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Abstract

INTRODUCTION: Genome-wide association studies have identified over 70 genetic

loci associated with late-onset Alzheimer’s disease (LOAD), but few candidate poly-

morphisms have been functionally assessed for disease relevance and mechanism of

action.

METHODS: Candidate genetic risk variants were informatically prioritized and indi-

vidually engineered into a LOAD-sensitized mouse model that carries the AD risk

variants APOE ε4/ε4 and Trem2*R47H. The potential disease relevance of each model

was assessed by comparing brain transcriptomes measured with the Nanostring

Mouse AD Panel at 4 and 12months of age with human study cohorts.

RESULTS: We created new models for 11 coding and loss-of-function risk variants.

Transcriptomic effects frommultiple genetic variants recapitulated a variety of human

gene expression patterns observed in LOADstudy cohorts. Specificmodelsmatched to

emergingmolecular LOAD subtypes.

DISCUSSION: These results provide an initial functionalization of 11 candidate risk

variants and identify potential preclinical models for testing targeted therapeutics.

KEYWORDS

Abca7, Alzheimer’s disease, animal models, APOE4, Plcg2. Mthfr, preclinical, Sorl1, transcrip-
tomic analysis, Trem2

Highlights

∙ A novel approach to validate genetic risk factors for late-onset AD (LOAD) is

presented.

∙ LOAD risk variants were knocked in to conservedmouse loci.

∙ Variant effects were assayed by transcriptional analysis.
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∙ Risk variants in Abca7, Mthfr, Plcg2, and Sorl1 loci modeled molecular signatures of

clinical disease.

∙ This approach should generatemore translationally relevant animal models.

1 BACKGROUND

Alzheimer’s disease (AD) is the most common cause of dementia, with

a growing clinical, financial, and social impact. An increasing body of

evidence highlights the importance of genetic risk in AD.1–3 While a

small percentage of AD cases are linked to causative, familial muta-

tions in the amyloid precursor protein (APP) processing pathway, the

vast majority of cases are late-onset AD (LOAD), have heterogeneous

symptoms and etiology, and are associated with polygenic risk from a

combination of low-risk, relatively common variants.4–6 Genome-wide

association studies (GWAS) have identified numerous LOAD risk vari-

ants, but few have been experimentally validated, and physiological

mechanisms have not been elucidated, even for the single strongest

risk variant, the ε4 allele of the APOE gene.4,7 This is but one example8

of the general problem of how to progress from the identification of

genetic variants to the functional impact of variants to getting to phys-

iological disease mechanisms.9 Here we present a novel approach to

assay the impact of individual polygenic risk factors using an in vivo

approach.

While numerous potential therapeutics have shown promising

results in transgenic mouse models of familial AD, few have advanced

in clinical trials. This may result from numerous causes, but it is clear

that one reason may be the lack of translational animal models avail-

able for preclinical studies.10–12 Almost all existing rodent models are

based on causative mutations in proteins in the APP processing path-

wayexpressed in neurons.MostADgenetic risk resides in genesmainly

expressed in microglia and other non-neuronal cell types, as recently

reviewed,5,13,14 indicating that complex cellular interactions play a

causative role in disease etiology. While in vitro systems have been

shown to have value, more relevant in vivo models are necessary to

understand these cell–cell interactions.15 In particular, animal models

are required to study the early and progressive stages of pathology,

which are not accessible in clinical studies but are critical to under-

stand disease mechanisms so as to better target novel therapeutic

approaches.

The Model Organism Development and Evaluation for Late-onset

Alzheimer’s Disease (MODEL-AD) Consortiumwas established to cre-

ate and characterize translationally relevant mouse models of LOAD

and to set up protocols for preclinical testing in these new models.16

In this study we provide an overview of novel mouse models express-

ing human risk variants. Variants were introduced using a knock-in

approach to avoid known issues with transgenic models.11,17–19 To

potentially enhance disease-relevant outcomes, variants were created

on a more LOAD-susceptible genetic background expressing human-

ized APOEwith the ε4 variant and the R47Hmutation in Trem2, two of

the strongest genetic risk factors for LOAD.20 The effects of each vari-

antwereassessedbygeneexpression changes in agingmale and female

brains using a newly developed transcriptomics panel,21 representing

key LOAD-associated changes in clinical AD samples.22 This allowed us

to functionalize GWAS variants with small but significant increases in

disease risk and avoided a reliance on amyloid deposition or cognitive

assays, which have not proven to translate to clinical studies.

2 METHODS

2.1 Late-onset AD risk variant prioritization

Prioritization and construction of the APOE and TREM2 variants

in the LOAD1 strain were previously discussed.20 Late-onset vari-

ants were selected based on human genetic association, predicted

pathogenicity, conservationwithmouse homolog, and allele frequency.

We further prioritized based on diversity in predicted function tomax-

imize our exploration of potential LOAD biology. Determining specific

variants was primarily limited by the rarity of strong coding can-

didates (eg, non-synonymous, stop-gain) and strict mouse sequence

homology that required the same single nucleotide polymorphism

(SNP) be engineered into mice. This led to a mix of variants at

high-confidence GWAS loci, functional candidates, and exploratory

variants. Exome sequencing from the Alzheimer’s Disease Sequenc-

ing Project (ADSP) was initially used to identify specific variants at

loci,23 buttressed by summary data at the National Institute on Aging

Genetics of Alzheimer’s DiseaseData Storage Site (NIAGADS) (https://

www.niagads.org/genomics/app). All variants are annotated as “ADSP

Variants” that passed NIAGADS quality control checks (https://www.

niagads.org/genomics/app).

ABCA7*A1527G (rs3752246) is the most common of multiple

predicted loss-of-function variants associated with increased LOAD

risk at the ABCA7 locus.24,25 The SORL1*A528T (rs2298813) vari-

ant is among candidates in the SORL1 gene and likely involved

in retromer function26; deficits in retromer-dependent endo-

somal recycling have been implicated as causal in AD.27–29

The SNX1*D465N (rs1802376) variant locus is associated with

AD,24 and SNX1 is involved in retromer function relevant to

LOAD.30 PLCG2*M28L (rs61749044) has been associated with

LOAD (https://www.biorxiv.org/content/10.1101/2020.05.19.

104216v1),24,31 and Plcg2 is a key protein in microglial activation

in response to AD pathology.32 The SHC2*V433M (rs61749990)

variant was identified in ADSP exomes and has been associated

with neurodegeneration and neuron loss.33,34 SLC6A17*P61P

(rs41281364) reduces gene expression in the brain (gtexpor-

tal.org/home/gene/SLC6A17), and its reduction is also associated with

https://www.niagads.org/genomics/app
https://www.niagads.org/genomics/app
https://www.niagads.org/genomics/app
https://www.niagads.org/genomics/app
https://www.biorxiv.org/content/10.1101/2020.05.19.104216v1)
https://www.biorxiv.org/content/10.1101/2020.05.19.104216v1)
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LOAD (agora.adknowledgeportal.org/genes/ENSG00000197106).

Rare variants have been associatedwith neurological phenotypes.35,36

The CLASP2*L163P (rs61738888) variant has been associated with

neurodegeneration from meta-analysis.37 The MTMR4*V297G

(rs2302189) variant has been linked to cognitive function.38,39

Predicted CEACAM1 loss-of-function variants had a high disease

burden in ADSP exome sequencing data (SKAT-O Bonferroni-adjusted

p= 7.47× 10−7), and the genewas associatedwith AD-related traits in

amodel ofmouse genetic variability.40 The commonMTHFR*677C>T

(rs1801133) has been associated with increased risk for LOAD and

other age-related disorders.41,42 To explore a copy-number variant

linked to vascular function, we used an existing MEOX2 knock-

out based on an association with AD43 that may be related to the

gene’s role in neurovascular health.44 This variant was assessed in a

heterozygous state due to the non-viability of the homozygote.

2.2 Model development

All experiments were approved by the Animal Care and Use Commit-

tee at The Jackson Laboratory. Mice were bred in the mouse facility at

The Jackson Laboratory and maintained in a 12/12-h light/dark cycle,

consisting of 12 h-ON 7 am-7 pm, followed by 12 h-OFF. Room tem-

peratures are maintained at 18◦C to 24◦C (65◦F to 75◦F) with 40% to

60% humidity. All mice were housed in positive, individually ventilated

cages (PIV). Standard autoclaved 6% fat diet (Purina Lab Diet 5K52)

wasavailable to themicead libitum, aswaswaterwithacidity regulated

from pH 2.5 to 3.0.

Novel mouse alleles were generated using direct delivery of

CRISPR-Cas9 reagents to LOAD1 (JAX No. 28709)20 mouse zygotes.

Analysis of genomic DNA sequence surrounding the target region,

using the Benchling (www.benchling.com) guide RNA design tool,

identified appropriate gRNA sequences with a suitable target endonu-

clease site.

Streptococcus pyogenes Cas9 (SpCas9) V3 protein and gRNA

were purchased as part of the Alt-R CRISPR-Cas9 system using the

crRNA:tracrRNA duplex format as the gRNA species (IDT, USA). Alt-R

CRISPR-Cas9 crRNAs (Product 1072532, IDT, USA) were synthesized

using the gRNA sequences specified in the DESIGN section and

hybridized with the Alt-R tracrRNA (Product 1072534, IDT, USA)

as per the manufacturer’s instructions. Plasmid or oligonucleotide

constructs were synthesized by Genscript. See Table S1 for CRISPR

reagents.

To prepare the gene editing reagent for electroporation,

SpCas9:gRNA Ribonucleoprotein (RNP) complexes were formed

by incubating AltR-SpCas9 V3 (Product 1081059, IDT, USA) and gRNA

duplexes for 20 min at room temperature in embryo tested TE buffer

(pH 7.5). The SpCas9 protein and gRNA duplex were at 833 ng/ul

and 389 ng/ul, respectively, during complex formation. After RNP

formation, the purified plasmid was added and the mixture spun at

14,000 rpm in a microcentrifuge. The supernatant was transferred to

a clean tube and stored on ice until use in the embryo electroporation

procedure. The final concentrations of the gRNA, SpCas9, and plas-

RESEARCH INCONTEXT

1. Systematic review: The authors review the literature and

associated public datasets to identify genetic risk factors

for late-onset Alzheimer’s disease (LOAD).

2. Interpretation: Our findings support the use of mouse

models to validate and prioritize disease risk variants

identified by clinical studies and are an essential step

toward the development of models of LOAD to be used

in mechanistic studies and in therapeutic development

efforts.

3. Future directions: This manuscript establishes a pro-

cess to validate and prioritize animal models expressing

genetic risk factors for LOAD, which are currently lack-

ing. Based on the relevance of transcriptomic signatures

to those seen in clinical studies, wewill combine alleles to

create polygenic models that can serve as useful models

of LOAD. Moving forward, we will do in-depth analysis of

these novel models at extended ages using translationally

relevant measures including: fluid biomarkers; transcrip-

tomics, proteomics, and metabolomics; neuropathology;

and in vivo imaging.

mid components in the electroporation mixture were 600, 500, and

20 ng/ul, respectively.

Founders were selected that were positive by short-range poly-

merase chain reaction (PCR) assays, had appropriate sequence across

the homology arm junctions, were negative for the plasmid backbone,

and had correct sequences of the inserted construct.

Allele-specific genotyping protocols for all models are available on

JAXmice data sheets for eachmodel.

Other models were obtained from the JAX mouse repository

(Table 1).

2.3 Brain harvest at 4 months of age

Anesthetized and subsequently perfused animals were decapitated

and heads submerged quickly in cold 1X PBS. The brain was carefully

removed from the skull, weighed, and divided midsagitally into left

and right hemispheres using a brain matrix. The right hemisphere was

quickly homogenized on ice and equally aliquoted into cryotubes for

proteomic and transcriptomic analysis. Cryotubes were immediately

snap-frozen on dry ice and stored long term at−80◦C.

2.4 RNA sample extraction

Total RNA was extracted from snap-frozen right brain hemi-

spheres using Trizol (Invitrogen, Carlsbad, CA). mRNA was purified

from total RNA using biotin-tagged poly dT oligonucleotides and

streptavidin-coated magnetic beads, and quality was assessed using

http://www.benchling.com
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TABLE 1 Listing of gene loci, human risk variants, and correspondingmouse alleles, allele type, and JAX ID of mousemodels created.

Locus Allele (Human) Allele (Mouse) SNP Allele Type JAXNo.

Abca7 A1527G A1541G rs3752246 missense 30283

Ceacam1 LOF variants KO — KO 30673

Clasp2 L163P L163P rs61738888 missense 31944

Meox2 LOF variants HET KO — HETKO 33770

Mthfr A222V (677C> T) A262V rs1801133 missense 30922

Mtmr4 V297G V297G rs2302189 missense 31950

Plcg2 M28L M28L rs61749044 missense 30674

Shc2 V577M V433M rs2298813 missense 31952

Slc6a17 P61P P61P rs41281364 silent mutation 31948

Snx1 D466N D465N rs1802376 missense 31942

Sorl1 A528T A528T rs41281364 missense 31940

Othermodels used

57BL/6J 664

5xFAD 8730

LOAD1 28709

Note: All models also contain a humanized APOE ε4 allele and a Trem2*R47H allele on the C57BL6/J background (“LOAD1”), which was used as a control.

an Agilent Technologies 2100 Bioanalyzer (Agilent, Santa Clara,

CA, USA).

RNA-Sequencing Assay Library Preparation Sequencing libraries

were constructed using TruSeqDNAV2 (Illumina, SanDiego, CA, USA)

sample prep kits and quantified using qPCR (Kapa Biosystems, Wilm-

ington, MA). The mRNA was fragmented, and double-stranded cDNA

was generated by random priming. The ends of the fragmented DNA

were converted into phosphorylatedblunt ends. An “A” basewas added

to the 3′ ends. Illumina-specific adapters were ligated to the DNA

fragments. Using magnetic bead technology, the ligated fragments

were size-selected, and then a final PCR was performed to enrich the

adapter-modified DNA fragments since only the DNA fragments with

adapters at both ends will amplify.

2.5 RNA-Sequencing

Libraries were pooled and sequenced by the Genome Technologies

core facility at The Jackson Laboratory. All samples were sequenced

on Illumina HiSeq 4000 using HiSeq 3000/4000 SBS Kit reagents (Illu-

mina), targeting 30 million read pairs per sample. Samples were split

across multiple lanes when being run on the Illumina HiSeq; once the

datawere received, the sampleswere concatenated to have a single file

for paired-end analysis.

2.6 RNA-Sequencing data processing

Sequence quality of reads was assessed using FastQC (version 0.11.3,

Babraham). Low-quality bases were trimmed from sequencing reads

using Trimmomatic (version 0.33).45 After trimming, reads of length

longer than 36 bases were retained. The average quality score was

greater than 30 at each base position, and sequencing depth was in

a range of 60 to 80 million reads. RNA-Seq sequencing reads from

all samples were mapped to the mouse genome (version GRCm38.p6)

using ultrafast RNA-Seq aligner STAR (version 2.5.3).46 To measure

human APOE gene expression, we created a chimeric mouse genome

by concatenating the human APOE gene sequence (human chromo-

some 19:44905754-44909393) into the mouse genome (GRCm38.p6)

as a separate chromosome (referred to as chromosome 21 in chimeric

mouse genome). Subsequently, we added gene annotation of the

human APOE gene into the mouse gene annotation file. Addition-

ally, we have also introduced annotation for novel Trem2 isoform in

mouse gene annotation file (GTF file), which is identical to the primary

transcript but truncated exon2 by 119 bp from its start position.20

Afterward, a STAR index was built for this chimeric mouse genome

sequence for alignment, then STAR aligner output coordinate-sorted

BAMfiles for each sampleweremapped to the chimericmouse genome

using this index. Gene expression was quantified in twoways to enable

multiple analytical methods: transcripts per million (TPM) using RSEM

(version 1.2.31)47 and raw read counts using HTSeq-count (version

0.8.0).48

Engineered variants were validated by inspecting RNA-Seq reads

(Figure S1A), and targeted transcript expression was verified by RNA

abundance (Figure S1B).

2.7 NanoString transcriptomic analysis

The NanoStringMouse AD gene expression panel21 was used for gene

expression profiling on the nCounter platform (NanoString, Seattle,
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WA, USA). Mouse NanoString gene expression data were collected

from brain hemisphere homogenates at 4, 8, and 12 months of age

for both sexes, from approximately six animals per group. The nSolver

software was used for generating NanoString gene expression counts.

Normalization was done by dividing counts within a lane by geomet-

ric mean of the designated housekeeping genes from the same lane.

Next, normalized count valueswere log-transformed and corrected for

potential batch effects using ComBat.49

Next, we determined the effects of each factor (sex and genetic vari-

ants) by fitting a multiple regression model using the lm function in R

as50

log (expr) = 𝛽0 +
∑

i
𝛽i + 𝜀.

The sum is over sex (male), and all genetic variants (5xFAD,

LOAD1, Abca7*A1527G, Ceacam1KO, Mthfr*677C> T, Shc2*V433M,

Slc6a17*P61P, Clasp2*L163P, Sorl1*A528T, Meox2 KO [HET],

Snx1*D465N, Plcg2*M28L, Mtmr4*V297G) used in this study. The

log(expr) represents log-transformed normalized count from the

NanoString gene expression panel.21 In this formulation, B6J was used

as the control for the 5xFAD and LOAD1 mouse models, whereas

LOAD1 served as controls for GWAS-based models in order to esti-

mate the effects of individual variants. Separate models were run for

each age cohort.

2.8 Human AMP-AD gene co-expression modules

Data for 30 human brain co-expressionmodules from the Accelerating

MedicinesPartnership forAlzheimer’sDisease (AMP-AD) studieswere

obtained from the Synapse data repository (https://www.synapse.org/

#!Synapse:syn11932957/tables/; SynapseID: syn11932957). Briefly,

Wan et al. (2020)22 identified 30 human brain co-expression mod-

ules based onmeta-analysis of differential gene expression from seven

distinct brain regions in postmortem samples obtained from three inde-

pendent LOAD cohorts.51–53 These 30 human AMP-ADmodules were

further classified into five distinct consensus clusters that describe the

major functional alterations observed in human LOAD.21,22 Module

and consensus cluster annotations for each NanoString gene are listed

in Table S2.

2.9 Human AD subtypes

Milind et al.54 integrated post mortem brain co-expression data from

the frontal cortex, temporal cortex, and hippocampus brain regions and

stratified patients into different molecular subtypes based on molec-

ular profiles in three independent human LOAD cohorts (ROS/MAP,

Mount Sinai Brain Bank, and Mayo Clinic).51–53 Two distinct LOAD

subtypes were identified in the ROSMAP cohort, three LOAD sub-

types were identified in the Mayo cohort, and two distinct LOAD

subtypes were identified in the MSBB cohort. Similar subtype results

were observed in each cohort, with LOAD subtypes found to primarily

differ in their inflammatory response based on differential expression

analysis.54 Data for LOAD subtypeswere obtained throughADKnowl-

edge Portal55 (https://www.synapse.org/#!Synapse:syn23660885).

2.10 Mouse–human expression comparison

To assess the human disease relevance of LOAD risk variants in mice,

we determined the extent to which changes due to genetic pertur-

bations in mice matched those observed in human AD cases versus

controls. For eachmouse perturbation, we tested each of the 30 AMP-

AD modules using mouse-human gene homologs and limited to the

genes both present in the module and the NanoString Mouse AD

Panel, which was designed to optimize coverage of these modules.21

Pearson’s correlations were computed for changes in gene expression

(log-fold change) across all module genes for human AD cases ver-

sus controls22 against the effect of each mouse perturbation (β) as
measured previously.21,50 Weused the cor.test function in R as follows:

cor.test (Log2FC (AD∕control) , 𝛽) ,

fromwhichweobtained the correlation coefficient and the significance

level (p) of the correlation for each perturbation–module pair. Log2FC

values for human transcripts were obtained through the AD Knowl-

edge Portal55 (https://www.synapse.org/#!Synapse:syn14237651).

To determine the similarity of each mouse perturbation and the

LOAD subtypes, we computed the Pearson’s correlation between gene

expression changes (log-fold change) in human AD subtype cases ver-

sus controls54 and the effect of each mouse perturbation (β) across
genes on theNanoString panel21 using cor.test function in R as follows:

cor.test (Log2FC (LOADSubtype∕control) , 𝛽) ,

fromwhichweobtainedboth the correlation coefficient and the signifi-

cance level (p) of the correlation.Here, Log2FC(LOADSubtype/control)

represented the log-fold change in gene expression in each subtype

versus control, and the correlation spanned all homologous genes on

the NanoString ADMouse Panel.

We plotted the correlation results using the ggplot2 package in

R. Framed circles were used to denote significant (p < 0.05) positive

(blue) and negative (red) Pearson’s correlation coefficients. The color

intensity and size of the circles were sized proportional to Pearson’s

correlation coefficient.

2.11 Functional enrichment analysis

Gene Set Enrichment Analysis (GSEA) was used based on the method

proposed by Subramanian et al.56 as implemented in the R Biocon-

ductor package clusterProfiler57 for the Reactome pathway library

and Gene Ontology (GO) terms. Nanostring Mouse AD Panel genes21

were ranked based on regression coefficients calculated for each fac-

tor, and GSEA was performed on this ranked dataset. The use of GSEA

ensured that pathway effects were assessed relative to the genes on

https://www.synapse.org/#!Synapse:syn11932957/tables/;
https://www.synapse.org/#!Synapse:syn11932957/tables/;
https://www.synapse.org/#!Synapse:syn23660885
https://www.synapse.org/#!Synapse:syn14237651
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the panel, as the panel was enriched for AD-relevant genes. Enrich-

ment scores for all Reactome pathways and GO terms were computed

to compare relative expression on the pathway level between each

factor estimate from the regression models. We also performed GO

term enrichment analyses using the “enrichGO” function in the clus-

terProfiler package.57 The significance of pathways and GO terms was

determinedusing false discovery rate (FDR)multiple testing correction

(FDR-adjusted p< 0.05).

3 RESULTS

3.1 Validation of novel models

Sequence analysis demonstrated that the appropriate sequence vari-

ants had been established (Figure S1A). Quantification of transcript

counts in homozygous LOAD models relative to littermate wild-type

controls showed no significant differences in expression levels (Figure

S1B).

3.2 LOAD-associated risk variants showed
age-dependent concordance with distinct human
co-expression modules

We assess the relevance of each LOAD risk variant to the molecular

changes observed in human disease51–53,58 by correlating the effect

of each mouse perturbation (sex and genetic variants) with 30 human

AMP-AD brain gene co-expression modules22 using the NanoString

Mouse AD Panel21 (Figure 1). We analyzed mouse NanoString data

from brain hemispheres at different ages (4 and 12 months) to assess

the correlation with human post mortem co-expression modules as

animals aged.

The amyloidogenic 5XFAD transgenic model exhibited significant

positive correlations (p < 0.05) with several human co-expression

modules in Consensus Cluster B enriched for immune-system-related

pathways at both 4 and 12 months but showed significant positive

correlations (p < 0.05) with neurodegeneration-associated human

co-expression modules in Consensus Cluster C only at 12 months

(Figure 2A-B). However, we did not observe significant positive cor-

relations between effect of 5xFAD and human co-expression modules

in Consensus Clusters A, D, and E, validating that the 5xFAD strain is

primarily a model of amyloidosis and does not fully recapitulate LOAD

changes.

At 4 months, among all LOAD risk variants, only Slc6a17*P61P

showed significant positive correlations (p < 0.05) with the immune-

related modules (Figure 2A). The Abca7*A1527G, Sorl1*A528T, and

Mtmr4*V297G risk variants exhibited significant positive correlations

(p < 0.05) with extracellular matrix organization-related modules in

Consensus Cluster A (Figure 2A). The Ceacam1 KO, Plcg2*M28L, Meox2

KO(HET), and Mtmr4*V297G strains exhibited significant positive

correlations (p < 0.05) with cell-cycle- and myelination-associated

modules in Consensus Cluster D and cellular stress-response-

associatedmodules inConsensusCluster E (Figure 2A).Abca7*A1527G

and Sorl1*A528T variants generated significant positive correlations

(p < 0.05) with cellular stress-response-associated modules in

Consensus Cluster E.

Weobservedmore significant correlations between LOAD risk vari-

ants and human AMP-AD modules at 12 months for most strains. The

Abca7*A1527G variant had the most pronounced correlations with

LOAD expression changes, exhibiting significant positive correlations

(p < 0.05) with immune-related modules in Consensus Cluster B, cell-

cycle- and myelination-associated modules in Consensus Cluster D,

and cellular stress-response associated modules in Consensus Clus-

ter E (Figure 2B). The Mthfr*677C > T variant exhibited significant

positive correlations (p < 0.05) with cell-cycle- and myelination-

associated modules in Consensus Cluster D and cellular stress-

response-associated modules in Consensus Cluster E (Figure 2B).

Sorl1*A528T led to significant positive correlations (p< 0.05) with sev-

eral human co-expression modules in Consensus Cluster C enriched

for neuron-related pathways (Figure 2B). The Plcg2*M28L variant had

significant positive correlations (p < 0.05) with human co-expression

modules inConsensusClusterC enriched for neuron-related pathways

and with cell-cycle- and myelination-associated modules in Consensus

Cluster D (Figure 2B). Ceacam1 KO, Slc6a17*P61P, and Shc2*V433M

exhibited significant positive correlations (p < 0.05) with human co-

expression modules in Consensus Cluster B enriched for transcripts

associated with immune-related pathways in multiple brain regions,

while Clasp2*L163P and Sorl1*A528T led to significant positive corre-

lations (p < 0.05) with the human co-expression module in Consensus

Cluster B enriched for immune related pathways in cerebellum and

frontal pole brain region, respectively (Figure 2B). The Mtmr4*V297G

variants exhibited significant positive correlations (p < 0.05) with cell-

cycle- andmyelination-associatedmodules inConsensusClusterDand

cellular stress-response-associated modules in Consensus Cluster E

(Figure 2B). Snx1*D465N also exhibited significant positive correla-

tion with cell-cycle- andmyelination-associatedmodules in Consensus

Cluster D (Figure 2B).

Overall, we observed LOAD risk variants in mice showed con-

cordance with distinct human co-expression modules, reflecting a

different transcriptional response resulting from each LOAD risk vari-

ant. The associations between LOAD risk variants and human gene

co-expression modules increased with age. We note that models har-

boring LOAD risk variants exhibited significant positive correlation

with human modules in Consensus Clusters A, D, and E, which were

not captured by the 5xFAD strain, highlighting the importance of using

LOAD risk variants to fully capture LOADmolecular pathologies.

We next assessed the similarities between variant effects inmice by

comparing each model to all other models. To identify LOAD risk vari-

ants driving similar transcriptional responses in mice, we performed a

correlationbetween regression coefficients calculated for eachgenetic

variant at 4 and 12 months. At 4 months, the effects of the LOAD1

construct (APOE4 and TREM2*R47H) were weakly and positively cor-

related with the effect of the 5xFAD transgene (p < 0.05), but this

correlation diminished at 12 months (Figure 3A,B). The effects of

LOAD1 were also significantly positively correlated (p < 0.05) with
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(A)

(C)

(B)

blood-brain barrier

post mortem

F IGURE 1 Strategy to prioritize loci and LOAD risk variants. Summary of strategies for variant selection for (A) LOAD and (B) neurovascular
risk factors. (C) Gene expression analysis comparing human andmouse gene expression data to identify human LOADmodules that are altered by
genetically engineered variants in mice.

Sorl1*A528T andMtmr4*V297G at 4months, but this correlation dimin-

ishedby12months (Figure3A,B). Theeffects of theAbca7*A1527Gand

Ceacam1 KO variants were weakly correlated at 4 months (p < 0.05),

and this correlation increased at 12 months (Figure 3A,B). The effects

of the Shc2*V433M and Slc6a17*P161P variantswere also significantly

positively correlated at 4 months (p < 0.05) and became stronger

with age (Figure 3A,B). Furthermore, the effects of the Snx1*D465N,

Plcg2*M28L, and Mtmr4*V297G risk variants were significantly posi-

tively correlated (p < 0.05) at 12 months. Similarly, the effects of the

Sorl1*A528T andMeox2 KO(HET) variants were significantly positively

correlated (p < 0.05) at 12 months (Figure 3A-B). In summary, we

observed that LOAD risk variants generally increased in similarity with

age, supporting an age-dependent role for these genetic factors. How-

ever, not all strains converged on similar transcriptional responses,

suggesting distinct mechanisms of influence on LOAD risk.

3.3 Pathway alterations varied by LOAD genetic
perturbation

To further elucidate the functional role of these LOAD risk variants in

aged mice, we performed GSEA56 for the Reactome pathway library
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F IGURE 2 Correlation between LOAD-associated risk variants and 30 human AMP-AD brain co-expressionmodules using the NanoString
Mouse AD panel. (A) Correlation between the effect of eachmouse perturbation relative to the LOAD1 background in 4-month-old mice and 30
human co-expressionmodules,22 also including the early-onset transgenic model 5XFAD and the LOAD1 background relative to C57BL/6J. The 30
human co-expressionmodules were grouped into five consensus clusters with similar gene content across themultiple studies and brain regions.22

Framed circles correspond to significant (p< 0.05) positive (blue) and negative (red) Pearson’s correlation coefficients, with size and color intensity
proportional to the correlation. The effects of multiple LOAD risk variants in mice were positively correlated (p< 0.05) with cell cycle and
myelination-associatedmodules in Consensus Cluster D and cellular stress-response-associatedmodules in Consensus Cluster E. (B) Correlation
between effect of eachmouse perturbation at 12months and the 30 human co-expressionmodules. LOAD risk variants showed significant
correlation with functionally distinct AMP-AD co-expressionmodules. The effects of Abca7*A1527G, Shc2*V433M, Ceacam1 KO, and
Slc6a17*P61P in agedmice correlated with the immunemodules in Consensus Cluster B, while the effects of Sorl1*A528T and Plcg2*M28L
correlated with the neuronal modules in Consensus Cluster C.

for all 12-month samples. GSEA revealed upregulation of immune sys-

tem pathway in the presence of Abca7*A1527G (NES = 1.42, p = 0.01)

and cytokine signaling in the immune system pathway in the pres-

ence of Abca7*A1527G (NES = 1.83, p = 0.006) and Sorl1*A528T

(NES = 1.45, p = 0.04) (Figure 3C, Table S3), while neuron-associated

pathways were downregulated in the presence of risk variants such

as Ceacam1 KO (NES = −1.51, p = 0.04), Shc2*V433M (NES = −1.72,

p = 0.004), and Slc6a17*P161P (NES = −1.74, p = 0.005) (Figure 3C,

Table S3). The extracellular matrix organization pathway was down-

regulated in risk variants such as Sorl1*A528T (NES = −1.56, p = 0.01)

and Ceacam1 KO (NES = −1.85, p = 0.007) but possibly upregulated

in the presence of risk variants such as Abca7*A1527G (NES = 1.45,

p = 0.07) and Mthfr*677C > T (NES = 1.25, p = 0.16) (Figure 3C,

Table S3). The cell cycle pathway was downregulated in the pres-

ence of Shc2*V433M (NES = −1.65, p = 0.01) and Slc6a17*P161P

(NES = −1.73, p = 0.004) but upregulated in the presence of other

risk variants such as Abca7*A1527G (NES = 1.75, p = 0.01), Meox2

KO(HET) (NES = 1.85, p = 0.006), and Sorl1*A528T (NES = 2.61,

p = 0.002) (Figure 3C, Table S3). Cellular response to the heat stress

pathway were upregulated in the presence of risk variants such as
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F IGURE 3 Correlation between effect of genetic variants and Gene Set Enrichment Analysis (GSEA). (A) Correlation between regression
coefficients calculated for each genetic variant at 4months. Color intensity and size of circles are proportional to Pearson correlation coefficient,
with insignificant correlations (p> 0.05) left blank. (B) Correlation between regression coefficients calculated for each genetic variant at 12
months. The effects of Snx1*D465N, Plcg2*M28L, andMtmr4*V297G risk variants in mice showed significantly positively correlation (p< 0.05) at
12months. (C) GSEA results of selected AD-associated pathways fromReactome library in presence of each LOAD risk variant in mice. Enriched
pathways are grouped by their overlap with functional annotations of human AMP-ADConsensus Clusters. Immune-related pathways had
increased expression in the presence of multiple risk variants such as Abca7*A1527G,Mthfr*677C> T, and Snx1*D465N, while neuron-associated
pathways had reduced expression in the presence of risk variants such as Abca7*A1527G,Mthfr*677C> T, Sorl1*A528T, Plcg2*M28L, Ceacam1 KO,
Shc2*V433M, and Slc6a17*P161P.

Abca7*A1527G (NES = 1.83, p = 0.01), Mthfr*677C > T (NES = 1.81,

p = 0.009), and Ceacam1 KO (NES = 1.57, p = 0.04) (Figure 3C, Table

S3). Overall, we observed that multiple AD-associated pathways were

upregulated in the presence of some LOAD risk variants but downreg-

ulated in the presence of another set of risk variants. This suggests that

distinct risk variants perturb distinct molecular changes associated

with LOAD in agingmice.

3.4 Age-dependent pathway effects driving
AMP-AD module correlations in ABCA7, MTHFR,
SORL1, and PLCG2 mouse models

In our mouse–human correlation analysis, the effects of multiple

LOAD variants (Abca7*A1527G, Mthfr*677C > T, Sorl1*A528T, and

Plcg2*M28L) correlated with human AMP-AD co-expression modules
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F IGURE 4 Identification of specific AD-associated processes in LOAD risk variants exhibiting transcriptomic changes similar to human LOAD
in age-dependent manner. For four newmouse strains the following are displayed: the six top enriched GO terms identified by GSEA and GO
enrichment analysis of genes with common directional changes with human ADmodules (top left); genemodule networks with common
directional changes with human AMP-ADmodules, where node colors correspond to human AMP-ADConsensus Clusters A (orange), B (green), C
(blue), D (turquoise), or E (pink) (top right); and the effects of each variant at multiple ages correlated across LOAD effects in 30 AMP-ADmodules,
following the legend of Figure 3. Results for (A) Abca7*A1527Gmodel, (B)Mthfr*677C> Tmodel, (C) Plcg2*M28Lmodel, and (D) Sorl1*A528T
model. All results are relative to LOAD1 genetic background for all strains.

in age-dependent and pathway-specific manners. To further identify

the AD-relevant biological processes associated with these selected

LOAD risk variants (Abca7*A1527G, Mthfr*677C > T, Sorl1*A528T,

and Plcg2*M28L) we adopted two approaches. First, we performed

GSEA56 on the NanoString Mouse AD Panel genes ranked based on

regression coefficients calculated for each factor at 12 months and

identified significantly enriched GO terms (padj < .05). Next, we iso-

lated the homologous genes exhibiting directional coherence between

the effects of genetic risk variants (Abca7*A1527G, Mthfr*677C > T,

Sorl1*A528T, and Plcg2*M28L) at 12 months and changes in human

cases versus controls and performed GO enrichment analysis to find

processesunderlying themodule-level correlations. These subsets rep-

resent the pathways that1 are altered in each mouse model and2

quantitatively underlie the mouse–human module associations. GO

terms common to both enrichment tests were then annotated to the

modules in which they appeared.

TheAbca7*A1527Gvariant showed significant negative correlations

(p < 0.05) with immune-related modules in Consensus Cluster B, cell-

cycle- and myelination-associated modules in Consensus Cluster D,

and cellular stress-response-associated modules in Consensus Cluster

E (Figure 4A) at 4 months. However, at 12 months these effects were

reversed and the variant exhibited significant positive correlations

(p < 0.05) with several immune-related modules in Consensus Cluster

B, cell-cycle-associated and myelination-associated modules in Con-

sensus Cluster D, and cellular stress-response-associated modules in

ConsensusCluster E (Figure4A). Biological processes such as “denovo”

protein folding, “de novo” post-translational protein folding, granulo-

cyte migration, cytokine-mediated signaling pathway, insulin receptor

signaling pathway, and neutrophil migration increased expression in

the presence of Abca7*A1527G (Figure 4A, Table S4). The correla-

tion between the Abca7*A1527G variant and the immune-associated

human co-expression modules (Consensus Cluster B) (Figure 4A,

Table S5) was exhibited by genes enriched for granulocyte migra-

tion, cytokine-mediated signaling pathway, and neutrophil migration

(including Pecam1, Cd74, Trem2, Trem1, Csf1, Il1rap, and Ceacam1)

(Table S6). As key correlating genes between Abca7*A1527G and Con-

sensus Cluster E modules (Figure 4A, Table S5), we found genes

enriched in “de novo” protein folding and “de novo” post-translational

protein folding (eg, Hspa2, Hspa1b, and Dnajb4) (Table S6). Insulin

receptor signaling was enriched in genes (Foxo1, Prkcq, and Bcar3)

(Table S6), driving the correlation between Abca7*A1527G and mod-

ules in Consensus Cluster D (Figure 4A, Table S5).
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A similar reversal of effects with age was observed forMTHFR. The

Mthfr*677C > T variants exhibited significant negative correlations

(p < 0.05), with several cell-cycle- and myelination-associated mod-

ules in Consensus Cluster D and cellular stress-response-associated

modules in Consensus Cluster E (Figure 4B) at 4 months. At 12

months, these correlations were positive (Figure 4B). GSEA of the

Mthfr*677C > T variant identified significant enrichments of response

to unfolded protein, positive regulation of cellular catabolic process,

negative regulation translation, positive regulation of GTPase activity,

B-cell-mediated immunity, and purine ribonucleotide metabolic pro-

cess (Figure 4B, Table S4). B-cell-mediated immunity and negative

regulation translation biological processes were also enriched in genes

(including C1qa, C1qb, Cd81, and Zfp36) (Table S6) with directional

coherence for Mthfr*677C > T and LOAD effects in Consensus Clus-

ter B (Figure 4B, Table S5). Correlations between the Mthfr*677C > T

variant and Consensus Cluster D changes (Figure 4B, Table S5) were

exhibited by genes enriched for positive regulation of cellular catabolic

process and positive regulation of GTPase activity (including Bin1,

Picalm, Dock10, and Psen1) (Table S6). Biological processes such as

response to unfolded protein and purine ribonucleotidemetabolic pro-

cess were enriched in genes (eg, Hspa1b, Hsph1, Hsp90aa1, Snca, and

Atpp5h) (Table S6) underlying the correlations betweenMthfr*677C>T

and Consensus Cluster E effects (Figure 4B, Table S5).

The Plcg2*M28L variant caused significant positive correlations

(p < 0.05) with neuron-related modules in Consensus Cluster C and

cell-cycle-associated modules in Consensus Cluster D at both 4 and

12 months (Figure 4C). Enriched biological processes included postsy-

napse organization, regulation of axonogenesis, cognition, locomotory

behavior, glial cell development, and regulation of protein catabolic

process (Figure 4C, Table S4). Biological processes such as postsy-

napse organization, cognition, and locomotory behavior were enriched

in genes (Mapt, Gabrb3, App, Ppp3cb, and Slc8a2) (Table S6) with direc-

tional coherence for Plcg2*M28L human AD changes in Consensus

Cluster C (Figure 4C, Table S5). Biological processes such as regula-

tion of axonogenesis, glial cell development, and regulation of protein

catabolic process were enriched in genes (Snx1, Picalm, Psen1, Mag,

Foxo1, and Kif13b) (Table S6) and drove the correlations between

Plcg2*M28L and Consensus Cluster D effects (Figure 4C, Table S5).

Aged Sorl1*A528T mice (12 months) showed positive correlations

(p < .05) with neuron-associated modules in Consensus Cluster C that

were not apparent at 4 months of age (Figure 4D). Enriched processes

included the downregulation of synapse organization, synapse assem-

bly, regulation of synaptic plasticity, and regulation of epithelial cell

proliferation and the increased expression of negative regulation of

transporter activity and SNARE complex assembly genes. These pro-

cesses drove the correlation between the SORL1 variant and LOAD

effects in Consensus Cluster C modules (Figure 4D, Table S5), where

GSEA for genes with directional coherence generated synapse orga-

nization, synapse assembly, regulation of synaptic plasticity, upreg-

ulation of negative regulation of transporter activity, and soluble

N-ethylmaleimid-sensitive factor attachment receptor (SNARE) com-

plex assembly (including the genes Mapt, App, Gabrb3, Calm3, Snca,

Cdkl5, Vgf, and Ywhag) (Table S6).

Overall, we found that late-onset genetic factors in mice generally

led to both more abundant changes with age and increasingly disease-

relevant pathway changes with age.

3.5 Alignment of mouse models with AD
subtypes

Post mortem transcriptomics from AMP-AD and similar studies have

enabled the partitioning of AD cases into potential disease subtypes.

These studies have often stratified AD subjects into inflammatory and

non-inflammatory subtypes.54,59,60 To determine whether our mouse

models preferentially resembled putative AD subtypes, we correlated

the effect of each variant with inflammatory and non-inflammatory

subtypes associated with LOAD54 in the ROSMAP, MSBB, and Mayo

cohorts.51–53

We found that at 4 months of age, variants did stratify by human

subtypes. The effects of Abca7*A1527G, Sorl1*A528T, and Plcg2*M28L

were positively correlated (p < 0.05) with the inflammatory subtypes

across all three cohorts, whileMtmr4*V297Gwas positively correlated

(p < 0.05) with ROSMAP andMSBB inflammatory subtypes (Figure 5).

In contrast, Shc2*V433M and Clasp2*L163P exhibited significant posi-

tive correlations (p < 0.05) with non-inflammatory subtypes across all

three cohorts (Figure 5).

At 12 months, the correlations between Abca7*A1527G effects

and the inflammatory subtypes across all three cohorts increased

(p < 0.05), and the Ceacam1 KO variant had become positively cor-

related (p < 0.05) with the inflammatory subtypes across all three

cohorts (Figure 5). On the other hand, LOAD1, Meox2 KO (HET),

and Snx1*D465N were positively correlated (p < 0.05) with non-

inflammatory subtypes across all three cohorts (Figure 5). Three

strains, Sorl1*A528T, Plcg2*M28L, andMtmr4*V297G, which were pos-

itively correlated (p < 0.05) with inflammatory subtypes at 4 months,

transitioned to correlation (p < 0.05) with non-inflammatory sub-

types at 12 months (Figure 5). These results are in concordance

with our findings that Abca7*A1527G was significantly correlated

with immune-related human modules and were enriched for immune-

associated biological processes (Figure 4A), while the Sorl1*A528T and

Plcg2*M28L variants were significantly correlatedwith neuron-related

human modules and enriched for neuron-associated biological pro-

cesses (Figure 4C,D). Overall, these findings suggest that different

mouse strains may provide better models for distinct AD subtypes and

that risk for these subtypes may be influenced by distinct AD genetic

factors.

4 DISCUSSION

In this study, we performed gene expression screening of new knock-

in mouse models harboring candidate genetic variants for LOAD. Our

ultimate goal is to provide the research community and therapeu-

tic development programs with improved preclinical models of LOAD,

suitable for preclinical testing of therapeutics that target molecular
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F IGURE 5 Correlation between effect of eachmouse perturbation andmolecular subtypes of LOAD. Twomolecular LOAD subtypes inferred
in ROSMAP cohort, three subtypes inMayo cohort, and two subtypes inMount Sinai Brain Bank (MSBB) cohort.54 Framed circles correspond to
significant (p< 0.05) positive (blue) and negative (red) Pearson’s correlation coefficients across all genes on the NanoString panel, with color
intensity and circle size proportional to the correlation. (B) At 4months, the Abca7*A1527G and Sorl1*A528T variants represent inflammatory
subtypes of LOAD (Subtypes A) in each cohort, while Shc2*V433M and Clasp2*L163P variants mimic the non-inflammatory subtypes of LOAD
(Subtypes B). (C) At 12months, the Abca7*A1527G and Ceacam1 KO variants recapitulate inflammatory subtypes of LOAD (Subtypes A), while the
Snx1*D465N,Mtmr4*V297G, and LOAD1 variants model non-inflammatory subtypes of LOAD (Subtypes B).

processes contributing to LOAD origins and progression. By basing

these models on human genetics, we also provide a preliminary func-

tional characterization of possible disease-relevant effects from the

candidate genetic variants.

Notable results include the finding that many AD-related path-

ways, modules, and processes are affected by the introduction of

late-onset variants. However, the changes were not consistent across

strains, suggesting that different genetic loci contributed to distinct

AD-related dysfunction (Figures 2 and 4). For example, we deter-

mined that the SORL1 risk factor impinged primarily on AD-relevant

synaptic gene expression, while the ABCA7 variant broadly affected

non-neuronal gene expression, including immune, protein folding, and

metabolic pathways. Meanwhile, the PLCG2 variant primarily affected

genes that were annotated to behavior, synapses, and glial cells and

similarly changed in human LOAD. We noted that a transgenic model

harboring familial AD mutations in App and Psen1 exhibited different

gene expression changes focused on an acute inflammatory response.

This can be contrasted with the LOAD1 model that exhibited reduced

immune activity and more subtle overall results, augmented by our

panel of late-onset GWAS variants. We observed effects on multiple

non-immunemodules resulting from these variants, providing utility to

study pathways not well modeled by the amyloid strains. Finally, the

limited effects of variants like Clasp2*L163P suggest that the specific

variant is not disease-associated, its AD-related effects are not visible

in the transcriptome, and/or it does not trigger changes until later age.

This diversity of effects across mouse strains provides specific models

to study different aspects of AD biology and paves the way for pre-

cision preclinical testing of candidate therapeutics that target these

pathways.

Preliminary analysis further suggested that the different loci con-

tributed in an age-dependent manner (Figures 2 and 4) and model

putative disease subtypes (Figure 5). However, validation of such par-

titioning of genetic risk is difficult in human studies due to post mortem

tissue sampling and limited cohort size for multiomic data.54 We also

found that the gene expression effects of LOAD variant knock-ins gen-

erally increased in terms of magnitude and disease relevance as mice

aged from 4 to 12 months (Figures 2 and 4). This finding supports the

notion that LOAD genetic factors become more relevant in an aging

brain as they contribute to late-life disease risk.

We note that genetic variants from frequently associated loci

tended to produce the most consistent AD-relevant phenotypes (eg,

SORL1, ABCA7, PLCG2), although many of the more exploratory vari-

ants also generated AD-like expression signatures across multiple

modules in aging mice (eg, CEACAM1, MTMR4) (Figure 2). Recent

advances in variant inferenceand functional prediction, includingmany

non-coding variants and major GWAS loci, will enable the next round

of models to address additional GWAS loci without candidate coding

variants, such as theEPHA1 locus.25 Furthermore,manyAD-associated

loci suffered from insufficient homology in mice (eg, MS4A4/MS4A6E,

INPP5D, CR1), which will be addressed by ongoing efforts to humanize

these relevant regions of themouse genome (Benzow, et al., this issue).

This study had several caveats that need to be noted. Most impor-

tantly, aging is the strongest risk factor for LOAD,61 and it needs to

be recognized that mice at 12 months of age are roughly equivalent

to humans at 38 to 47 years of age. Therefore, our transcriptomic

comparison to post mortem AMP-AD clinical samples, while practical,

is unrealistic, and we are now testing those models that best approx-

imated human transcriptional changes at 12 months to at least 24
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months of age31,62 (Oblak, et al., this issue). Likewise, recent studies (as

well as our pilot data) have shown that proteomics is a more reliable

means to correlatemodels to disease than transcriptomics63,64 (Oblak,

et al., this issue), so we will be using proteomic analysis on prioritized

models.

The Trem2*R47H allele in the LOAD1 base model used here has

been shown to cause an ∼twofold decrease in Trem2 expression.65

However, our analysis technique factors out allele effects individually,

so we are confident in our results. We have since created a newmodel

(JAX No. 33781) that we have shown has normal Trem2 transcript

levels and that will replace the allele used here in future projects.

In this study, we have focused on introducing coding variants on a

LOAD1 background,20 aged the mice to middle age (12 months), and

characterized the animals using a gene expression panel developed

for rapid comparison to recent human study results.21 In future work,

we will extend our approach to model candidate non-coding variants

at LOAD genetic loci without strong candidate coding SNPs, human-

izing loci and regulatory regions when necessary (Benzow, et al., this

issue). We will breed the most promising variants presented here –

Abca7*A1527G, Sorl1*A528T, Mthfr*677C > T, and Plcg2*M28L – to a

genetic background with humanized Aβ peptide (the LOAD2 strain)

and age cohorts beyond18months to assess additional disease-related

progression with advanced age. These select strains will be assessed

in depth with multiple genome-scale omics measures (RNA-Seq, tan-

dem mass tag proteomics, metabolomics), plasma biomarkers, in vivo

imaging, neuropathology, and behavioral metrics. Each assay will be

optimized for translational value.Wewill also introducemodifiable risk

factors through unhealthy diets and exposure to common environmen-

tal toxicants. At the same time, all models are distributed without use

restrictions to enable all researchers to obtain, study, andmodify these

models as desired.
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