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Abstract
Phylogenomic analyses of long sequences, consisting of many genes and genomic segments, reconstruct organismal 
relationships with high statistical confidence. But, inferred relationships can be sensitive to excluding just a few se-
quences. Currently, there is no direct way to identify fragile relationships and the associated individual gene se-
quences in species. Here, we introduce novel metrics for gene-species sequence concordance and clade 
probability derived from evolutionary sparse learning models. We validated these metrics using fungi, plant, and ani-
mal phylogenomic datasets, highlighting the ability of the new metrics to pinpoint fragile clades and the sequences 
responsible. The new approach does not necessitate the investigation of alternative phylogenetic hypotheses, sub-
stitution models, or repeated data subset analyses. Our methodology offers a streamlined approach to evaluating 
major inferred clades and identifying sequences that may distort reconstructed phylogenies using large datasets.
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Introduction
Evolutionary biologists frequently assemble long sequence 
alignments containing numerous genes and genomic seg-
ments to resolve species relationships (Kumar et al. 2012; 
Kapli et al. 2020; Young and Gillung 2020; Kumar 2022). 
This advance has greatly increased the accuracy and reso-
lution of inferred organismal relationships using phyloge-
nomic methods (Rokas et al. 2003; Philippe et al. 2005; 
Edwards 2016; Williams et al. 2020; Homziak et al. 2023). 
However, despite using manyfold larger numbers of genes 
than needed to achieve high statistical significance theor-
etically (Rokas et al. 2003; Phillips et al. 2004; Gadagkar 
et al. 2005; Kumar et al. 2012), phylogenomic studies can 
produce species relationships that are not robust 
(Redmond and McLysaght 2021; Hughes et al. 2023). 
Dataset changes involving even a minute number of se-
quences have been reported to produce different evolu-
tionary relationships (Phillips et al. 2004; Chiari et al. 
2012; Smith et al. 2015; Brown and Thomson 2016; Shen 
et al. 2017; Shen et al. 2021). For instance, the exclusion 
of a single gene among 1,233 was associated with the 
unstable placement of a fungus family (Shen et al. 2017), 
and one exon was reported to destabilize highly supported 
clades inferred from an entire phylogenomic dataset 
(Smith et al. 2020). Such genes and sequences may bias 
the results because they are contaminants, such as 
paralogs, and/or the substitution models used do not 

adequately model gene- or species-specific molecular evo-
lutionary dynamics (Chiari et al. 2012; Feuda et al. 2017).

Overall, such results challenge the intuition that the cu-
mulative phylogenetic signals from many genes will neu-
tralize the effects of a few outlier sequences and model 
assumptions (Gadagkar et al. 2005; Abadi et al. 2019; 
Kapli et al. 2020; Young and Gillung 2020; Kumar 2022; 
Guimarães Fabreti and Höhna 2023). Instead, these outlier 
sequences can dictate phylogenies inferred from big data-
sets, a phenomenon becoming increasingly common 
(Jeffroy et al. 2006; Hughes et al. 2023; Steenwyk et al. 
2023). This pattern likely results from the bias introduced 
by outlier sequences that persist and determine phylogen-
etic relationships, while the statistical variance decreases 
quickly with increasing numbers of genes and sites 
(Philippe et al. 2005; Kumar et al. 2012; Kapli et al. 2020). 
Some differences in species relationships inferred from 
the concatenation, consensus, and coalescent approaches 
in phylogenomics are also attributable to the effects of 
outlier sequences (Mirarab et al. 2014; Smith et al. 2015; 
Homziak et al. 2023; Hughes et al. 2023; Shao et al. 2023).

Researchers are keen on pinpointing gene-species combi-
nations that may unduly impact phylogenetic inference 
from phylogenomic data matrices containing thousands 
of gene-species combinations. Identifying such combina-
tions is akin to searching for a needle in a haystack when in-
vestigators have already tried to remove nonorthologous 
sequences (Struck 2013; Steenwyk et al. 2023). Current solu-
tions typically rely on evaluating alternative phylogenies, 

Mol. Biol. Evol. 41(7):msae131 https://doi.org/10.1093/molbev/msae131 Advance Access publication June 25, 2024 1

https://orcid.org/0000-0002-9918-8212
mailto:s.kumar@temple.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


but these are not designed to isolate individual gene-species 
combinations and require time-consuming iterative re-
analysis of data (Brown and Thomson 2016; Shen et al. 
2017; Walker et al. 2018). For instance, the difference in 
gene-wise maximum likelihood (ML) support for alternative 
phylogenetic hypotheses has been used to rank influential 
genes, followed by repeated phylogenomic analyses exclud-
ing the most discerning genes used to test their effect; see a 
review in (Steenwyk et al. 2023). This process necessitates a 
prior selection of clade to investigate as well as the knowl-
edge of plausible alternative phylogenetic hypotheses and 
substitution models. However, only a limited set of clades 
or hypotheses may be testable in this type of analysis due 
to the lack of prior knowledge or an excess of plausible com-
binations. In addition, repeated ML and Bayes Factor (BF) 
analyses impose a substantial computational burden (Liu 
et al. 2011b; Höhna et al. 2021).

Instead of alternative phylogenies and substitution mod-
els, some approaches analyze different subsets of genes and 
species to look for fragile clades in the phylogeny inferred 
from the entire dataset. For example, subsamples containing 
varying numbers of genes were analyzed to assess the stabil-
ity of the placement of certain species in the inferred phyl-
ogeny (Song et al. 2012). However, choosing the optimal 
subsample size and determining the number of subsamples 
to analyze can prove challenging (Edwards 2016), and such 
efforts may not even reveal the gene-species combinations 
that cause clade fragility. While such limitations are com-
mon among methods designed to identify outlier genes 
(Brown and Thomson 2016; Shen et al. 2017; Walker et al. 
2018; Mongiardino Koch 2021), a few approaches aim to de-
tect outlier sequences (gene-species combinations) by ana-
lyzing inferred gene trees and reporting outlier sequences, 
for example, associated with spuriously large pairwise dis-
tances in gene trees (de Vienne et al. 2012; Comte et al. 
2023). However, these outlier sequences are not detected 
for specific clades, and identifying fragile clades requires 
additional analyses.

Here, we present a new approach that uses evolutionary 
sparse learning (ESL) to identify fragile clades and the asso-
ciated gene-species combinations without conducting 
additional phylogenetic inference with data subsets, differ-
ent substitution models, or phylogenetic alternatives. In 
brief, the ESL approach builds a (regularized) regression 
model in which genes and sites are explanatory variables, 
and a taxon’s presence or absence in the clade of interest 
is the outcome. In ESL, one parameter penalizes the inclu-
sion of genes (λG), and another penalizes the inclusion of 
sites (λS) in the clade-specific genetic model. For the given 
pair of penalty parameter values, ESL evaluates a large 
combination of genes and sites to determine one that cor-
rectly classifies the member taxa of an inferred clade using 
the fewest variables (Kumar and Sharma 2021).

In our investigation of ESL models built using a range of 
penalty values, many models for a clade could not classify 
member taxa in the clade with high confidence. This ob-
servation was surprising because the counts of genes and 
sites greatly exceed the number of taxa in any clade 

in phylogenomic alignments. This observation led to the 
formulation of two new metrics. One is the gene-species 
concordance (GSC), which identifies gene-species combi-
nations harboring concordant (GSC > 0) or conflicting 
(GSC < 0) phylogenetic signals for the clade of interest. 
The second is the clade probability (CP; 0 ≤ CP ≤ 1) de-
rived from all the GSC values and intended to pinpoint fra-
gile clades in the inferred phylogeny. The estimation and 
use of GSC and CP do not need alternative phylogenies, 
substitution models, or data subsets. Their calculation 
does not require any pretraining or cross-validations, 
which are commonly used in conventional machine 
learning approaches, because the focus is on building a 
clade-specific genetic model rather than developing a clas-
sification system for use with the data not included in 
the alignment (Schrider and Kern 2018; Tao et al. 2019; 
Suvorov et al. 2020). We also implemented all these metric 
calculations in an analysis pipeline and packaged them in a 
distribution called DrPhylo (Fig. 1). This distribution can be 
downloaded as a standalone program for use on the com-
mand line or accessed via a graphical user interface hosted 
in the MEGA software (see the Data and Codes Availability 
section).

We used the standalone version of DrPhylo on a Windows 
computer to analyze multiple empirical phylogenomic data-
sets in which fragile clades and influential genes were previ-
ously reported (Wickett et al. 2014; Shen et al. 2016; Shen 
et al. 2017; Shen et al. 2018). This collection included a fungus 
dataset (86 species and 1,233 genes), an expanded fungus da-
taset (343 species and 1,292 genes), a plant dataset (103 spe-
cies and 620 genes), and an animal dataset (37 species and 
1,245 genes). Additionally, some clades in the inferred phyl-
ogeny are well-resolved with robust statistical support and 
unaffected by minor perturbations in the dataset. We used 
these datasets and species relationships as baselines to evalu-
ate DrPhylo. Our analyses compared results from DrPhylo 
with other statistical approaches [e.g., Bayesian and 
Maximum Likelihood (ML)] to gauge the effectiveness and 
efficiency of the new metrics in identifying overly influential 
and disruptive gene-species combinations and fragile clades.

Results
In the following, we describe the approach for estimating 
GSC and CP using an example dataset of 1,233 nuclear 
gene alignments (609,899 amino acid positions) from 86 
fungi species (Shen et al. 2016; Shen et al. 2017). The ML 
analysis of the concatenated supermatrix inferred clade 
A to be a sister to clade B (Fig. 2a). However, another phy-
logenomic study recovered an alternative phylogenetic 
placement for clade A, which was the sister to clades B 
and C with very high (100%) bootstrap support (Riley 
et al. 2016). These two alternative hypotheses (Fig. 2b 
and c) for the placement of clade A were compared by 
Shen et al. (2017) using ML analysis of 1,233 nuclear genes. 
They reported a single gene to have caused the fragility of 
A + B, which was the clade of interest (44 species) in the 
DrPhylo analysis.
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Estimating GSC
In the first DrPhylo analysis, we built an ESL model for clade 
A + B, assuming a fixed pair of sparsity parameters for in-
cluding sites and genes in the genetic model (λS = 0.1 
and λG = 0.2, respectively). We will relax this assumption 
in the following analyses. The A + B clade model included 
only 176 sites from 15 genes (see the Materials and 
Methods section for details of the options used). We ex-
pected sequences of these genes in all member species 
of clade A + B to harbor phylogenetic substitutions con-
cordant with their placement inside A + B because the 
pattern-matching algorithm in sparse learning is expected 
to select optimal sites and genes at which the base config-
uration in the sequence alignment correlates with the 
presence of species in the clade A + B to the exclusion of 
the rest of the phylogeny.

We defined a gsc metric to assess the degree to which a 
given gene in a given species harbors phylogenetic signals 
concordant with the clustering of taxa in A + B (see 
Materials and Methods). Biologically, we expected gsc va-
lues for all gene-species combinations to be positive for 
the 15 genes included in the clade model. Instead, we 
found negative gsc values for many gene-species combina-
tions, some of which were large in magnitude. The most 
extreme negative gsc value (−0.27) was for the gene 
BUSCOfEOG7TN012 (7TN012, hereafter) of Ascoidea rubes-
cens (clade A).

To avoid reliance on an arbitrary choice of λS and λG, we 
built 81 models for clade A + B using the range of site and 

gene sparsity parameters (0.1 ≤ λS, λG ≤ 0.9; step size = 0.1). 
Of these, only 23 models contained multiple genes and 
were retained for further analysis (see Materials and 
Methods). We defined GSC as the median gsc for a given gene- 
species combination across all multigene ESL models (see 
Materials and Methods).

Figure 3a shows the distribution of GSC scores for all gene- 
species combinations for clade A + B. In this distribution, 
two outlier GSC humps are seen. One on the right side 
(green, positive) involves the gene BUSCOfEOG7W9S51 
(7W9S51, hereafter), which was the most influential gene 
identified previously (Shen et al. 2017). The hump on the 
left involves 7TN012 (magenta inset), which was not identi-
fied in any of the previous analyses (Fig. 3a). These two, and 
some other gene-species combinations, are easily visualized 
in a grid representation shown in Fig. 3b [Model grid 
(M-grid) for clade A + B]. It quickly reveals that 7W9S51 pro-
vides the strongest phylogenetic signal (dark green) for pla-
cing all member species in clade A + B. By contrast, the gene 
7TN012 carries the strongest conflicting signal (dark ma-
genta) in the species A. rubesence (Fig. 3b).

Estimating the CP
To compute CP, we first estimate the species classification 
probability (scp), a logit transformation of the sum of all 
gsc scores for the given species s for a pair of λS and λG va-
lues (see Materials and Methods). To avoid reliance on a 
specific pair of parameter values, we computed scp from 
all 23 multigene models. Then, we estimated a single 

Fig. 1. DrPhylo analysis pipeline. DrPhylo takes a phylogenetic hypothesis and a collection of FASTA files containing sequence alignments for 
individual groups of sites, e.g. genes, genetic segments, or any collection of sites (data, D). It is designed to accept the phylogenetic hypothesis 
in a text file (e.g. response.txt) or as a rooted phylogenetic tree with an identifier for the clade of interest in the tree written in the Newick format 
(phylogenetic tree, T). These inputs are transformed into numeric data. Users specify options for DrPhylo analysis through the command line, 
including the range of the sparsity parameters. DrPhylo implements a phylogeny-aware class-balancing, explained in the Materials and Methods 
section, builds the clade models for the given sparsity parameter(s), and calculates the metrics presented in this article. DrPhylo also outputs a 
graphical representation of the clade model in a grid format (Model-grid, M-grid), which displays GSCs and SCPs (see Fig. 3b). DrPhylo also has a 
QUICK analysis option that employs a stopping rule to avoid building extremely sparse models containing genes fewer than a user-specified 
number (see Materials and Methods).
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species classification probability from models (SCP) for 
each member species of the clade of interest (Materials 
and Methods). SCPs for all member species in a clade 
were used to estimate CP, which measures the robustness 
of the clade of interest. CP is simply the minimum of all 
SCPs. The CP of A + B is low (0.23) because the SCP of A. 
rubescence to be clustered with the clade B is low 
(SCP = 0.23).

Further Analysis of Fungus Relationships
We now present results from the full DrPhylo analysis of 
clade A + B in the above dataset, whose low CP (0.23) is 
in stark contrast with its high bootstrap support (100%) 
in the ML analysis of the concatenated supermatrix 
(Shen et al. 2016; Shen et al. 2017). The low CP is caused 
by 7TN012 and some other genes that do not support 
this grouping (GSC < 0; Fig. 3b). The negative GSC score 
for 7TN012 is well-justified by its gene tree, in which A. ru-
bescence (clade A) is positioned far from clade B, indicating 
gene tree-species tree discordance (supplementary fig. S2, 

Fig. 2. Contrasting phylogenetic relationships of three fungal clades. 
a) The ML phylogeny of fungi inferred from a concatenated super-
matrix of 1,233 nuclear genes (609,899 amino acid sites) by Shen 
et al. (2017). Clade A contains only Ascoidea rubescence 
(Ascoideaceae) and is sister to Clade B, which has 43 species of 
Saccharomycetaceae, Saccharomycodaceae, and Phaffomycetaceae. 
Clade C consists of 11 species of Pichiaceae and 22 CUG-Ser2 species 
(Shen et al. 2016; Shen et al. 2017). Clade D is the outgroup consist-
ing of 9 species. Clade A + B received 100% bootstrap support in the 
concatenated supermatrix analysis (Shen et al. 2017). Contrasting 
evolutionary relationships of three clades (A, B, and C) are shown 
in panels b and c, along with their bootstrap supports for clades 
A + B (100%) and B + C (46%).

Fig. 3. Distribution of GSC scores for clade A + B and the associated 
M-grid. a) A histogram of GSC scores. The green inset on the right 
highlights the gene-species combinations that show high concord-
ance with the presence/absence of species in the evaluated clade. 
By contrast, the inset on the left (magenta) corresponds to negative 
GSC values and exposes combinations conflicting with A + B. b) An 
M-grid for the A + B clade. The color intensity marks the degree of 
concordance (green) or discordance (magenta) of individual gene- 
species combinations. A cross-mark indicates missing data. The 
top 20 species (out of 44) and 20 genes (out of 78) are shown. 
Among these 20 species, one is from clade A at the top of the 
grid, and the other 19 are from clade B. On the top-left are species 
with the lowest SCP (shown in parentheses) and genes receiving the 
highest average |GSC| across all species.
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Supplementary Material online). However, BF analysis 
using alternative hypotheses (Fig. 2b and c) did not find 
7TN012 to be unusual, as it ranked 938 out of 1,233 genes 
based on 2ln(BF). Also, the role of 7TN012, a homolog of 
the GLT1 gene in Saccharomyces cerevisiae, was not re-
vealed in the ML analysis of these alternative hypotheses 
(Shen et al. 2017). PhylteR, an outlier detection approach 
using multidimensional scaling (Comte et al. 2023), did 
not identify any gene-species combinations involving 
7TN012 in its output of 681 outlier sequences. This is likely 
because PhylteR analysis is not focused on the clade of 
interest. However, PhylteR does find 7W9S51 to be an out-
lier, but it does not indicate whether it is supportive or dis-
ruptive of the inferred phylogeny.

We also used the approximate unbiased test (AU-test) 
to compare the species tree (Fig. 2a) with the gene trees 
for 7W9S51 and 7TN012 (Shimodaira 2002). We expected 
that the 7W9S51 gene tree would be concordant with 
the inferred global phylogeny but not 7TN012’s gene tree. 
Surprisingly, the AU-test rejected the inferred global phyl-
ogeny for both gene alignments (P < 0.05). Similar results 
were obtained for other influential genes identified in the 
DrPhylo analysis (supplementary table S1, Supplementary 
Material online).

These findings indicate that DrPhylo can complement 
conventional statistical methods by offering insights into 
highly influential and conflicting gene-species combina-
tions associated with the fragile clade.

Impact of Influential Genes and Gene-species Combinations 
on Inferred Phylogenies
The M-grid reveals that the placement of A. rubescence in 
clade A + B is fragile, receiving the strongest support from 
7W9S51 (GSC = 0.30), while a majority of the genes (65%) 
in A. rubescence contradict the grouping of A and B clades 
(GSC < 0 in the M-grid; Fig. 3b). Therefore, the removal of 
7W9S51, with large positive GSC, may decrease the support 
for A + B, while the removal of genes with negative GSC 
may do the opposite. However, the impact of such re-
movals on the final phylogeny produced by the concaten-
ation matrix analysis is not easily predictable in our 
experience because the biases caused by the remaining 
genes cannot be anticipated a priori.

In any case, the hypothesis that excluding 7W9S51 
would reduce the support for the clade A + B was tested 
previously, and the reduced dataset united clade B with 
clade C rather than A (Shen et al. 2016; Shen et al. 
2017). The bootstrap support for A + B was reduced to 
54% from 100%, estimated from the full data matrix 
(Fig. 2b and c). The bootstrap support for A + B did not de-
cline (61%) after the subsequent removal of the 7TN012 
gene. This fragility was also evident from the multispecies 
coalescent (MSC) analysis, where the species tree is in-
ferred using the collection of individual gene trees. The 
species tree inferred before and after excluding 7W9S51, 
7TN012, or both produces low posterior probability for 
clade A + B in all cases (64% to 68%) because the MSC ap-
proach is resilient to the exclusion/inclusion of one or a 

few genes in the dataset (Mirarab et al. 2014; Warnow 
2015; Shen et al. 2017).

Overall, the low bootstrap support and conflicting 
placement for clade A after the removal of a few genes es-
tablished the fragility of the clade A + B, which DrPhylo 
could successfully identify along with associated genes 
without needing to perform phylogenetic analyses with 
data subsets or alternative evolutionary hypotheses. 
Once these genes are identified, one can inspect their 
gene trees, which we did for 7W9S51 and 7TN012. We 
found an unusually large separation between clade A + B 
and other species (5.86 substitutions per site) in the 
7W9S51 gene tree (supplementary fig. S1, Supplementary 
Material online). Such a long branch likely amplifies the 
phylogenetic information favoring clade A + B in the con-
catenation analysis. Consequently, excluding 7W9S51 from 
the dataset significantly reduces support for A + B. By con-
trast, clade A + B is not monophyletic in the 7TN012 gene 
tree (supplementary fig. S2, Supplementary Material
online).

ESL Analysis of an Expanded Fungus Dataset
Shen et al. (2018) collected data from three additional spe-
cies for clade A (one member of Ascoideacea and two spe-
cies of Sacchromycopsis) to re-examine the evolutionary 
relationships among Fungi. The number of species was 
also increased in clade B and other clades, and the number 
of genes was increased to 1,289. However, CP for clade A + B 
(Fig. 4) did not increase with this data expansion. Rather, 
CP decreased to 0.00 because of low SCP for two newly 
added Sacchromycopsi species. More than half (57%) of 
the GSC values are negative for these Sacchromycopsi 
species from clade A. The result is consistent with a low 
quartet support (39%) and gene concordance factor 
(gCF = 19.6%) for A + B. Interestingly, clade A + B is recov-
ered with high statistical support (100%) in both concaten-
ation and MSC approaches with or without EOG09343FGH, 
making it an enigmatic dataset for resolving the relationship 
of A, B, and C.

DrPhylo identified EOG09343FGH to harbor strongly 
contradictory phylogenetic signals (Fig. 4). Notably, this in-
fluential gene (EOG09343FGH) and gene 7W9S51 in the 
previous dataset are homologs of the DMP1 gene in the 
model system S. cerevisiae (Shen et al. 2017; Shen et al. 
2018). An inspection of the EOG09343FGH gene tree 
(supplementary fig. S3, Supplementary Material online) re-
vealed the same problem as 7W9S51, i.e. it contains an un-
usually long internal branch (6.2 substitutions per site). In 
addition, two Saccharomycopsis species of clade A are on 
the opposite ends of this branch. That is, clade A was 
not monophyletic, and some of its member species have 
far greater sequence divergence from each other than 
with members of other clades. Such gene tree patterns 
may arise because of hidden paralogy or other biological 
factors, such as horizontal gene transfer, a frequently ob-
served phenomenon in many clades of fungal species 
(Richards et al. 2009; Schmitt and Lumbsch 2009; 
Fitzpatrick 2012; Shen et al. 2018). Further, the ML analysis 
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of two alternative hypotheses for A + B also detected 
EOG09343FGH as having the highest likelihood difference, 
and PhylteR identified EOG09343FGH as containing the lar-
gest number of outlier sequences (338 out of 1,260). 
However, PhylteR’s outliers are not tied to specific clades.

In summary, DrPhylo successfully pinpointed conflicting 
gene-species combinations involving Sacchromycopsis spe-
cies and the EOG09343FGH gene without needing gene 
phylogenies, substitution models, or alternative species re-
lationships for clade A + B.

DrPhylo Analysis of a “Control” Fungus Clade
In addition to analyzing the abovementioned known fragile 
clades, we tested new metrics on a 36-species clade of 
Saccharomycetaceae that was used as a control in a previous 
study to validate the ML analysis approach (Shen et al. 
2017). For this clade, the DrPhylo analysis produced a model 
in which all the GSCs were positive, i.e. they harbored phylo-
genetic signals concordant with the monophyly of the clade 
analyzed. The M-grid for this comparison is shown in 
supplementary fig. S4, Supplementary Material online. The 
CP for this clade was high (0.80), confirming the results 
from the ML analysis.

We also used the data analyzed in the above analysis to in-
vestigate the ability of DrPhylo to detect outlier gene-species 
combinations in synthetic datasets in which we deliberately 

introduced introgression across species in the most important 
gene BUSCOfEOG715QCD (see supplementary figs. S4 and S5, 
Supplementary Material online). BUSCOfEOG715QCD is an 
ortholog of the SPT6 gene (YGR116W) in S. cerevisiae. We gen-
erated 100 such datasets by swapping the selected gene se-
quences between two randomly selected species, one from 
the Saccharomycetaceae clade and the other from outside 
the clade. Because the errors were introduced in the most im-
portant gene, we expected this gene to be included in the ESL 
model and the affected gene-species combinations to receive 
negative GSC values.

In the DrPhylo analyses, GSC was negative for the affected 
gene-species combinations in 98 synthetic datasets and was 
positive, but close to zero, for the other two (Fig. 5a). That is, 
DrPhylo showed 98% accuracy in detecting errors in the 
most influential genes. A similar performance (98%) was ob-
served when the introgression was one way, in which a 
randomly selected Saccharomycetaceae species received 
the gene sequence from a randomly selected outgroup 
species, i.e. the horizontal gene transfer was not reciprocal 
(Fig 5b). In this case, CP was relatively high for all the 
Saccharomycetaceae clade in all the synthetic datasets 
(0.88 to 0.93), showing that the phylogenetic inference can 
be robust despite some data errors. This pattern is likely be-
cause the stem branch for this control clade in the fungi 
phylogeny is 10 times longer than that for clade A + B.

Fig. 4. An M-grid from the extended fungal dataset. The M-grid for clade A + B for the extended fungus dataset. The top four rows in the grid 
comprise species belonging to clade A, while the remaining species are from clade B. The color intensity marks the degree of concordance (green) 
or discordance (magenta) of individual gene-species combinations. A cross-mark indicates missing data. The top 20 species and 20 genes are 
shown. On the top-left are species with the lowest SCP (shown in parentheses) and genes receiving the highest average |GSC| across all species.
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We also applied PhylteR to these simulated datasets, 
which produced many outliers for every dataset, including 
7W9S51 and the gene BUSCOfEOG715QCD that underwent 
introgression between species. Neither the ML nor the 
DrPhylo analyses found 7W9S51 to be influential for this 
control clade, but the PhylteR diagnosis is not clade-specific, 
so the outliers reported are for the whole phylogeny.

Analysis of a Phylogeny of Plants
To assess the generality of the results presented above for 
the DrPhylo analysis of the fungus dataset, we applied 
DrPhylo to the phylogeny inferred in an analysis of 620 nu-
clear gene sequences from 103 plant species in which the fo-
cus was on identifying the closest relatives of Chloranthales 
(C). The concatenated supermatrix approach united 
Eudicotidae (E) and Chloranthales with a bootstrap support 
of 100% for C + E (supplementary fig. S6, Supplementary 
Material online) (Wickett et al. 2014; Shen et al. 2017). 
DrPhylo found C + E to be fragile, as the CP was low because 
of Saracandra glabra (SCP = 0.25). S. glabra, the only mem-
ber of clade C, received low SCP because 84.7% of genes (524 
out of 618) did not support its placement inside clade C + E. 
The M-grid for this clade revealed some influential genes 
(e.g. 6040_C12, 4490_C12, and 4478_C12) that strongly sup-
port the clustering of C with E.

The gene 6040_C12 (orthologues of AT3G46220 gene in 
Arabidopsis thaliana) has the highest influence in placing 
S. glabra (C) in the clade C + E (Fig. 6). The 6040_C12 se-
quences in five species in clade E harbor conflicting phylo-
genetic signals (magenta cells, Fig. 6) for the clade C + E. 
These five species grouped far away, separated by a long 
internal branch, 0.8 substitutions per site, from other 
members of the C + E clade in the 6040_12 gene phylogeny 
(supplementary fig. S7, Supplementary Material online). 
Two other genes, 4478_C12 (orthologue of AT4G02580 
gene in A. thaliana) and 4490_C12 (orthologue of RbcX2 
gene in A. thaliana), received negative GSCs in the same 
five species similar to 6040_12. Their gene trees showed 
patterns similar to the 6040_C12 gene tree, including a 

long branch length separating the same five species of 
C + E from the rest. There was a large effect of 6040_C12 
on the phylogeny produced from the concatenated super-
matrix of 619 genes that excluded 6040_C12. The ML phyl-
ogeny united Chloranthales with Magnolids (C + M) with 
71% bootstrap support, which is different from the full da-
taset analysis that produced C + E with high support. The 
species tree inferred from the MSC approach before and 
after the removal of 6040_C12 assigned a low posterior 
probability of 0.25 to C + E in both analyses, as C + M re-
ceived a 57% local posterior probability (Shen et al. 
2017). However, removing other influential genes did not 
significantly affect the inferred plant phylogeny. These pat-
terns are consistent with previous reports that used two 
alternative phylogenetic hypotheses about the placement 
of Chloranthales in the ML analysis (Shen et al. 2017).

In addition to 6040_C12, the M-grid reports an addition-
al gene, 5954_C12, as not being supportive of clade C + E 
(Fig. 6). Their gene trees do not have a C + E clade, 
as C and E are located distantly in the phylogeny 
(supplementary fig. S8, Supplementary Material online). 
The PhylteR analysis of this dataset also found 6040_C12 
but not 5954_C12. PhylteR reported additional genes 
(4478_C12 and 4490_C12) that may impact other clades 
in the inferred phylogeny.

Therefore, new metrics successfully identified the fragile 
clade (C + E), problematic species (S. glabra), and influen-
tial as well as disruptive outlier sequences.

Analysis of an Animal Phylogeny
Finally, we applied DrPhylo to a phylogeny of 37 rodents 
inferred from a phylogenomic dataset of 1,245 nuclear 
genes. The ML phylogeny inferred from the concatenated 
supermatrix places Pogonomelomys ruemmleri (P) outside 
of the Sahul Hydromyini clade (SHL) excluding Coccymys 
(P. ruemmleri) and Anisomys (Anisomys imitator) genera 
(see supplementary fig. S9, Supplementary Material on-
line) with a high rapid bootstrap support (98%) 
(Roycroft et al. 2020; Shen et al. 2021). DrPhylo produced 

Fig. 5. GSC scores of simulated 
errors. The change in GSC scores 
for gene-species combinations 
with a) reciprocal and b) nonreci-
procal swaps. Before the swap, 
their GSC scores were positive 
(green, right density plots). After 
the swap, GSC scores became 
negative (magenta, left density 
plots). Mild green with a ma-
genta border in the magenta 
density indicates cases in which 
the simulated errors were not 
detected. 
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a low CP (0.04) for the SHL clade (Fig. 7), designating it as a 
fragile clade, with three of the member species receiving 
low SCP scores (0.04 to 0.08). About 79% (992 out of 
1245) of the genes in these three species received negative 
GSCs in the clade model (Fig. 7). None of these genes were 
identified in the ML analysis of alternative hypotheses or 
by PhylteR, even though SHL clade is not monophyletic 
in these gene phylogenies (supplementary fig. 10, 
Supplementary Material online). However, the fragility of 
SHL clade was observed in MSC analysis, which inserted 
P. ruemmleri inside the SHL clade with a high posterior 
probability (LPP = 95%).

The fragility of the monophyly of the SHL clade, as well 
as the placement of P. ruemmleri, was not attributed to a 
few genes or sequences (Shen et al. 2021) but likely re-
sulted from incomplete lineage sorting (Roycroft et al. 
2020). The ML analyses identified a few other genes 
(Efhb_1_mus, LCT_mer, IDS_1, and FOXO4_2_rat) to be 
highly influential, which exhibit support for the SHL clade 
as shown in the M-grid (Fig. 7). Previously, the exclusion of 
these genes did not alter the inferred phylogeny and the 
SHL clade in the ML analysis of the concatenated sequence 
alignment (Shen et al. 2021). A previous study found 36% 
(451 out of 1,245 genes) of the total genes inconsistent 

between a pair of species tree hypotheses (Shen et al. 
2021). After removing these genes, the inferred species 
tree using the MSC approach became concordant with 
the ML tree from the concatenated sequence alignment 
(supplementary fig. S9, Supplementary Material online), 
which is not surprising because we had removed the 
conflict.

Therefore, DrPhylo could identify fragile clades that ex-
hibit incongruence between the concatenation and MSC 
approach based on the analysis of the inferred phylogeny 
alone.

Conclusions
We have advanced the use of ESL to diagnose phylogenetic 
instability and likely causal genes and species through no-
vel metrics that detect fragile clades and underlying gene- 
species combinations. We have established the utility and 
abilities of ESL models and these metrics using empirical 
and synthetic datasets. The use of new metrics is made 
practical by the computationally efficient tool DrPhylo, 
which required <30 min for the analysis of the smaller fun-
gus dataset (86 species, 1,233 genes, and 609,899 sites) and 52 
min for the expanded dataset (343 species, 1,292 genes, and 

Fig. 6. The M-grid for clade C + E in the phylogeny of plants. The M-grid for the C + E clade contains 20 species from plant phylogeny. A total of 
20 genes (out of 618) are displayed and ordered using the average positive GSC. The color intensity marks the degree of concordance (green) or 
discordance (magenta) of individual gene-species combinations. A cross-mark with a white background indicates missing data. The top 20 spe-
cies and 20 genes are shown. On the top-left species with the lowest SCP (shown in parentheses) and genes receiving the highest average |GSC| 
across all species. The species on the top-left is from clade C, and the other 19 species are from clade E.
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527,069 sites); (see supplementary table S2, Supplementary 
Material online). This means that DrPhylo can quickly scan 
major clades of the inferred phylogenomic tree without re-
quiring the knowledge of problematic clades or alternative 
phylogenetic hypotheses. DrPhylo will reveal individual se-
quences (gene-species combinations), which we have shown 
to produce novel findings in analyzing three empirical data-
sets. In DrPhylo, an investigator may partition the data based 
on any desired biological annotations, including genes, pro-
teins, codon positions, exons, and functional elements. 
Also, groups of sites can be inferred using statistical ap-
proaches that partition the data into evolutionarily homoge-
neous segments (Yang 1996; Kumar et al. 2012; Lanfear et al. 
2017). Every site in the alignment can belong to its group, 
which would be useful when the data consists of only one 
gene or genomic segment.

DrPhylo does not necessitate in-clade phylogeny or con-
duct ML calculations using a base substitution model. 
Therefore, identifying fragile clades and causal sequences 
(gene-species pairs) is agnostic to selecting a substitution 
model or any phylogenetic tree error within the clade of 
interest. DrPhylo also estimates signed concordance scores 
for each sequence, revealing which genes support or op-
pose species placement within the clade. While PhylteR 

and similar approaches also detect outlier sequences, these 
outliers are not clade-specific, as mentioned earlier (de 
Vienne et al. 2012; Mai and Mirarab 2018; Comte et al. 
2023). So, they require further analyses to determine which 
clades might be impacted by these outliers. Furthermore, 
the use of inferred gene trees makes the identification of 
outlier sequences susceptible to gene tree estimation er-
ror, a common challenge for methods using estimated 
gene trees.

We anticipate the new metrics presented here to be es-
pecially beneficial when only a small subset of gene-species 
combinations carries signals that conflict with the place-
ment of member taxa inside the clade of interest. This is 
because the ESL process of building clade models is unlike-
ly to select genes whose sequences harbor phylogenetic 
signals conflicting with the membership of many species 
inside and outside the clade of interest. Therefore, 
if a gene with a significant amount of phylogenetic infor-
mation for uniting species in the given clade has a limited 
number of disruptive gene-species combinations, then 
that gene will likely be included in the ESL models. Such 
sequences will receive negative GSC values in some genetic 
models and be recognizable as outliers in the M-grid. It is 
also advisable to apply DrPhylo for clades with a 

Fig. 7. The M-grid for clade SHL. The M-grid for the SHL clade shows 20 genes (out of 1245). These genes are ordered using the average of ab-
solute GSC. The color intensity marks the degree of concordance (green) or discordance (magenta). All of these species (20) were selected from 
the SHL clade using smart sampling to balance the clade of interest inside and outside the clade.
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substantial number (e.g.≥5) of taxa in the clade of interest, 
as machine learning methods generally demonstrate bet-
ter performance for datasets with a large number of sam-
ples (e.g. taxa). Therefore, we suggest applying the new 
approach to well-curated phylogenomic datasets, like 
those analyzed here, to diagnose fragile clades and asso-
ciated gene-species combinations following phylogenetic 
inference. While the gene-species combinations revealed 
in the DrPhylo analyses may not always result in the fragil-
ity of the inferred clades, they are inherently intriguing, 
potentially stemming from biological processes such as 
gene losses and gains, introgression, and horizontal gene 
transfers (Chiari et al. 2012; Nakhleh 2013; Brown and 
Thomson 2016; Steenwyk et al. 2023).

Materials and Methods
Evolutionary Sparse Learning
An ESL model is defined as f(Y ) = Xβ, where f(Y ) is a logit 
link function of the category assigned to each species: +1 for 
member species of the clade of interest and −1 for all others 
in the given phylogeny (Kumar and Sharma 2021). In the ESL 
model, X is a one-hot encoded sequence alignment matrix 
produced as previously described (see Fig. 1 in ref. (Kumar 
and Sharma 2021)). β is a column matrix of coefficients, es-
timated using bi-level sparse group LASSO regression that 
minimizes the logistic loss by penalizing the inclusion of in-
dividual sites (site sparsity parameter, λS) and groups of sites 
such as genes (group sparsity parameter, λG) to avoid model 
overfitting (Tibshirani 1996; Meier et al. 2008; Kumar and 
Sharma 2021). Groups can be collections of contiguous sites 
(e.g. genes, exons, introns, and proteins) or noncontiguous 
sites (e.g. codon positions) and sites with functional annota-
tions (e.g. coding genes and noncoding elements), among 
other possibilities. Grouping sites based on biological and se-
quence features makes the ESL modeling a partitioned ana-
lysis common in phylogenomic studies (Hillis and Bull 1993; 
Mirarab et al. 2014; Kainer and Lanfear 2015).

In ESL, quantitative models with β estimates capture the 
strength of association between the pattern of sequence 
evolution at individual sites and genes with the presence 
and absence of species in the clade of interest. Generally, 
many genes and sites received a β value of 0 in the selected 
genetic model, leading to a sparse solution for clade- 
specific genetic models. ESL with bi-level sparsity differs 
from the contemporary machine learning approaches in 
ecology and evolution, focusing on classification by train-
ing machine learning models using synthetic data.

We transformed species relationships into a binary 
response (Y ) and assigned +1 for all species in the mono-
phyletic clade and −1 for species outside of the clade. Such 
binary classification is common in supervised machine 
learning of binary classification using the perceptron algo-
rithm (Freund and Schapire 1999). Each gene sequence 
alignment was numerically transformed into binary one- 
hot encoded matrices (Kumar and Sharma 2021) and 
used as independent variables (X ) for model building.

The MyESL software, an open-source library written in 
C++ and Python (Sanderford et al. 2024), was used as 
the base for developing DrPhylo (https://github.com/ 
kumarlabgit/MyESL/tree/DrPhylo) for practical applica-
tion of the methods and metrics presented here (Fig. 1).

Building a Clade Model
DrPhylo first built many genetic models using the ESL ap-
proach that employed generalized least absolute shrink-
age and selection operator (LASSO) logistic regression 
(Kumar and Sharma 2021). As the data are partitioned 
into groups of sites (e.g. genes) and we aim to select 
the highly influential genes and sites from genes, we 
used bi-level sparse group logistic LASSO regression. 
The ESL implementation applies the Moreau–Yosida 
Regularization algorithm (Liu and Ye 2010; Liu et al. 
2011a; Kumar and Sharma 2021) with 100 iterations (de-
fault) for convex optimization of the regression coeffi-
cients (β) for building the clade model.

Estimation of Gene-species Concordances and Clade 
Probability
For each clade model, we calculate the gsc metric using the 
given ESL model to assess the degree of the concordance for 
a given gene (g) in a species (s), which is given as follows:

gsc =
K

k = 1

ys × βk × xk. (1) 

Here, gsc is the sum of the product of one-hot encoded bases 
(xk) of site k in the given gene g from species s with the numer-
ic response for the species s and the regression coefficients 
(βs) in the ESL model. K is the number of one-hot encoded 
bases in the gene g. gsc quantifies the strength and direction 
of concordance. It is analogous to the SHAP value (Lundberg 
et al. 2020) to quantify a feature’s contribution to the predict-
ive ability of a machine learning model. However, unlike 
SHAP, gsc does not require rerunning ESL by excluding/in-
cluding genes or sites in the model-building process.

We also calculate the SCP for each member species from 
each clade mode. The SCP is the sum of all gsc and the 
model intercept (β0; equation 2)

scp(s) = 1


1 + e
− β0+

G

g=1

gsc(g,s)

 ⎛

⎜
⎝

⎞

⎟
⎠. (2) 

Here, G is the total number of genes in the dataset. This 
metric is the same as the standard classification prob-
ability in LASSO (Liu et al. 2011a; Hastie et al. 2015). 
We normalized the SCP for all member taxa to transform 
this metric to range from 0 to 1 for the given clade as fol-
lows:

SCPnorm
s = (SCPs − 0.5)


(max[SCP] − 0.5). (3) 
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In this context, SCPs denotes the probability of classifica-
tion for a species s, while SCP represents the array of 
probabilities encompassing all member species. We 
adopted a minimum SCP of 0.5 since the predicted re-
sponse for any member species, as determined by the 
clade model, is anticipated to be no less than 0. 
Therefore, a species with the minimum predicted re-
sponse would receive an SCP equal to 0.5. If the predicted 
response for a species is <0, then the clade model has 
misspecified the species. We set the normalized SCP for 
those species to be 0.

Gene-species Concordance and Clade Probability
The GSC is the final estimate for the gene species concord-
ance estimated by summarizing gsc from each genetic 
model built by a pair of sparsity parameters. We en-
sembled all gsc values using a summary statistic, median. 
Mathematically, we define GSC for the given gene g and 
species s as follows:

GSC(g,s) = median{gsc(g, s)}. (4) 

Here, {gsc(g, s)} is the vector of all gsc scores for gene g and 
species s estimated from the ESL models.

After normalization, we also summarized SCP(s) for the 
species s from all ESL models to estimate the classification 
probability of the ensembled species and defined them as 
SCP(s). SCP(s) is the mean of all SCP(s) for species s and is 
mathematically defined as follows:

SCP(s) = mean{scp(s)}. (5) 

Here {scp(s)} is the vector of all SCP scores for the species s. 
The CP for the clade of interest is the minimum of SCP 
from all member species and is defined as follows:

CP = min{SCP} (6) 

Here {SCP} is a vector of SCP estimated from the ensemble 
ESL model.

Phylogeny-aware Class-balancing for ESL
To build an ESL model, we select species by phylogeny- 
aware class-balancing in which an equal number of species 
inside and outside the clade of interest were selected. 
When many outgroup species are available, then the close-
ly related species are selected. For example, a given rooted 
phylogenetic tree with SAll species contains S+1 and S−1 

species inside and outside the clade of interest, respective-
ly; SAll = S+1 + S−1. To balance the number of species inside 
and outside the clade, we employed phylogeny-aware sam-
pling when S+1 < SAll/2 (S+1 < S−1; scenario 1) or S+1 > SAll/ 
2 (S+1 > S−1; scenario 2). In scenario 1, we first select clades 
from the outside +1 group that is the closest sister of the 
monophyletic clade of interest (+1 group) until S+1 ≤ S−1. 
If S+1 < S−1, we compute the pairwise distance between 
species (leaf nodes) in the S−1 set and remove one se-
quence randomly from the pair with the lowest distance. 

Next, one random species is removed from the pair with 
the second lowest pairwise distance, and this process is it-
erated until S+1 = S−1. We assign class weights for scenario 
2, where S+1 > S−1, which is implemented in MyESL 
(Sanderford et al. 2024).

DrPhylo’s Quick Option
We found that the number of genes included in the ESL 
model generally decreased monotonically with the site 
(λS) and gene (λG) sparsity parameters (supplementary 
fig. 11a and b, Supplementary Material online), so we de-
veloped a simple stopping rule to avoid calculating models 
that will contain only one gene. DrPhylo begins with λS =  
0.1, builds an ESL model starting with λG = 0.1, and counts 
the number of genes selected in the model. Then, λG is in-
creased by the user-provided step size (Δλ; 0.1 by default) 
to build the next model, where λS is fixed. This process is 
stopped when the ESL model contains only one gene or 
λG becomes 0.9. This procedure provides an upper limit 
on λG, i.e. λG,max. In the next step, λS is increased by Δλ, 
and then models are built until λG reaches λG,max. This pro-
cess is repeated by increasing λS until a model contains 
only three genes. Then, all the models containing one 
gene are discarded before estimating the GSC and CP me-
trics described in the following.

Data Sets Analyzed
Empirical Datasets
Four empirical datasets were obtained from previous stud-
ies, representing three major groups in the Tree of Life: 
Fungi, plants, and animals. Some species relationships in 
the inferred phylogenies from these datasets are known 
to be fragile because of highly influential outlier genes. 
The first fungus dataset, consisting of 1,233 nuclear genes 
derived from 86 yeast species, was previously described by 
Shen et al. (2017). The length of genes in this dataset varied 
between 167 and 4854, and the number of taxa in each 
gene ranged from 39 to 86. The other taxon-rich fungus 
dataset comprised 343 yeast species and 1,292 nuclear 
genes and was analyzed by Shen et al. (2018). The plant da-
taset encompassed DNA sequences of 620 nuclear genes 
from 103 plant species (Wickett et al. 2014; Shen et al. 
2017). The gene sequence alignments in this dataset 
were 6 to 1,820 base pairs long and contained 55 to 103 
plant species. The animal dataset contained 1,245 nuclear 
gene sequences from 37 rodent species. The number of 
species in each gene sequence alignment varied between 
32 and 37, and the gene alignment lengths ranged from 
249 to 7,413.

Synthetic Datasets With Simulated Contaminations
We introduced data errors in empirical datasets to assess 
the performance of new metrics and clade models in de-
tecting those errors. The simulation was performed by 
swapping gene sequences between two species, one from 
inside and another from the species outside the clade of 
interest. The gene sequences were swapped in two ways. 
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In nonreciprocal exchange, we replaced the selected gene’s 
sequences inside the clade with one from the outside the 
clade. The species were selected randomly from both sides 
for this replacement. In the reciprocal exchange, gene se-
quences were swapped between two species, one from in-
side and another from outside the clade. A total of 100 
datasets were generated for reciprocal and nonreciprocal 
swapping, which were then analyzed using DrPhylo.

Supplementary Material
Supplementary material is available at Molecular Biology 
and Evolution online.
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