groups more clearly, we normalized the 
a-wave amplitudes at 0, 0.5, and 1 log cd s/m2 (Fig. 2D). The sco-
topic a-wave responses of the non-flickering blue light-induced 
group decreased abruptly on day 3 (p<0.05) followed by a minor 
increase or remained constant until day 42 (p>0.05). In contrast, 
the flickering blue light-induced damaged group showed different 
scotopic a-wave responses from those of the non-flickering group 
after 3 days, which was further reduced at 42 days (p<0.05). This 
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Fig. 3. Light-adapted b-wave amplitudes of BALB/c mice after blue light-emitting diode (LED) light exposure. (A) Representative electroretinography 
(ERG) waveforms before injury and at 3, 7, 14, and 42 days after blue LED exposure. The intensity of the stimulus flashes was 1 log cd s/m2. (B, C) ERG 
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for the flickering blue LED light exposure group at 3 days than for the non-flickering group. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.
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difference was statistically supported by normalized amplitudes 
at light intensities of 0, 0.5, and 1 log cd s/m2 (p=0.0433, 0.0459 
and 0.0086) (Fig. 2D). The difference in the scotopic a-wave re-
sponses between the flickering and non-flickering group were not 
statistically significant on day 3 and 7 (p>0.05), while it became 
significant on day 42 (p<0.05). According to the scotopic b-wave 
results, the flickering group showed a greater decrease than the 
non-flickering group starting from day 3 (p<0.05), and this differ-
ence persisted until the end of the 42-day experiment (p<0.05, Fig. 
2E~G). 

Photopic representative waveforms of flash at 1 log cd s/m2 are 
shown in Fig. 3A. Regarding photopic amplitudes, only the b-wave 
results are presented (Fig. 3B~D) because BALB/c mice have near-

ly no photopic a-waves. The flickering blue light-induced damaged 
group amplitudes were significantly reduced at 3 days (p<0.05) 
and continued to decline until 42 days (p<0.05), while the phot-
opic b-wave amplitudes of the non-flickering blue light-induced 
group only slightly decreased at 3 days (p>0.05) and thereafter 
demonstrated relatively small changes. The difference in photopic 
b-wave amplitudes between flickering and non-flickering groups 
always remained significantly different (p<0.05).

Taken together, excessive exposure of albino mice to 20-Hz flick-
ering blue light resulted in a more severe functional decline than 
exposure to non-flickering blue light and had a more lasting dam-
aging effect.
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Structural changes in response to flickering blue light  

exposure in albino mouse retina 

After a functional assessment of the damaged mice, we aimed to 
noninvasively investigate the structural changes of the retina. To 
accomplish this, OCT scanning was performed after the ERG re-
cordings at each time point (Fig. 4). In normal mice, the retinal lay-
ers could be seen clearly. However, the layers of the retina became 
blurred and merged after both blue light exposures, especially in 
the outer layer of the retina (Fig. 4A, B). The retinal layer thick-
ness was manually measured in normal and damaged mice at 3, 
7, 14, and 42 days after blue light exposure (Fig. 4C, D). The en-
face view of the flickering blue light exposure for 14 days revealed 
some hyporeflective spots (Fig. 4B, yellow arrows) of severe retinal 
damage. Normalized thickness data revealed distinct trends for the 
two groups (Fig. 4E). No significant changes were observed in the 
thickness of the inner layer in either group. The thickness of the 
outer retina gradually decreased after exposure to flickering blue 
light, whereas mice exposed to non-flickering blue light showed a 
decrease on day 3, which improved by day 42. Overall, the retina of 
the mice exposed to non-flickering blue light was initially thinner 
and thicker over time, indicating that the damage caused by non-
flickering blue light was not very strong and could recover to some 

extent. However, the thickness of the flickering group continued to 
decrease, indicating that it caused more severe irreversible damage 
to the retina.

Effect of flickering blue light exposure on pigmented mouse 

retina

In C57BL/6J pigmented mice, which are relatively resistant to 
light stimulation, we determined whether flickering light caused 
more severe retinal damage on days 3 and 7 after excessive blue 
light exposure than non-flickering light. Both the a- and b-wave 
amplitudes of the ERG responses were significantly reduced 3 days 
after exposure to blue light (Fig. 5). However, the scotopic a- and 
b-wave and photopic b-wave amplitudes recovered after 7 days of 
exposure to non-flickering blue light (Fig. 5A, C, D, F, J, L), whereas 
the photopic a-wave amplitudes remained almost unchanged 
from the 3-day mark (Fig. 5G, I). However, the scotopic a- and b-
wave amplitudes induced by the flickering blue light continued 
to decrease on day 7 (Fig. 5B, C, E, F, K, L). The photopic b-wave 
amplitudes demonstrated a similar trend. 

The OCT results partially correlated with the ERG findings (Fig. 
6). En-face views showed several hyperreflective spots on day 3 
(Fig. 6B, yellow arrows), which further increased on day 7 after 
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flickering blue light exposure. In contrast, the non-flickering group 
showed only a few hyperreflective spots on day 3. No significant 
changes were observed in the thickness of the full retinal or inner 
layers in either group. However, the inner retinal thickness de-
creased more for the flickering group than for the non-flickering 
group. Additionally, the thicknesses of the inner segment/outer 
segment and RPE transiently increased for the flickering group 
on day 3, which may have been due to the enlargement of the RPE 
during the early stage of blue light exposure [14]. 

After 7 days of damage, the retinal function and structure par-
tially recovered with non-flickering blue light exposure. However, 
the group exposed to 20-Hz flickering blue light showed further 
deterioration in function and structure, which is sufficient to show 
that flickering light can cause more severe damage to the mouse 
retina.

DISCUSSION

We examined the effects of blue light on the retinas of mice. 
Steady blue light exposure induced RD in albino mice [12]. RD is 
accompanied by inflammation, microglial cell activation [10, 31], 
and oxidative stress [34]. This RD model is widely used to study 
the pathogenesis and treatment strategies of RD [35-37]. Consis-
tent with the findings of our previous studies, this study demon-
strated that RD was induced by flickering blue light exposure in 
pigmented mice, as well as in albino mice. Two noninvasive meth-
odologies, ERG and OCT, were used to simultaneously observe 
alterations in retinal function and structure. In addition, flickering 
blue light caused significantly more severe damage to the retinal 
structure and function than non-flickering blue light, suggesting 
that flickering may be a risk factor for more severe retinal damage.

For flicker intensity, higher frequencies for the same amplitude 
difference were associated with higher average output amplitudes, 
approaching 100% duty cycle of non-flickering intensity (see 
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Methods) [32]. Consequently, the rapid flickering of light above 
the CFF value, which accounts for approximately 60% of our daily 
lighting, is an increasing concern because of the prolonged expo-
sure of humans and other organisms [28]. To our knowledge, this 
study is the first to provide evidence that flickering at 20 Hz, which 
is below the typical range of 50~90 Hz (CFF in humans) [30], 
causes retinal damage in mice. Notably, the non-flickering blue 
light intensity used in this experiment was below the optimal level 
(1800 lux, as observed in our previous study [10]). Even at 20 Hz 
with an average luminance calculated to be only 20% of the non-
flickering duty cycle, a reduction in retinal function was evident 
after blue light exposure. This suggested that flickering can be 
harmful to the retina. The greater reduction in the photopic ERG 
b-wave amplitude, which reflects cone-driven visual signals, is also 
noteworthy. This result can be explained by the relative suppres-
sion of rod photoreceptors and overstimulation of cones under 
exposure to very bright blue light at 20 Hz in mice adapted to 
darkness [38].

We found that BALB/c mice in the flicker group demonstrated 
similar patterns of damage over time in terms of retinal function 
and structure. However, the outer retinal thickness changes in the 
non-flicker group of BALB/c mice showed a slight recovery at 
day 42. Regarding ERG, the scotopic a-wave amplitude of non-

flickering group at -1 log cd s/m2 and photopic b-wave amplitude 
at 0.5 log cd s/m2 (Fig. 3D) slightly increased on day 42, which 
was consistent with the OCT results to some extent. This can 
indicate that the function has been restored partly, but ERG only 
shows increase in a few intensities, which might be attributed to 
the fact that the retina has entered the recovery stage on 42d, but 
it is reflected structurally first. After structural signaling to be re-
established, function maybe recover.

As a more susceptible subject to the flicker risk, we initially se-
lected the albino mouse and subsequently monitored the effect in 
the C57BL/6J mice, for which several researchers have been unable 
to induce retinal damage with excessive white light alone [39, 40]. 
Functional and structural disruptions reached their maximum at 
7 days following light damage even for cases of successful retinal 
damage induction with blue light exposure, after which there was 
gradual recovery [14]. These findings are consistent with our ERG 
results for C57BL/6J mice: rapid ERG recovery continued after 7 
days of light-induced damage until day 42. Due to inter-individual 
variations and other uncontrollable factors affecting ERG am-
plitude, we could not identify statistically significant differences 
between the functional changes in the two groups after 14 days. 
Nevertheless, the functional decline caused by flickering blue light 
in the C57BL/6J mice group was consistent with the results ob-
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tained in the BALB/c group for at least up to 7 days. Furthermore, 
en-face OCT revealed an increase in the hyperreflective spots after 
day 7 (data not shown). This finding is consistent with previous 
studies that identified hyperreflective spots due to cellular abnor-
malities in the RPE and/or photoreceptors [41]. Further studies of 
the cellular and molecular levels via TUNEL staining, immunohis-
tochemical analysis, and RT-PCR, among others, are needed to in-
vestigate the reason why flickering light causes more severe retinal 
damage than non-flickering steady light.

Exposure to the blue light emitted by smartphones can lead to 
chronic light-induced retinal damage in humans [42]. Addition-
ally, flickering light has a stronger inhibitory effect on melatonin 
secretion than non-flickering light [43, 44]. The health effects of 
flickering on humans can be divided into immediate (such as epi-
leptic seizures, discomfort, headaches, and functional impairment) 
and long-term (including persistent discomfort, headaches, and 

visual impairment) [27]. The biological impact of flickering on hu-
mans depends on factors such as flicker frequency, brightness, and 
duration of exposure. The retina is the sensory organ most directly 
affected by light stimuli. Therefore, it is important to determine 
the characteristics of flickering light that may contribute to retinal 
damage. 

In conclusion, we demonstrated that 20-Hz flickering blue LED 
light can induce more persistent and severe retinal damage than 
non-flickering blue light and can be used as a novel model for RD. 
Furthermore, the present study suggests that unsteady flickering 
blue light is more likely to cause blue-light-induced damage, even 
at frequencies as low as CFF. The effect of flickering light obtained 
in this study and its non-invasive functional structural assessment 
can be extended to mouse RD model studies to elucidate the as-
sociation of different frequencies of blue light stimulation with 
AMD progression and the underlying disease mechanisms. 
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