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Abstract

INTRODUCTION: Recent genome-wide association studies (GWAS) have reported a

genetic association with Alzheimer’s disease (AD) at the TNIP1/GPX3 locus, but the

mechanism is unclear.

METHODS: We used cerebrospinal fluid (CSF) proteomics data to test (n = 137)

and replicate (n = 446) the association of glutathione peroxidase 3 (GPX3) with

CSF biomarkers (including amyloid and tau) and the GWAS-implicated variants

(rs34294852 and rs871269).

RESULTS:CSFGPX3 levels decreased with amyloid and tau positivity (analysis of vari-

ance P=1.5×10−5) and higherCSF phosphorylated tau (p-tau) levels (P=9.28×10−7).

The rs34294852 minor allele was associated with decreased GPX3 (P = 0.041).

The replication cohort found associations of GPX3 with amyloid and tau positivity

(P= 2.56 × 10−6) and CSF p-tau levels (P= 4.38 × 10−9).
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DISCUSSION: These results suggest variants in the TNIP1 locus may affect the

oxidative stress response in AD via altered GPX3 levels.

KEYWORDS
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proteomics

Highlights

∙ Cerebrospinal fluid (CSF) glutathione peroxidase 3 (GPX3) levels decreased with

amyloid and tau positivity and higher CSF phosphorylated tau.

∙ The minor allele of rs34294852 was associated with lower CSF GPX3. levels when

also controlling for amyloid and tau category.

∙ GPX3 transcript levels in the prefrontal cortex were lower in Alzheimer’s disease

than controls.

∙ rs34294852 is an expression quantitative trait locus for GPX3 in blood, neutrophils,

andmicroglia.

1 BACKGROUND

Genomic studies in Alzheimer’s disease (AD) have identified dozens

of genetic associations,1–4 but connecting variants with mechanistic

pathways is challenging. Direct experimental validation to determine

the consequences of mutations in implicated genes may be costly

and time consuming. In recent years, AD research studies have col-

lected a variety of multiomics data on a large scale, including pro-

teomics, transcriptomics, and metabolomics. These molecular data

sets can provide key intermediate information linking genes to AD

risk.5

Several recent large-scale genome-wide association studies (GWAS)

have reported and discussed the rs871269 and rs34294852 vari-

ants as protective variants for AD6,7 (see Supplementary Note

in supporting information). Here, we use proteomics data from

four different AD cohorts along with existing transcriptomic and

genomic annotation data to understand the biology underlying this

GWAS locus, highlighting a potential connection to AD through

theGPX3 gene.

2 METHODS

2.1 Glutathione peroxidase 3 proteomics

Full details on each cohort, the generation of data, and their anal-

ysis are provided in the Supplementary Note. The discovery pro-

teomics, genotyping, and cerebrospinal fluid (CSF) biomarker data set

came from the University of Wisconsin Alzheimer’s Disease Research

Center (WI ADRC)8 and Wisconsin Registry for Alzheimer’s Pre-

vention (WRAP)9 cohorts (n = 137; 915 CSF proteins quantified),

which have been described in detail previously10 (Figure 1). The

primary replication proteomics data set came from Alzheimer Cen-

ter Amsterdam related studies,11 including the Amsterdam Demen-

tia Cohort (ADC),12 the 90+ Study,13 and the Twin Study14,15

(total n= 446).

Two additional replication proteomics cohorts were also used.

One came from the European Medical Information Framework

for Alzheimer’s Disease Multimodal Biomarker Discovery (EMIF-AD

MBD) study (n = 242). The other came from the Memory and Aging

Project (MAP) at the Knight Alzheimer’s Disease Research Center

(Knight ADRC; n = 948), Alzheimer’s Disease Neuroimaging Initiative

(ADNI; n = 758), the Dominantly Inherited Alzheimer Network (DIAN;

n= 495), Pau (n= 232), and Ruiz (n= 632) studies.

All studies were approved by the relevant review board or commit-

tee, and informed consent was provided by participants (see Consent

Statement).

Briefly, CSF glutathione peroxidase 3 (GPX3) levels were tested

for association with amyloid and tau (AT) positivity categories using

analysis of variance (ANOVA) and visualized with box plots. Linear

regressions were used to test the association of CSF GPX3 levels

with continuous measures of CSF amyloid and tau, and, for the dis-

covery cohort, with a panel containing seven other biomarkers of

neurodegeneration or neuroinflammation. In the discovery cohort, a

simple Bonferroni correction was used to control for multiple testing

of the nine total biomarkers in separate regressions. Additionally, in

the discovery and primary replication cohorts, the ANOVA and linear

regression models were repeated with the addition of the genotype of

one of the ADGWAS variants (rs871269 or rs34294842), coded as the

count of the number of minor alleles. In all analyses, age and sex were

included as covariates along with additional study-specific covariates

as appropriate (Supplementary Note).
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2.2 GPX3 expression quantitative trait loci
analysis

Microglia expression quantitative trait loci (eQTL) summary statis-

tics were accessed through the European Genome–Phenome Archive

(EGAD00001005736) and theWellcome Sanger Institute Data Access

Committee. All sequence data sets were aligned to human genome

assembly GRCh38. Simple linear regression was used to map eQTLs

with 25 principal components (PCs).16 The eQTL associations for

GPX3 were extracted for the analysis in this paper. Study designs and

method details of the microglia eQTL mapping have been described

elsewhere.16 The presence of eQTLs for GPX3 in other cell types was

assessed in the public databases Open Targets and FIVEx.17–19

3 RESULTS

3.1 GPX3 proteomics

Using recently generated mass spectrometry (MS) CSF proteomics

data from the University of Wisconsin (UW; mean age 66.1; 59.9%

female; all of European ancestry; detailed description previously

reported10), we searched for evidence supporting the role of genes

near the GWAS-identified single nucleotide polymorphisms (SNPs)

of rs871269 and rs34294852. Among the genes closest to these

SNPs (TNIP1 and GPX3), only GPX3 was identified and quantified in

this discovery CSF data set; presumably, levels of TNIP1 were below

the limit of detection.10 We then conducted ANOVA analyses that

examined the relationship of CSF GPX3 with CSF amyloid- and CSF

tau-defined categories of AD (total n = 137; 56 A–T–, 39 A+T–,
and 42 A+T+; see Section 2). We used these amyloid (A) and tau

(T) categories because they are the major biomarkers central to AD,

where amyloid tends to change first followed by tau (note that A–

T+ is generally excluded as presumably non-AD pathology).20,21 After

correction for age and sex (see Section 2), CSF GPX3 levels were

statistically significantly different across the AD continuum from A–

T– to A+T– to A+T+ (ANOVA P = 1.5 × 10−5) with a significant

decreasebetween theA–T–andA+T+ categories (t testP=1.3×10−5;

Figure 2A). GPX3 was also significantly associated with eight of the

nine tested individual markers of neurodegeneration and neuroinflam-

mation from the NeuroToolKit panel: phosphorylated tau (p-tau), the

p-tau/amyloid beta (Aβ)42 ratio, alpha-synuclein, neurofilament light

chain (NfL), neurogranin, chitinase-3-like protein (YKL-40), and solu-

ble TREM2 (sTREM2) were all negatively correlated with GPX3, while

the Aβ42/Aβ40 ratiowas positively correlated (Figure 2B, Table 1, Sup-
plementary Note). The remaining biomarker, interleukin 6, was not

associated with GPX3 levels.

We then examined genotype effects on the GPX3 trajectory.

According to ANOVA and pairwise t tests, there were no differences

in GPX3 levels by just the minor allele count of either SNP alone

(ANOVA P values were 0.95 and 0.10, respectively, for the genotypes

for rs871269 and rs34294852; Figure 2C), indicating that no differ-

ences in GPX3 level were present by genotype across the population

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the

Alzheimer’s disease (AD) genome-wide association

studies (GWAS) literature to examine reported results

related to the TNIP1/GPX3 locus. While two studies

report AD associations at this locus, no clear mechanism

of action nor causal genes were known.

2. Interpretation: Our cerebrospinal fluid (CSF) proteomics

analysis of glutathione peroxidase 3 (GPX3) levels and

follow-up transcriptomic, functional annotation, and

expression quantitative trait locus investigation led

us to hypothesize a potential mechanism of action for

this observed GWAS finding: variants at the TNIP1/GPX3

locus have amediated effect onAD through alteredGPX3

levels, perhaps reflecting an insufficient or deteriorating

response to oxidative stress in AD.

3. Future directions: This article highlights a potential ther-

apeutic target in AD. Specific experimental validation of

this hypothesis with genetics or proteomics techniques in

cell or animal models of AD is needed.

as a whole. However, when GPX3 levels were analyzed as the outcome

in a multiple linear regression with both AT category and SNP minor

allele count (numeric coding) as predictors, a significant decrease in

GPX3 levels per copy of the minor allele was observed (P = 0.041

for rs34294852; Figure 2D), suggesting a potential dose–response

relationship.

These associations with GPX3 levels were then assessed for repli-

cation in an independent set of MS-based CSF proteomics measure-

ments: the Alzheimer Center Amsterdam related studies (n = 446; all

of European ancestry). As in the UW cohort, GPX3 was not associated

with clinical diagnosis categories (controls, mild cognitive impairment,

and AD-type dementia; analysis of covariance [ANCOVA] P = 0.37,

controlling for age at sample and sex), but GPX3 was associated with

AT-based categories (ANCOVA P = 2.56 × 10−6), with GPX3 levels

lower on average in the A+T+ group compared to the A+T– group

(Figure S1 in supporting information), replicating what was seen in the

UW data. With continuous values of the amyloid and tau (i.e., p-tau)

biomarkers, the negative association of GPX3 with CSF p-tau levels

was also replicated (P = 4.38 × 10−9, again controlling for age and

sex), though the associationwith CSF amyloid levels was not replicated

(P = 0.66). When the minor allele count of rs871269 or rs34294852

was added to the regression model (still with AT group, age, and sex as

predictors), neither SNPwas associatedwithGPX3 levels (P=0.21 and

P= 0.84 for rs871269 and rs34294852, respectively).

We also sought to replicate the CSF proteomics signal in two

other population cohorts. Using MS-based proteomics data from the

EMIF-AD MBD study (n = 242 participants; all of European ancestry),

we performed an ANOVA to see if MS-derived CSF GPX3 levels were
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F IGURE 1 Study overview. An overview is provided of themotivating GWAS results, the novel CSF proteomics discovery and replication
analyses, and the supporting transcriptomic and functional genomic data sets and resources that were used in this study. AD, Alzheimer’s disease;
ADNI, Alzheimer’s Disease Neuroimaging Initiative; CSF, cerebrospinal fluid; DIAN, Dominantly Inherited Alzheimer Network; EMIF-ADMBD,
EuropeanMedical Information Framework for Alzheimer’s DiseaseMultimodal Biomarker Discovery; GWAS, genome-wide association studies;
WRAP/WI ADRC,Wisconsin Registry for Alzheimer’s Prevention/Wisconsin Alzheimer’s Disease Research Center.

different by AT category. No such difference was observed (P = 0.96)

in this cohort, even when stratified by rs34294852 genotypes (Figure

S2 in supporting information) or controlling for age, sex, or study

site. In the Knight ADRC’s discovery and replication CSF proteomics

data sets at Washington University in St. Louis (n = 1168 and 597

participants, respectively; >90% of participants in each data set were

of European ancestry), CSF GPX3 levels were measured using an

aptamer-based proteomics platform instead of MS. The abundance of

GPX3 levels was not significantly different between A+T+ and A–T–

individuals (P= 0.90 and P= 0.51, respectively; Figure S3 in supporting

information).

3.2 GPX3 transcriptomics

Next, we examined transcriptomics data sets to understand the rela-

tionship ofGPX3 expression in general and in an AD cohort. Across the

cell types in the Human Protein Atlas, GPX3 is most highly expressed

in the proximal tubular cells of the kidney (20125.9 nTPM) and the

Müller glia cells of the eye (5019.8 nTPM). Among brain tissues, the

overall expression was lower, but GPX3 was expressed in several

types of neurons, microglia (3.7 nTPM), and astrocytes (1.0 nTPM;

Figure S4 in supporting information).22 Within an AD cohort, in which

GPX3might be more relevant given the heterogeneity of the microglia

transcriptome,23 RNA-seq data from the prefrontal cortex from the

Religious Orders StudyMemory and Aging Project (ROSMAP) showed

that GPX3 transcript levels decreased in the prefrontal cortex from

controls to AD diagnosis (P = 7 × 10−6; Figure S5 in supporting

information), but not in other brain regions.24

In terms eQTL data, variant rs34294852 is an eQTL for TNIP1 and

GPX3 in blood, and it is also an eQTL for TNIP1 in monocytes and neu-

trophils and forGPX3 for neutrophils.17–19 Wealso investigated recent

eQTL data for microglia and found that rs34294852 was an eQTL for

GPX3 (P= 0.038).16

3.3 GPX3 functional genomics

We also found evidence from functional genomics supporting a rela-

tionship between rs34294852 and GPX3 transcription. In terms of

genome functional annotation, rs34294852 is located within the

sixth intron of TNIP1 and downstream of the enhancer region



5048 PANYARD ET AL.

F IGURE 2 Associations of CSFGPX3with AD-relatedmeasures in theWI ADRC andWRAP cohorts. A, CSF GPX3 levels (after regressing out
the effects of age and sex) significantly decreased across amyloid and tau (AT) positivity categories (n= 137). B, CSF GPX3 levels were significantly
associated with all CSF biomarkers of neurodegeneration and neuroinflammation except for IL-6 (n= 137). In each case, GPX3 levels decreased as
biomarker values indicated a worse clinical profile. C, Across the whole sample (n= 137), no difference in GPX3 levels were observed by genotype
of either AD-related variant alone. D, CSF GPX3 levels by both AT and genotype are shown for both relevant SNPs at the TNIP1/GPX3 locus.
Among participants whowere A+T+ (n= 42), CSF GPX3 levels were significantly decreased for homozygous recessive carriers of the rs34294852
allele (10 total participants were homozygous recessive for rs34294852; n= 5were A–T–; n= 3were A+T–; n= 2were A+T+). AD, Alzheimer’s
disease; CSF, cerebrospinal fluid; GPX3, glutathione peroxidase 3; GWAS, genome-wide association studies; IL-6, interleukin 6; SNP, single
nucleotide polymorphism;WI ADRC,Wisconsin Alzheimer’s Disease Research Center;WRAP,Wisconsin Registry for Alzheimer’s Prevention.

TABLE 1 Association of GPX3with CSF biomarkers of
neurodegeneration and neuroinflammation.

Biomarker Estimate SE P R2

Aβ42/Aβ40 0.0047 0.0016 0.0050 0.057

P-tau −5.00 0.97 9.28E-07 0.164

P-tau/Aβ42 −0.0085 0.0029 0.0045 0.058

log10(NfL) −0.068 0.018 0.0002 0.096

Alpha-synuclein −32.3 6.3 1.01E-06 0.163

Neurogranin −150.4 29.0 7.81E-07 0.166

sTREM2 −1.21 0.20 1.08E-08 0.216

log10(IL-6) −0.017 0.021 0.4112 0.005

YKL-40 −20.6 5.3 0.0001 0.102

Abbreviations: Aβ, amyloid beta; CSF, cerebrospinal fluid; GPX3, glu-

tathione peroxidase 3; IL-6, interleukin 6; NfL, neurofilament light chain;

p-tau, phosphorylated tau; SE, standard error; sTREM2, soluble TREM2;

YKL-40, chitinase-3-like protein.

GH05J151051 from GeneHancer.25,26 Variant rs34294852 is pre-

dicted to alter the binding of the transcription factor MZF1 according

to FeatSNP,27 which is a database that aggregates brain-specific

epigenetic data to examine the effects of genetic variants.

4 DISCUSSION

GPX3 is a secreted glutathione peroxidase that protects the body from

oxidative damage by reducing hydroperoxides.28 AD has long been

linked to oxidative stress, as have aging processes in general.29–31 Con-

nections between GPX activity and AD have been noted in previous

studies of AD, usually finding decreased GPX activity in AD compared

to healthy controls.32–36

Based on our results here, we developed a hypothesis regarding the

GWAS signal at the TNIP1/GPX3 locus (Figure 3). First, as oxidative

stress rises with the preclinical pathophysiological processes of AD,

the body combats that stress in part with GPX3. As AD progresses
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F IGURE 3 Proposed functional mechanism of the TNIP1/GPX3 locus in AD. Our hypothesis for a functional mechanism connecting the variant
rs34294852 to AD outcomes is overlaid onto amap of themajor types of omics data analyzed here. Major lines of post-GWAS functional evidence
supporting this hypothesis are summarized in the right-hand list. AD, Alzheimer’s disease; CSF, cerebrospinal fluid; EMIF-ADMBD, European
Medical Information Framework for Alzheimer’s DiseaseMultimodal Biomarker Discovery; eQTL, expression quantitative trait loci; GWAS,
genome-wide association studies; ROSMAP, Religious Orders Study and RushMemory and Aging Project; UWADRC, University ofWisconsin
Alzheimer’s Disease Research Center;WRAP,Wisconsin Registry for Alzheimer’s Prevention.

to the accumulation of tau tangles and beyond, GPX3 transcript and

protein levels drop, perhaps reflecting growing disruption to normal

oxidative stress protectivemeasures, decompensation after some pro-

tective element is depleted (e.g., decreased selenium availability), or

some other event.36 The presence of certain genetic variants at the

TNIP1/GPX3 locusmay affectGPX3 levels or the capacity to respond to

oxidative stress through GPX3 expression by affecting enhancer activ-

ity at this genetic locus. Moreover, the data we present here might

help explain some of the inconsistency in the GPX–AD associations

observed inpriorwork if those associations are indeedaffectedbyvari-

ants at the TNIP1/GPX3 locus. Strengthening our findings here in AD

is a recent study of the TNIP1/GPX3 locus in amyotrophic lateral scle-

rosis (ALS) that also found GPX3 levels to drop in more progressed

disease and with the putative risk allele,37 providing further support

for this proposed hypothesis and evidence that GPX3 may be a useful

therapeutic target.

This hypothesized GPX3 trajectory also presents an explanation for

the subtlety of the signal in the data sets examined here. Depending

on the population studied, the availability of data points at different

times in the trajectory of AD, and how groups are defined (by clinical

diagnosis, AT group, or something else), the statistical signal of what is

happening with GPX3 may be obscured. For instance, the lack of sig-

nal when looking at AD dementia cases versus controls might be due

to comparing levels of GPX3 that have decreased due to pathology

with cognitively healthy individuals who either do not have AD or have

not yet experienced enough oxidative stress to merit a rise in GPX3

levels in the first place. Focusing on AT-defined categories may have

helped uncover this signal by differentiating between different stages

of preclinical AD.

While multiple layers of omic data described here support a role

of GPX3 in AD, the proteomic associations were not consistently

observed across the cohorts analyzed. Beyond the issues raised above,

this inconsistency at the protein level might arise from several other

confounding factors. Given the rarity of the minor allele, this mecha-

nism might be hard to detect in some cohorts (as was the case here)

and perhaps then only under certain disease conditions or at specific

times in the development of AD. This pathway might also be difficult

to detect for other reasons: (1) the original GWAS effect was small, (2)

the pathway might only be relevant to a subset of cell types, and (3)

and the effect might be harder to observe for homozygous dominant

or heterozygous rs34294852 genotypes. Moreover, the effect allele

for rs34294852 (C) has a minor allele frequency ranging from 0.16 for

EastAsianson the lowend to0.25 forAfrican/AfricanAmericanson the

high end,38 which would make homozygous recessive individuals rela-

tively uncommon, as was the case in the data sets analyzed here, which

couldmean thatdirect observationof this genotype-mediatedpathway

at the protein level would be more difficult. Adding to the difficulty of

replicating the proteomics signal are differences in populations, pro-

teomics technologies (MS vs. aptamer-based),39 and amyloid and tau

phenotyping between the cohorts, which could also hinder replication.

Finally, it is important to note that the data here supporting a role of

GPX3 do not rule out an effect through TNIP1 as well; more work will

be needed to examine other potential effects of these variants on AD.

Nevertheless, the observed multiomic evidence connecting vari-

ation at this locus to AD to GPX3 expression, combined with our

understanding of oxidative stress in AD and GPX proteins’ role in

combating such stress, provide an intriguing hypothesis for the func-

tional mechanism of these GWAS variants in AD. Several functional

experiments would be a reasonable next step in exploring this hypoth-

esis: (1) a gene-editing experiment to validate the impact of genetic

variation at rs34294852 on GPX3 expression, (2) proteomics analysis

in brain or other relevant cell types to examine GPX3 levels in AD, and
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(3) a cell or organismal model of AD to assess the expression of GPX

proteins in connectionwith oxidative stress burden and its relationship

to changes in tau level. Furthermore, longitudinal observational CSF

proteomics data starting from the A–T– preclinical stage of AD would

help test this hypothesized mechanism as well. Nevertheless, the post-

GWAS analyses here demonstrate the utility of multiomic cohort data

in the investigationofGWAS loci and theirmechanismsof action,which

can lead to new insights into AD with the ultimate goal of identifying

new therapeutic targets.
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