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Abstract

Introduction: Drug-eluting embolic (DEE) microspheres, or drug-eluting beads (DEB), 

delivered by transarterial chemoembolization (TACE) serve as a therapeutic embolic to stop blood 

flow to tumors and a drug delivery vehicle. New combinations of drugs and DEE microspheres 

may exploit potential synergy between mechanisms of drug activity and local tissue responses 

generated by TACE to enhance the efficacy of this mainstay therapy.

Areas covered: This review provides an overview of key drug delivery concepts related to DEE 

microspheres with a focus on recent technological developments and promising emerging clinical 

applications as well as speculation into the future.

Expert opinion: TACE has been performed for nearly four decades by injecting chemotherapy 

drugs into the arterial supply of tumors while simultaneously cutting off their blood supply, trying 

to starve and kill cancer cells, with varying degrees of success. The practice has evolved over 

the decades but has yet to fulfill the promise of truly personalized therapies envisioned through 

rational selection of drugs and real-time multi-parametric image guidance to target tumor clonality 

or heterogeneity. Recent technologic and pharmacologic developments have opened the door for 

potentially groundbreaking advances in how TACE with DEE microspheres is performed with the 

goal of achieving advancements that benefit patients.
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1. Introduction

Liver cancer is a leading cause of cancer-related death worldwide and has continued 

to increase in incidence and mortality for several decades [1]. Hepatocellular carcinoma 

(HCC), the predominant form of liver cancer, is usually diagnosed at advanced stages 

of tumor development when transplantation, surgical resection, or local thermal ablation 

may not be feasible. For many of these patients, minimally invasive regional therapy with 

transarterial chemoembolization (TACE) may be a palliative option.

TACE is the recommended first-line therapy for patients with intermediate-stage HCC 

[2] and it has also been used to treat patients with hepatic metastasis from primary 

gastrointestinal, breast, melanoma, and neuroendocrine tumors [3–6]. The procedure is 

performed by delivering chemotherapy and embolic materials directly into tumor-supplying 

arteries under imaging guidance. The rationale for TACE is that selective disruption of blood 

flow to hepatic arteries parasitized by tumors and concomitant delivery of chemotherapy 

results in tumor-localized ischemic and cytotoxic effects. For conventional TACE (cTACE), 

a chemotherapeutic drug is emulsified in ethiodized oil (Lipiodol®) and administered 

transarterially followed by an embolic. More recently, TACE has also been performed with 

drug-eluting embolic (DEE) microspheres, also referred to as drug-eluting beads (DEB), 

that serve both as an embolic and locoregional drug delivery vehicle. TACE with DEE 

microspheres results in greater drug concentrations in tumors and reduced systemic drug 

exposure compared to intra-arterial infusions of free drug [7, 8] or cTACE [9, 10].

Despite its widespread adoption, there remains little agreement on treatment parameters 

including the type and size of embolic, drug selection, catheter selectivity for tumor 

arteries, or definition of treatment endpoints. This has contributed to substantial variability 

in local operator practices and procedural techniques at the expense of reproducibility 

and comparability. In addition, there is a lack of understanding regarding the relative 

contribution of the drug versus the embolic towards treatment efficacy. Indeed, results 

comparing the outcomes of embolization using bland microspheres (no drug) to 

embolization using DEE microspheres loaded with doxorubicin, a chemotherapeutic drug, 

have been mixed and there remains no consensus regarding which approach is superior. This 

has spurred investigations into drugs with various different modes of action with the goal 

of better exploiting potential synergy between mechanisms of drug activity and local tissue 

responses generated by TACE.

The ideal drug candidate for delivery with DEE microspheres should load into the 

microspheres in high concentrations, have a sustained or tunable drug release profile, 

and penetrate readily into surrounding tissue. Moreover, its activity should be maintained 

or enhanced within the post-TACE tumor microenvironment and counteract or promote 

biologic processes stimulated by embolization. For example, antiangiogenic drugs eluted 
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from DEE microspheres may help to counteract neoangiogenic pathways stimulated by 

TACE-induced tissue hypoxia that can promote tumor recurrence. With the development of 

immunotherapy, combinations of DEE microspheres and immune-modulating agents could 

provide potent local, and potentially systemic, therapeutic effects by promoting antitumor 

immune responses within the inflammatory microenvironment created by TACE, or by 

helping to overcome pathways of immune resistance or tolerance.

Novel DEE platforms are also under development which may complement or provide new 

capabilities for TACE and enhance drug delivery and efficacy. Recently, DEE microspheres 

that are visible on intra-procedural fluoroscopy and cone beam CT (CBCT) imaging have 

been developed [11–14] raising the intriguing possibility that microsphere radiopacity 

could serve as a surrogate for spatial drug levels, enabling spatial drug dosimetry [15]. 

DEE microspheres containing a variety of radiopacifiers have been developed that could 

potentially enable differentiation on CT imaging between microspheres loaded with different 

drugs enabling rational delivery of specific drugs to discrete microenvironments within the 

tumor [16, 17].

The goal of this review is to highlight recent advances in DEE microsphere-based drug 

delivery, and to explore emerging and yet-to-be-explored strategies to improve the efficacy 

of TACE with DEE microspheres.

2. Tumor-localized drug delivery using DEE microspheres

The concept of using microspheres to enhance drug delivery to the liver dates back several 

decades [18, 19] and is based on the original idea that temporary or permanent occlusion 

of hepatic blood flow following intra-arterial drug infusion can increase drug retention in 

tumors, reduce washout, and limit systemic exposure, potentially reducing side effects and 

enhancing efficacy. Drug-eluting microspheres combine both embolic and drug delivery 

mechanisms into a single vector, with the delivered drug initially co-localized with the 

embolic microspheres.

The safety, efficacy, and pharmacokinetics of DEE microspheres loaded with doxorubicin 

were demonstrated by landmark clinical trials reported in 2007 and 2010 which showed 

significant reductions in peak plasma drug concentrations and area under the curve, as well 

as increased objective response in patients with advanced HCC, compared to cTACE [9, 

10, 20]. In this section, we provide an overview of DEE microspheres developed using 

permanent or biodegradable materials with the capacity to entrap and release drug in a 

controlled manner.

2.1 Commercially available DEE microspheres

Currently there are six commercial DEE microspheres with CE marking: five non-

degradable and one biodegradable (Table 1). Initial clinical experience with an additional 

DEE microsphere, Callispheres, has been reported [21–23]. No microspheres have been 

approved by the U.S. Food and Drug Administration for marketing as DEE devices therefore 

their use is investigational or off-label when drug-loaded. The microspheres’ chemical 

compositions and physical characteristics are summarized in Table 1.
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Differences in chemical structures among these microspheres impart different drug 

loading capacities and rates of drug release [44], parameters that directly impact in 
vivo pharmacokinetics. Differences in size, size range and dispersity, and mechanical 

properties, e.g., compressibility and deformability, may influence the in vivo performance 

of microspheres including their distribution and packing density in arteries, ischemic 

effects, and treatment-specific toxicity. These properties can also affect microsphere 

handling characteristics and compatibility with micro-catheters. Clinical investigations of 

DEE microspheres should be performed in compliance with applicable regulations after 

consultation with appropriate regulatory bodies.

2.2 Drug loading and release

All of the currently marketed DEE microspheres are loaded at the point of use (normally in 

the hospital pharmacy) by mixing with a drug solution followed by occasional shaking. The 

time needed for drug loading is dependent upon drug concentration and type, as well as the 

size, quantity, and type of microspheres [48–50]. Drug loading occurs via an active uptake 

mechanism driven by the ionic interaction between cationic drugs, usually containing one 

or more protonated amine groups, and negatively charged sulfonate (SO3
−) or carboxylate 

(COO−) moieties within the microsphere polymer structure [44, 48, 51]. Formation of 

drug salts in acidic solution can improve drug solubility and promote loading into the 

microspheres by providing one or more positive charges for interaction with the anionic 

moieties of the microspheres.

Drug release occurs by ion-exchange whereby the drug is displaced by positively charged 

ions in the elution media, blood or tissues. The rate of drug release is a function of one or 

more factors including the strength of the ionic interactions between drug and microspheres, 

drug-drug interactions within the microspheres (as in the case of doxorubicin) and the ionic 

strength of the elution medium [52–54]. As a result, under the same conditions, different 

drugs have different relative rates of release from microspheres ranging from water soluble 

drugs with little or no interaction with the microspheres that release quickly, to those with 

moderate (e.g. irinotecan), and relatively slow (e.g. doxorubicin) release rates [55]. Drugs 

with chemical structures that promote molecular aggregation within the microspheres may 

prolong drug elution [53, 56]. In addition, smaller microspheres tend to have faster elution 

rates due to their higher surface area to volume ratio relative to larger microspheres [53]. 

Drug solubility and concentration in the elution medium can also influence the rate of drug 

release and diffusion from the microspheres [53].

In vitro drug elution studies are normally conducted using techniques for dissolution testing 

described in the US pharmacopeia (Chapter <711>) [57]. However, no single technique can 

accurately predict drug release kinetics in vivo. Instead, in vitro elution studies provide a 

means for comparing relative release rates among drugs under controlled conditions and 

may provide an indication of the relative extent of systemic exposure in vivo.

One limitation of current commercially available DEE microspheres is that, in their native 

form, they can only load and release positively charged drugs due to the anionic nature of 

their polymer matrices. Other DEE microspheres with different physicochemical properties 

and drug delivery mechanisms may load and release other varieties of drugs [58]. Some 
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drugs that cannot be actively loaded into DEE microspheres may be incorporated into 

the microspheres using solvents or by precipitating poorly water-soluble drugs into the 

microsphere matrix [59, 60].

Although there is no currently approved DEE microsphere available in which the drug is 

pre-loaded into the microsphere matrix, a number of clinical studies have used this product 

format [10, 61–63]. In these studies, doxorubicin, irinotecan, or vandetanib was loaded into 

the microspheres by the manufacturer and lyophilized in order to produce a sterile vial of 

dry microspheres that were hydrated with water at the point of use. This approach has the 

advantage of eliminating preparation time normally needed for drug loading, providing rapid 

intraprocedural access to drug-loaded microspheres.

2.3 Biocompatibility and safety

Commercial DEE microspheres are required to undergo biocompatibility evaluations in 

order to demonstrate that the unloaded microsphere matrix has no long-term adverse effects. 

This may include various tests for cytotoxicity of leachable chemicals as well as short-, 

medium- and long-term studies of local effects including tissue reactions following DEE 

microsphere delivery in animals [34, 64–66].

TACE with DEE microspheres for treatment of HCC tumors is a safe procedure with 

reported rates of serious adverse events ranging from 6.7 to 20.4% [10, 20, 67, 68]. Post 

embolization syndrome following TACE with DEE microspheres, as also seen with cTACE 

or embolization with bland microspheres, consisting of abdominal pain, fever, nausea 

and vomiting has been reported in 24.7–84% of patients but is self-limiting [10, 20, 68, 

69]. Transient elevations in liver enzymes including aspartate aminotransferase, alanine 

aminotransferase, and bilirubin are known to occur in humans [70] and animal models 

[71–73]. Lower rates of chemotherapy-related adverse events have been reported for TACE 

with doxorubicin-loaded DEE microspheres compared to cTACE and is likely attributable to 

lower systemic levels of doxorubicin [20].

2.4 Biodegradable DEE microspheres

The rationale for biodegradable (resorbable) DEE microspheres is that they may be used 

for temporary occlusion of blood vessels to permit repeat procedures or in an effort 

to limit the duration of tissue hypoxia which has been implicated in the stimulation of 

neoangiogenesis. Biodegradable DEE microspheres have been developed using natural [74–

77] or synthetic [78–81] materials that degrade primarily by hydrolysis. However, depending 

on local hemodynamic and coagulative conditions, it is possible for biodegradable embolics 

(or any embolic) to cause permanent vessel occlusion if a thrombus or vessel damage 

persists despite microsphere degradation. Overall, the potential benefits of biodegradable 

DEE microspheres remain speculative.

There are a number of potentially important characteristics that should be considered 

when designing biodegradable DEE microspheres. For example, the microspheres should 

degrade into small soluble components, avoiding potential dislodgement of large fragments 

that could lead to non-target embolization or inflammation. In addition, drug release 

should occur in a controlled manner governed by or within the timeframe of microsphere 
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degradation. Similarly, microspheres should degrade at a desirable rate so as to balance the 

duration of tissue ischemia with desired vessel recanalization.

One example of a synthetic resorbable DEE microsphere was developed from poly(ethylene 

glycol) methacrylate (PEGMA) crosslinked with a hydrolyzable copolymer consisting of 

poly(lactide-co-glycolide) (PLGA) and poly(ethylene glycol) (PEG) (PLGA-PEG-PLGA) 

[82, 83]. To shorten the size of the polymer degradation products, additional hydrolyzable 

ester linkages were incorporated into the hydrogel matrix using 2-methylene-1,3-dioxepane 

[82, 83]. The proposed benefit of this approach is that small, water soluble degradation 

products can be cleared by renal elimination [84].

2.5 Antiangiogenic agents loaded into DEE microspheres

Loading and elution of various antiangiogenic agents have been evaluated with DEE 

microspheres [30, 32, 85, 86] and performance of the loaded microspheres tested 

in preclinical models [27, 73, 79, 87, 88]. TACE-induced hypoxia can stimulate 

neoangiogenesis through increased expression of vascular endothelial growth factor (VEGF) 

which can lead to local tumor recurrence [89–91]. Antiangiogenic agents, such as the 

multikinase inhibitor sorafenib, have shown efficacy in HCC but are associated with 

systemic toxicities. Local delivery of these agents with DEE microspheres may be an 

effective strategy to mitigate systemic toxicity and inhibit neoangiogenic pathways induced 

by TACE.

2.6 Radiopaque DEE microspheres

Conventional DEE microspheres are radiolucent and thus cannot be directly visualized 

on intra-procedural fluoroscopy or other X-ray imaging modalities. Early imageable DEE 

microspheres were formulated by impregnating LC Bead with Lipiodol [92] enabling intra- 

and post- procedural visualization of the microspheres as demonstrated in preclinical models 

[93–95]. To address leaching of the entrapped Lipiodol from the microspheres over time, 

intrinsically radiopaque embolic microspheres were developed by conjugating a portion 

of the hydroxyl functional groups available on DC Bead with 2,3,5-triiodobenzoic acid 

via a linker [12]. Later, direct conjugation was achieved using 2,3,5-triiodobenzaldehyde 

[11, 13, 64]. These microspheres (DC Bead LUMI
™

) were shown to possess acceptable 

catheter deliverability, conspicuity on intra- procedural fluoroscopy, and persistent and stable 

image-ability on follow-up CT [11, 14, 64, 96]. It should be noted that the radiopaque 

microspheres do not shrink upon drug loading, in contrast to non-radiopaque DC Bead [97]. 

Recently, small diameter (40–90 μm) radiopaque microspheres were introduced to promote 

more distal arterial distribution [34].

Use of radiopaque DEE microspheres in humans has demonstrated real-time feedback 

regarding anatomic localization of microspheres during TACE [14, 98, 99]. Although 

the clinical utility of radiopaque DEE microspheres continues to be evaluated, it is 

postulated that they may facilitate refinement of treatment endpoint, visualization of 

non-target embolization, and early detection of undertreated regions of a tumor thus 

enabling same-procedure completion of treatment [14]. It has also been proposed that 
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microsphere radiopacity and distribution on imaging may serve as a surrogate for local drug 

concentrations enabling spatial drug dosimetry [15].

3. Drug effects and distribution following TACE with DEE microspheres

3.1 Drug vs ischemia

Results comparing the outcomes of embolization with bland microspheres and doxorubicin-

loaded DEE microspheres have been mixed, fueling an ongoing debate as to the relative 

contributions of ischemia and drug to the efficacy of TACE [100]. There is evidence 

suggesting that both ischemia and drug may contribute to therapeutic effects. Some 

preclinical and clinical studies have demonstrated greater local cytotoxic effects surrounding 

DEE microspheres compared to bland microspheres [87, 101–104]. A retrospective study 

found that TACE with DEE microspheres loaded with epirubicin resulted in greater tumor 

necrosis compared to embolization with bland microspheres in embolized livers explanted 

for liver transplantation [105]. In a single center prospective randomized trial, TACE with 

DEE microspheres demonstrated superior time to progression than bland microspheres 

[69]. However, a single center randomized study by Brown et al. found no difference in 

response using RECIST 1.0 criteria as primary outcome between DEE microspheres and 

bland microsphere embolizations, although different bland and DEE microspheres were used 

[68].

3.2 Factors that influence drug distribution

To be most effective, chemotherapeutic agents must penetrate tissue effectively, maximizing 

the number of cells exposed to therapeutic drug concentrations. The extent to which this 

requirement applies to immunotherapeutic agents is not known, since exposure of discrete 

immunologic targets may be sufficient to stimulate systemic antitumor immune responses. 

There are a number of factors that contribute to the intratumoral distribution and effects of 

drugs delivered using DEE microspheres for TACE.

3.2.1 Microsphere distribution—Due to the relative colocalization of drug and 

microspheres, the extent of tumor drug coverage is largely dependent on the distribution 

of microspheres within the tumor vasculature. Indeed, the volume and attenuation of 

radiopaque DEE microspheres measured on CT in spatially discrete tumor samples was 

found to positively correlate with the amount of doxorubicin measured in the samples 

[15]. Upon injection, DEE microspheres are carried by blood flow and thus preferentially 

accumulate in regions of high arterial blood supply commonly associated with certain 

tumors. Smaller DEE microspheres become lodged more distally from the catheter within 

arteries and are therefore capable of providing superior drug coverage compared to larger 

microspheres prone to more proximal vessel occlusion [95, 106].

3.2.2 Drug release—To exert any effect, the drug must first be released from the 

microspheres. The amount of bioavailable drug, i.e. the fraction of drug eluted, in the tumor 

over time depends on the rate of drug release from the microspheres and rate of clearance 

from the tumor by washout or metabolism. In vivo, the drug release profile from DEE 
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microspheres may be defined by several phases with differing rate-determining mechanisms 

(Figure 1).

Drug release is most rapid immediately following DEE microsphere infusion, due in part to 

the high surface area of microspheres exposed to ions in blood and the “burst” release that 

is characteristic of initial drug release from DEE microspheres. As microspheres accumulate 

in arteries, blood flow is gradually reduced until flow stasis is reached and a microsphere-

thrombus mass is formed. During this phase of the release profile, diffusion of ions into and 

drug out of the microspheres slows. Elevated drug levels in tissue immediately surrounding 

the microspheres may further reduce the rate of drug diffusion from the microspheres as 

the concentration gradient between the microspheres and surrounding tissue diminishes and 

equilibrates. This phenomenon may be particularly relevant for drugs that penetrate poorly 

into the tumor extravascular space, resulting in elevated concentrations in the immediate 

vicinity of the microspheres and prolonging drug release. In the case of doxorubicin, in vivo 
drug release can occur over a period of at least one month [108].

3.2.3 Tissue penetration—Intratumoral drug distribution is subject to a number 

of biologic barriers that can inhibit tumor drug penetration and coverage including 

large intervascular distances, dense cellular and extracellular compartments, and elevated 

interstitial fluid pressure (Figure 2). Drug transport in tumors is also influenced by the 

physicochemical characteristics of the drug including molecular size, charge, and solubility 

as well as the extent of cell uptake and binding [109–112]. Once released from DEE 

microspheres in tissues, drug transport is likely to occur predominantly by diffusion 

since convection is reduced or eliminated following embolization of blood vessels. Some 

studies have evaluated the distribution of drugs in tumors following embolization with 

DEE microspheres and found that doxorubicin remains within ~ 600 μm radially of the 

microspheres [15, 95, 103, 108], in contrast to sunitinib which penetrates further into 

surrounding tissues [113].

It is possible that tumor drug penetration following drug release from DEE microspheres 

may be improved by co-delivery of microenvironment modulators, such as drugs that 

normalize or remodel blood vessels or the extracellular matrix. Similarly, locoregional 

therapies (LRT) or other technologies, such as high intensity focused ultrasound or 

irreversible electroporation, may potentiate drug distribution by heating, convection, or 

mechanical disruption or permeabilization of tissue.

3.3 The tumor microenvironment

The tumor microenvironment plays an important role in determining local drug effects. 

Even if a drug is homogeneously distributed throughout a tumor, its effects may differ 

from one region to another due to spatial heterogeneity in cell phenotypes, proliferation 

rates, metabolism, and tissue oxygenation [114]. This may be particularly relevant for 

conventional cytostatic drugs that exert their effects in a cell cycle dependent manner. Tissue 

hypoxia induced by embolization may affect the susceptibility of cells to certain drugs 

such as doxorubicin, potentially increasing the dose required to achieve cytotoxic effects or 

selecting for a more aggressive tumor phenotype [115, 116]. However, the exact mechanisms 
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by which potential changes in the tumor microenvironment post-embolization, including 

possible alterations in interstitial fluid pressure, microvascular perfusion, and tumor stromal 

content, influence drug distribution and therapeutic effects require further exploration [117–

120]. DEE microspheres loaded with hypoxia-activated or antiangiogenic drugs may be a 

promising strategy to exploit changes within the tumor microenvironment resulting from 

TACE.

3.4 Measuring drug distribution in tumors following TACE with DEE microspheres

A commonly employed method to assess drug accumulation in preclinical tumor models 

consists of tumor tissue homogenization, drug extraction, and quantification. Although this 

approach provides information regarding the total amount and concentration of drug in the 

entire tissue sample, information regarding the spatial distribution of drug in the sample is 

lost. For investigations of TACE with DEE microspheres, this approach additionally fails 

to differentiate between the eluted drug fraction, which is bioavailable, and the amount of 

drug sequestered in the microspheres, which does not contribute to the therapeutic effect. A 

number of techniques that rely on tissue homogenization have been employed to evaluate 

drug concentrations in tumors following TACE with DEE microspheres, but relatively few 

techniques have been used that preserve drug spatial distribution relative to the microspheres 

(Table 2).

For drugs that are naturally fluorescent, such as doxorubicin and sunitinib, spatial 

drug concentrations can be evaluated in tumor sections using fluorescence microscopy 

(Figure 3) [15, 95, 113]. However, quenching of fluorescence signal can restrict accurate 

quantification of the fraction of drug retained in the microspheres. To avoid this problem, 

infrared microspectroscopy has been used to quantify drugs inside microspheres and 

microspectrofluorimetry to detect drug in surrounding tissue [103].

For drugs that are not fluorescent, their distribution may be measured by radiolabeling, or, in 

some cases, inferred by assessing specific drug bioeffects as a surrogate [128]. For example, 

qPCR and microdissection were used to measure interleukin-6 in tissue as a marker of 

ibuprofen released by DEE microspheres [129].

4. DEE microspheres: emerging paradigms and innovations

4.1 Drug dosimetry

The advent of intrinsically radiopaque DEE microspheres has opened the door to 

the possibility of estimating spatial drug concentrations on intraprocedural CBCT or 

postprocedural CBCT or multidetector CT using microsphere radiopacity as a surrogate 

[130]. Recently, the volume and attenuation of radiopaque DEE microspheres measured 

on CT was shown to be linearly proportional to the amount of doxorubicin measured 

in liver samples in a rabbit model [15]. This correlation was then used to predict the 

amount of doxorubicin in the liver based on CT. One can imagine that similar models 

could enable real-time intraprocedural estimation of spatial drug dosimetry using CBCT to 

identify regions of tumor at risk of undertreatment (Figure 4). A limitation of this approach 

is that the ability to image radiopaque microsphere distribution clinically is limited by the 
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spatial resolution of imaging systems [131]. Further study is required to better understand 

the relationship between the imaged three-dimensional distribution of radiopaque DEE 

microspheres, drug distribution, and therapeutic effects of TACE. The ability to predict local 

drug levels could help to clarify the relative contributions of drug and ischemia to treatment 

efficacy.

4.2 Imaging of radiopaque DEE microspheres for rational drug targeting

The ability to image radiopaque microspheres with standard CBCT or multidetector CT is 

limited by the spatial resolution of both technologies [131]. The image is based on X-ray 

absorption alone and cannot be used to discriminate between different absorbers, such as 

calcium, iodine or bismuth. Spectral imaging with dual energy CT (DECT) generates two 

scans with different X-ray energy spectra that can be used to selectively identify a single 

k-edge absorber, e.g., iodine, in images and enables limited differentiation between two 

materials with different k-edge energies [132, 133]. Photon-counting CT systems under 

development use X-ray detectors that can quantify the number and energy of incident 

photons, enabling material decomposition for more than one radioabsorber, based on k-

edges and measured absorption spectra [16, 134, 135]. These techniques could be used to 

differentiate DEE microspheres containing different radiopacifiers, such as iodine, bismuth 

or tantalum, from soluble contrast agents used during microsphere delivery or from each 

other. Furthermore, photon-counting CT systems offer higher spatial resolution than current 

CT scanners and may allow more complete imaging of radiopaque bead distribution [136].

Preliminary work on the synthesis of bismuth-containing microspheres and their 

differentiation on imaging from soluble iodinated contrast using DECT has been reported 

[17, 137]. Bismuth microspheres may be distinguished from iodine-based liquid contrast on 

photon counting CT and, by extension, from iodinated microspheres as its k-edge energy 

(90.52 KeV) is higher than that of iodine (33.2 KeV) [16, 135]. Although speculative, 

radiopaque DEE microspheres containing different radiopacifiers and loaded with different 

drugs could provide a means for rational targeting of different drugs to different regions 

of tumor based on their mechanisms of action, with the option to uniquely image their 

distribution with spectral or photon-counting CT (Figure 5).

4.3 DEE microspheres and immunomodulation

It has been hypothesized that the number of patients that respond to immunotherapy 

may be improved by combination with LRT such as transarterial chemoembolization, 

radioembolization, and thermal ablation (Figure 6) [138]. The rationale is that destruction 

of tumor cells induced by LRT may enhance tumor immunogenicity by promoting the 

expression of tumor-associated antigens and accumulation of tumor-infiltrating lymphocytes 

(TILs). Recently, augmentation of LRT-induced immune activation by concomitant systemic 

administration of check point inhibitors (CPI) was tested in a phase II trial and found to be 

safe and effective in a subset of patients with HCC refractory disease [139]. However, low 

response rates and systemic toxicities remain limiting characteristics of immunotherapy.

Strategies to increase tumor immunogenicity are being actively persued in several clinical 

trials delivering CPI with antiangiogenic agents with or without LRT [140]. Among the 
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immune effects caused by antiangiogenic agents are restoration of dendritic cell maturation, 

and reduction of T-regulatory cells [141, 142]. Enhancement in recruitment and activation 

of CD8+ T cell response has also been reported [143–146]. A recent clinial study 

demonstrated better overall and progression-free survival for the systemic combination 

therapy of atezilumab, an anti-PD-L1 monoclonal antibody, and bevacizumab, an anti-VEGF 

monoclonal antibody, compared to sorafenib. However, severe adverse events were reported 

in 56% of the patients in the combination arm [147].

Another promising approach to augment antitumor immune responses is by pharmacologic 

targeting of immune stimulatory pathways including but not limited to STING, toll-like 

receptors (TLR) [148, 149], VISTA, TIM-3, Btk/Itk, and SHIP1 [150–152]. However, 

these agents have potentially serious non-target side effects when delivered systemically. 

Intratumoral bolus injection may require multiple or repeated administrations due to rapid 

clearance from the tumor and poor intratumoral distribution. DEE microspheres may enable 

better control of the pharmacokinetics and distribution of immune modulating agents, with 

the potential to approximate metronomic or continuous delivery schedules. To date, there is 

limited clinical experience with transarterial delivery of immune modulators [153–155].

There are currently a number of clinical trials underway exploring the combination of LRT 

with immunotherapy [156]. The potential systemic toxicity of many immune-modulating 

agents suggests that they may be ideal candidates for tumor-localized delivery with DEE 

microspheres. However, loading of monoclonal antibodies in DEE microspheres is poor. 

Recently, small molecule CPI targeting the PD-1/PD-L1 pathway have been developed that 

may provide greater flexibility of route of administration, improved toxicity profiles, and 

reduced costs compared to antibody-based CPIs [157, 158]. However, more research is 

needed to effectively combine immune modulating agents with DEE microspheres and to 

optimize drug selection, loading, and elution profiles.

5. Expert opinion

TACE is a minimally-invasive LRT that employs catheters and imaging-based vascular 

“roadmaps” to deliver therapy directly to tumors, precisely where it is needed. This exquisite 

access to tumors presents vast opportunities for locoregional drug delivery using controlled 

release drug delivery systems, such as DEE microspheres, to reduce systemic drug exposure, 

increase intratumoral drug concentrations, and provide greater control over spatial and 

temporal drug distribution.

Doxorubicin remains the most commonly used drug for TACE despite its abandonment 

as a systemic treatment for HCC and evidence suggesting other drugs may have greater 

activity in vitro [159]. Outcomes of trials comparing drug-loaded microspheres to bland 

microspheres have been mixed, further fueling the debate as to the contribution of 

doxorubicin to treatment efficacy and whether it is the optimal drug for delivery with DEE 

microspheres. Nevertheless, pre-treatment biopsies may soon dictate rational drug selection, 

based on single cell transcriptomics with clusters of common mutations or RNA expression 

patterns that define susceptibilities to TACE [160]. Yet, mutational heterogeneity within a 
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single tumor and between synchronous multifocal tumors may limit the ability to capture the 

full mutational landscape with a single biopsy specimen.

A similar scenario may be envisioned in which drug selection could be informed non-

invasively using imaging features to identify potential therapeutic targets. For instance, 

multi-parametric AI and deep learning models trained with digital pathology, genomic data, 

and imaging could potentially identify the most effective combination of DEE microspheres 

and drugs, and where to deliver them, based on pre-treatment imaging. Indeed, different 

drugs could be specifically delivered to discrete regions of tumors based on surrogate 

imaging markers that correlate with specific tumor phenotypes, molecular signatures, 

or immunologic status. Imageable DEE microspheres containing different radiopacifiers 

distinguishable using photon counting CT could facilitate image-guided spatial drug delivery 

of multiple agents.

As our understanding of post-embolization changes in the tumor microenvironment grows, 

so do the opportunities to use drugs that specifically target local conditions created by 

TACE. Tumor hypoxia may be a double edge sword: a natural consequence of ischemia 

induced by embolization that causes necrosis, but also a promoter of neoangiogenesis 

leading to local recurrence. The hypoxic microenvironment may present a rationale for 

use of hypoxia-activated drugs or other targeted agents as a means to enhance drug efficacy. 

Vascular agents that target VEGF or hypoxia-inducible factor 1-alpha (HIF1alpha) may 

serve to limit angiogenesis induced by tumor hypoxia, regarded as a mechanism of local 

tumor recurrence after TACE, or even promote beneficial antitumor immune effects. A 

number of multikinase inhibitors of various other pathways remain to be explored in 

combination with DEE microspheres and present numerous intriguing possibilities for local 

delivery. Counteracting mediators of pro-oncogenic effects following LRT such as TACE, 

for example by suppressing tumor stress responses by local delivery of inhibitors using DEE 

microspheres, may also be possible [161].

The recent success of immunotherapy in the form of checkpoint inhibitors has ushered in a 

new era of cancer therapy. However, many of these treatments are limited by poor response 

rates and undesirable systemic and non-target effects. There is growing evidence that 

response rates to immunotherapy may be augmented by LRT, based on the observation that 

LRT may elicit immunologic cell death and enhance tumor-antigen presentation. In this way, 

LRT and local administration of immune modulating agents, for example by delivery using 

DEE microspheres (“immunobeads”), may help to convert tumors from immunologically 

“cold’ desert or immune-excluded tumors to “hot” and immune-susceptible, in order to 

expand the number of patients that may benefit from immunotherapy. Heterogeneous regions 

of tumors with more aggressive and active clonality or neoantigens could be identified with 

imaging, then targeted for destruction or enhancement of antigen release and presentation 

via TACE, ablation, or DEE microspheres loaded with immune modulators.

The diverse types of immune cells, receptors, and molecular pathways that could potentially 

be targeted by drugs presents a wealth of opportunities for local drug delivery with 

DEE microspheres. Many of these agents may be used to target specific inherent 

tumor characteristics, potentially identified by next-generation sequencing technologies, or 
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biologic processes initiated by TACE itself. As we move beyond the use of conventional 

chemotherapeutic agents for TACE, an emphasis on systematic comparative preclinical 

and clinical studies, supported by collaborative, inter-disciplinary research efforts, will be 

crucial to expedite the translation of next-generation DEE microsphere–drug combinations 

for clinical use.
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Article highlights

• Drug-eluting embolic microspheres / beads serve as an embolic agent to 

stop blood flow to tumors and as a drug delivery vehicle for transarterial 

chemoembolization (TACE) of hepatic malignancies.

• DEE microspheres increase drug concentrations in tumors and reduce 

systemic drug exposure compared to conventional drug delivery methods

• Rational selection of drugs for combination with DEE microspheres could 

exploit potential synergy between mechanisms of drug activity and biologic 

responses to TACE to enhance efficacy.

• Image-able DEE microspheres may enable “image-guided drug dosimetry” 

for rational drug targeting of specific drugs to discrete microenvironments 

within heterogeneous tumors.

• Combinations of DEE microspheres and immune-modulating agents could 

provide potent local and systemic therapeutic effects by promoting anti-tumor 

immune responses generated by TACE
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Figure 1. 
Schematic representation of theoretical phases of DEE microsphere-based drug delivery, 

in vivo. 1) DEE microspheres are injected via intra-arterial catheter into hepatic arteries 

supplying the tumor. Drug release is rapid as DEE microspheres are transported with high 

surface area exposed to flowing blood rich in ions. 2) DEE microspheres become packed in 

arteries, reducing the overall surface area exposed to blood. Blood flow begins to slow and 

the rate of drug release diminishes. A blood clot is formed, reducing or eliminating blood 

flow, and further reducing the rate of drug release. 3) The eluted drug traverses the blood 

vessel wall and penetrates into the interstitial space primarily by diffusion. Adapted from 

[107] with permission from Elsevier.
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Figure 2. 
(A) Factors that may affect drug penetration in tumors after release from DEE microspheres. 

(B) Distribution of doxorubicin (red) relative to DEE microspheres and cell nuclei (blue) 

over time following TACE in swine liver. C) Doxorubicin concentration versus distance 

from microspheres in swine liver embolized with 70–150 μm DEE microspheres. B and C 

reproduced from [95] with permission from Elsevier.

Mikhail et al. Page 25

Expert Opin Drug Deliv. Author manuscript; available in PMC 2024 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Techniques used to assess drug distribution or treatment effects in tumors after embolization 

with DEE microspheres. A) Fluorescence microspectroscopy image of eluted doxorubicin 

surrounding microspheres in a blood vessel (scale bar 50 μm) and B) infrared 

microspectroscopy demonstrating quantification of doxorubicin inside microspheres, 28 

days post embolization in swine liver (scale bar 70 μm) [103]. C) Fluorescence imaging 

(pseudo-colored intensity heatmap) and D) mass spectrometry imaging of sunitinib in a 

tissue section from a rabbit VX2 tumor embolized with sunitinib-eluting microspheres 

[113]. E) Fluorescence microscopy image of rabbit VX2 tumor section containing 

doxorubicin-loaded radiopaque microspheres showing doxorubicin (red) in vivo elution into 

tissue (blue cell nuclei) 1 hour after embolization [15]. F) Automated identification of tumor 
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necrosis (blue), fibrosis (light blue), and liver parenchyma necrosis (brown) using infrared 

microspectroscopy-based prediction model in a rabbit VX2 tumor section (scale bar 1 mm) 

[127]. A, B, C, D, and F reproduced with permission from Elsevier. E reproduced with 

permission from The Radiological Society of North America.
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Figure 4. 
Hypothetical representation of predictive models of spatial drug dosimetry based on 

radiopaque DEE microsphere attenuation and distribution in an HCC tumor. A) Axial 

CBCT slice of HCC tumor with green overlay representing hypothetical regions of tumor 

adequately treated with drug, and red overlay representing potentially undertreated regions. 

B) CBCT of same tumor showing a paucity of radiopaque DEE microspheres in the region 

that was illustrated as undertreated. More research is needed to transform this illustration 

into a method for quantitative prediction of drug distribution and therapeutic effects based 

on imaged distribution of radiopaque DEE microspheres.
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Figure 5. 
Concept of “Dual Drug – Dual Microsphere” TACE: delivery of DEE microspheres 

containing different radiopacifiers and different drugs to specific regions within a tumor, 

imaged with photon counting CT. Microspheres containing different radiopacifiers and 

loaded with different drugs are delivered sequentially to different parts of the tumor for 

rational targeting of discrete intratumoral regions based on drug mechanism of action and 

expected tumor microenvironment. For example, microspheres with a hypoxia activated 

drug (blue) may be delivered to hypoxic tumor regions while microspheres with an 

immune-modulating agent may be directed to immunologically active regions at the tumor 

margin (yellow). The microspheres cannot be distinguished based on standard unfiltered 

CBCT (left). Subsequent photon counting CT shows spatial distribution of the two DEE 

microspheres with different radiopacifiers (center) allowing inferences as to the distribution 

of the two associated drugs, as shown on the inlay.
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Figure 6. 
Immune effects and potential therapeutic strategies using DEE microspheres loaded with 

immune-modulating agents with or without vascular modulators. Clinically approved drugs 

as well as novel immune modulators (bottom left) can be delivered in combination with 

locoregional therapies (top left). This potentially includes TACE in which the immune 

modulators may be loaded into DEE microspheres as a novel treatment paradigm in HCC. 

The hypothesis is that intra-arterial delivery of these drugs using DEE microspheres may 

reduce systemic toxicities, provide greater control over drug spatio-temporal distribution, 

and promote local immunologic effects initiated by TACE. For example, antigens and cell 

debris generated by TACE or other locoregional therapies can accumulate in the tumor 

microenvironment (top right) and trigger a cascade of immunologic events, promoted by 

immune-modulating agents delivered locally at the site, that include recruitment of immune 

cells and cytokine release ultimately leading to promotion of antitumor immune responses 

(bottom right). (RFA: radiofrequency ablation; MWA: microwave ablation; IRE: irreversible 

electroporation; HIFU: high intensity focused ultrasound; TAE: transarterial embolization)
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