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Abstract

INTRODUCTION: Emerging evidence links changes in the gut microbiome to late-

onset Alzheimer’s disease (LOAD), necessitating examination of AD mouse models

with consideration of themicrobiome.

METHODS: We used shotgun metagenomics and untargeted metabolomics to study

the human amyloid beta knock-in (hAβ-KI) murine model for LOAD compared to both

wild-type (WT)mice and amodel for early-onset AD (3xTg-AD).

RESULTS: Eighteen-month female (but not male) hAβ-KI microbiomes were distinct

fromWT microbiomes, with AD genotype accounting for 18% of the variance by per-

mutational multivariate analysis of variance (PERMANOVA). Metabolomic diversity

differences were observed in females, however no individual metabolites were dif-

ferentially abundant. hAβ-KI mice microbiomes were distinguishable from 3xTg-AD

animals (81%accuracyby random forestmodeling),with separationprimarily drivenby

Romboutsia ilealis and Turicibacter species. Microbiomes were highly cage specific, with

cage assignment accounting formore than40%of thePERMANOVAvariancebetween

the groups.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.
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DISCUSSION: These findings highlight a sex-dependent variation in the microbiomes

of hAβ-KI mice and underscore the importance of considering the microbiome when

designing studies that usemurinemodels for AD.
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3xTg-AD, Alzheimer’s disease, cage effects, hAβ-KI, late-onset Alzheimer’s disease, metage-
nomics, metabolomics, microbiome, mousemodels for Alzheimer’s disease, Turicibacter

Highlights

∙ Microbial diversity and the abundance of several species differed in human amyloid

beta knock-in (hAβ-KI) females but not males.

∙ Correlations to Alzheimer’s disease (AD) genotype were stronger for the micro-

biome than themetabolome.

∙ Microbiomes from hAβ-KI mice were distinct from 3xTg-ADmice.

∙ Cage effects accounted formost of the variance in themicrobiome andmetabolome.

1 BACKGROUND

Like almost every niche onEarth, humans host complex communities of

bacteria, fungi, viruses, archaea, and protozoa, forming the ecosystems

collectively known as ourmicrobiota.1,2 Ourmicrobial companions are

critical to our daily health, but—when things go awry—they can cause

or increase the severity of many diseases. Microorganisms in our gas-

trointestinal tract (which hosts > 1 trillion microbes2) help to extract

nutrients from our food, modulatemetabolism, promote immune func-

tion, and influence our overall mental health.2,3 Gut microbes interact

with the central nervous system through the microbiome–gut–brain

axis, which is a bidirectional signaling network that operates using neu-

ral, endocrine, and immune links.4 Gut microbiome dysbiosis is now

recognized as an indicator of pre-clinical Alzheimer’s disease (AD),5

and disruption of the gut microbiome via antibiotic treatment6 or

fecal transplants7 can alter disease progression. Our understanding

of the gut microbiome’s influence on AD pathobiology is incomplete;

however, a growing consensus is emerging around the role of the

microbiome in mediating systemic inflammation, and, in turn, how

inflammation influences AD.8

The relationship between gutmicrobiome composition and AD pro-

gression requires us to consider the microbial perspective when using

murine models for AD research. Housing conditions, maternal links,

diet, sex, and even the specific cage that the mice live in can affect

microbiomes,9–15 which can in turn bias study results.16,17 In their

2019 studyof the relationship between gutmicrobiomedysbiosis, neu-

roinflammation, and AD progression in the transgenic 5xfAD mouse

(a widely used model for early-onset AD), Wang et al. found that con-

vergent microbiomes among co-housed wild type (WT) and 5xfAD

animals led to changes in WT mouse immune cells, altered cytokine

expression in the brain, and declines in discrimination learning that

resembled the 5xfAD mice. The researchers were only able to make

conclusions by housing the genotypes separately.16 Similarly, in their

study of C1q or C5aR1 inhibition on the microbiome in the Arctic and

Tg2576mousemodels of AD, Petrisko et al. found that co-housingmice

caused microbiome convergence, while separately housing the control

and study arms allowed them to observe differences in themicrobiome

caused by AD genotype.10 Unfortunately, it is not as simple as hous-

ing genotypes separately, as keeping study arms in separate cages can

cause cohort-specific divergence in the microbiomes. In our recent

examination of the longitudinal gut microbiome and metabolome of

co-housed 5xfAD mice, we found that between 50% and 80% of the

variance in the microbiome arose from cage effects, while < 10% of

the variance came from genotype.9 In a similar finding with the triply

transgenic mouse model for early-onset AD (3xTg-AD), Borsom et al.

reported that cage accounted for between 32% and 42% of the vari-

ance in the microbiome, while genotype accounted for an average of

8% of the variance.18 Cumulatively, this evidence points to the fact

that researchers must, at a minimum, account for potential variations

brought on by the microbiome. Failing to consider the microbiome can

unknowingly bias the study results, especially when researching ques-

tionswith links to thegut and systemic inflammation, suchas late-onset

AD (LOAD).

Here we present our analysis of the longitudinal gut microbiome

and metabolome of the human amyloid beta knock-in (hAβ-KI)
mouse model for LOAD compared to age-matched WT counterparts

derived from the same genetic background (B6J). Developed in 2021,

the hAβ-KI mouse has no familial AD mutations and develops age-

dependent changes in behavior, inflammatory response, and synaptic

plasticity that mimic the progression of LOAD seen in sporadic

human cases.19 We compare the microbiomes of the 18-month-old

animals to 3xTg-AD mice of the same age. Our study aims to probe

the relationship between the microbiome and metabolome of AD

model animals and AD genotype, sex, and age. To our knowledge,

this is the first microbiome-focused study of a murine model for

LOAD.
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2 METHODS

Data collection and analysis was largely performed as described in our

previous work.9 A brief description of the methods used, including any

alterations, is given below.

2.1 Animal conditions and sample collection

Homozygous hAβ-KI (hAbeta-loxP-KI knock-in) mice have a modified

amyloid precursor protein (APP) allele on chromosome16,where three

mutations were introduced into the mouse APP exon to encode the

human Aβ(1-42) fragment. The modification also includes flanking the

exon with loxP sites. As a result, these mice express the mouse APP

protein with a “humanized” Aβ peptide sequence. They were housed

together with same-sex/genotype littermates after weaning (n = 41

mice in 13 cages). The hAβ-KI control WT mice were derived from the

same origin as the hAβ-KI line (C57B6J). Cohorts were produced by

breeding and in vitro fertilization (IVF).

The 3xTg-AD mouse is a model of familial AD and expresses three

homozygous mutations of APP Swedish, microtubule associated pro-

tein tau (MAPT) P301L (both transgenes are mapped on chromosome

2), and presenilin1 (PSEN1) M146V (on chromosome 12). After wean-

ing, they were housed together with same-sex/genotype littermates

(36mice in 16 cages). The 3xTgAD controlWTmice were derived from

the sameorigin as the 3xTgAD line (B6129). Cohortswere produced by

breeding and IVF.

Animal experiments were conducted in compliance with all rele-

vant ethical regulations for animal testing and research (as approved

by the University of California Irvine [UCI] Institutional Animal Care

and Use Committee). Animals were bred and aged in the Transgenic

Mouse Facility at UCI andmaintained in a 12/12-hour light/dark cycle.

All mice were fed LabDiet Irr6f (6% fat, 6% fiber) diet and sustained on

pH 2.5–3.0 autoclavedwater.

Immediately prior to sampling or sacrifice, the animalswere isolated

in individual cages for fecal collection. All working areas and toolswere

sterilized with 70% ethanol. Fecal pellets and cecum samples were

deposited directly into 1.5 mL Eppendorf tubes. All sample tubes were

placed on dry ice after collection and stored at−80◦C until analysis.

2.2 Sequence library preparation

All methods were performed as in our prior work.9 Briefly, DNA was

extracted by Zymo Research Corp. using the ZymoBIOMICS-96 Mag-

Bead DNA Kit (Zymo Research, Cat. # D4302) and quantified via the

Quant-iT PicoGreen dsDNA Assay Kit (ThermoFisher, Cat # P11496)

read with a Synergy H1 Microplate reader (BioTek, Cat # BTH1M).

Sequence libraries were prepared using the Nextera DNA Flex Library

Prep Kit (Illumina, Cat. # 20018705) following a low volume varia-

tionof the standardprotocol.20 Sampleswereprepared for polymerase

chain reaction (PCR) with Kapa HiFi HotStart ReadyMix (Roche, Cat

# 07958935001) and primers KAPA-PCR-F: 5′ – AATGATACGGC-

RESEARCH INCONTEXT

1. Systematic review: We reviewed available scientific lit-

erature relating to Alzheimer’s disease (AD), murine

models, and the microbiome using traditional online

resources. Several recent publications describe the rela-

tionship between AD pathology and the microbiome,

including those describing both mice and humans; how-

ever, no studies of murine models for late-onset ADwere

found.

2. Interpretation: Our findings reveal genotype-specific

variations in female human amyloid beta knock-in (hAβ-
KI) mice—but not males—and highlight the dramatic

influence of co-housing on themicrobiome.

3. Future directions: hAβ-KI mice are shown to be a promis-

ing platform for microbiome or diet-specific interven-

tional studies related to either diagnosing or mitigat-

ing AD. Our analyses highlight the need for careful,

microbiome-specific study design (including animal hus-

bandry practices) and judicious consideration of the

relationship between sex and the ADmicrobiome.

GACCACCG*A – 3′ and KAPA-PCR-R: 5′ – CAAGCAGAAGACGGCAT-
ACG*A – 3′. PCR was performed with an Eppendorf Mastercycler

Nexus Gradient (Eppendorf, Cat # 2231000665) using standard ther-

mal cycles for the Nextera Flex kit. The length distributions of the

resulting sequence fragments were determined on an Agilent Bioana-

lyzer (Agilent, Cat # G2939BA). Sequence libraries were pooled based

on DNA concentration and sequenced on an Illumina HiSeq4000 by

Novogene Co., Ltd.

2.3 Metabolomics

Fecal and cecal material was sent on dry ice to the West Coast

Metabolomics Center (WCMC) at University of California Davis for

metabolomics analysis using the standardized WCMC extraction and

analysis protocols for “Biogenic amines by HILIC-QTOF MS/MS,” as

previously described.9,21 Approximately 4 mg of material was used

from each sample, the final extract was dissolved in 100 μL acetoni-

trile/water (4:1, vol/vol) containing internal control standards, and 3 μL
was analyzed on a SCIEX 6600 TTOF, in both positive and negative ion-

ization. The resulting datawas received from theWCMCasa table con-

taining ion identifications and SERRF (Systematic Error Removal Using

Random Forest) normalized peak areas.22 Only identified metabolites

were used in this study.

Data for chemical taxonomy were generated using ClassyFire, an

online chemical classification tool.23 The WCMC Chemical Transla-

tion Service (http://cts.fiehnlab.ucdavis.edu)24 was used to translate

the chemical “identifiers” to an InChIKey list, which was uploaded to

http://cts.fiehnlab.ucdavis.edu
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the ClassyFire website (http://classyfire.wishartlab.com) to generate

classification into a list of 11 chemical superclasses.

2.4 Sequence data processing

As in our prior work,9 the sequence libraries were downloaded from

the Novogene FTP website. The libraries consisted of 456 samples

pooled into a single dual-index paired-end library and run across

two lanes. The two paired-end aggregate FASTQ files were parsed

using BBDuk to trim adapters and remove artifacts, mouse DNA

(GCA_000001635.8), and rat DNA (GCA_000001895.4). The cleaned

files were demultiplexed using demuxbyname.sh inside of the BBmap

suite.

Microbial taxonomy was assigned with Kraken v2.1.2.25 Addi-

tional parameters beyond the default included: “–gzip-compressed,”

“–minimum-base-quality 20,” “–use-names,” and “–report-zero-

counts”; Bracken v2.7 was used to estimate the number of reads

originating from each species in each sample.26 Bracken parame-

ters were set to “-r 100” and “-l S.” Individual reports generated

by Bracken were merged using the included utility script, “com-

bine_bracken_outputs.py,” to produce the final species count

matrix.

2.5 Microbiome analysis

Processed sequence data were analyzed using RStudio version

1.4.110627 and most graphics were created using the R package

ggplot2.28 The heatmaps were generated from standard normalized

abundance data using the pheatmap package29 with “average” clus-

tering. Alpha diversity, non-metric multidimensional scaling (NMDS),

and permutational multivariate analysis of variance (PERMANOVA)

were computed using the Vegan package.30 Significance of the alpha

diversity metrics was assessed using the Kruskal–Wallis rank sum test

with Benjamini–Hochberg false discovery rate (FDR) correction for

eight measurements (one for each sex–cohort pair). Both NMDS and

PERMANOVA were applied to the Bray–Curtis dissimilarity matrix.

PERMANOVAwas performed on all hAβ-KI cohorts together by strat-
ifying by cohort (age and sample type), and nesting Genotype and Sex

withinHousing_ID using the formula: adonis2(formula= data_subset∼

(Genotype+Sex)/Housing_ID, data =meta_test, method = “bray,” per-

mutations= perm, parallel= 32, by= “terms”). PERMANOVAwas also

performed on each individual sex-specific hAβ-KI cohort by nesting

Genotype within Housing_ID and using the following formula: ado-

nis2(formula=data_subset∼Genotype/Housing_ID, data=meta_test,

method= “bray,” permutations=999, parallel=32, by= “terms”). PER-

MANOVAP valueswereBenjamini–Hochberg FDRcorrected. Random

forest was performed using the rfPermute package (v2.1.81)31 with

a relative abundance threshold of 0.0001. Linear mixed-effects (LME)

model analysis was performed on relative abundance data using the

lmer function in the lme4 package,32 a relative abundance threshold of

0.0001, Housing ID as the random effect, and a Benjamini–Hochberg

FDR correction for repeatedmeasurements.

2.6 Metabolomics analysis

Analysis of the metabolomics data was performed as described

previously.9 Briefly, SERRF normalized data from the WCMC was

uploaded into R and analyzed using a workflow like that used for

the microbiome analysis. The Spearman correlations between the 100

most abundant metabolites and microbes were generated using the

“cor” function in the stats package of R33 and the significance of the

correlations were assessed by the Mantel test30 using the following

formula on theBray–Curtis distancematrices:mantel(mx.dist, otu.dist,

method= “spearman”, permutations= 9999, na.rm= TRUE). Rows and

columns are ordered by hierarchical clustering, and plotting was done

using the pheatmap package.29

3 RESULTS

3.1 Overview of shotgun metagenomic
sequencing and metabolomics

Our study included 41 animals from the hAβ-KI line, with four sam-

ples for each animal: 4-month fecal, 12-month fecal, 18-month fecal,

and 18-month cecal (164 samples total). Fecal and cecal samples were

collected from 36 18-month-old animals from the 3xTg-AD line. hAβ-
KI samples were subjected to both shotgun metagenomic sequencing

and metabolomics (3 metagenomic and 19 metabolomic samples were

omitted for inadequate material or poor resulting data quality), while

3xTg-AD samples were subjected to metagenomics only. We obtained

an average of 1.8 million (+/– 380,000) microbial reads per sam-

ple, 26% of which were successfully annotated. Approximately 99.8%

of the annotated reads were bacterial, 0.03% were viral, and 0.1%

were archaeal. For metabolomics, we observed a total of 4839 unique

metabolic signatures, which included 458 named metabolites. Only

namedmetabolites were considered in this analysis.

3.2 Most abundant microbes and metabolites

Figure 1 shows the relative abundances of the top 10 species in each

genotype-sex grouping across all hAβ-KI microbiomes (i.e., hAβ-KI
females [Figure 1A], WT females [Figure 1B], hAβ-KI males [Figure

1C], and WT males [Figure 1D]). Each bar represents the relative

abundances of the top species in a single sample, and bars grouped

within a black box represent all samples from a given mouse (4-month

fecal, 12-month fecal, 18-month fecal, and 18-month cecal), and the

whitespace-separatedmouse groupings show co-housedmice.

There was a striking influence of co-housing onmicrobiome compo-

sition, with microbial abundance and presence/absence dependent on

the cage. For example,WT females in the final cagegrouping (Figure1B,

mice IDs3371–3375) all had a high abundance of Faecalibaculum roden-

tium, while this bacteriumwas largely absent frommice in other cages.

Based on the trends shown in Figure 1B, F. rodentium was acquired

by the mice in this cage somewhere between 4 and 12 months, and

http://classyfire.wishartlab.com
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F IGURE 1 Most abundantmicrobes in (A) female hAβ-KI, (B) femaleWT, (C) male hAβ-KI, and (D) maleWTmice. The samples are separated by
mouse (denoted by the number above each black box; 9, 12, 9, and 11mice for A, B, C, and D, respectively), cage of residence (clusters of boxes
separated by whitespace, 5, 3, 2, and 3 cages for A, B, C, and D, respectively), and cohort (x-axis labels, 4f= 4-month fecal, 12f= 12-month fecal,
18f= 18-month fecal, and 18c= 18-month cecal). Displayed are the 10most abundant species in each grouping (13 total species) ordered by their
mean abundances in the hAβ-KI femalemice. hAβ-KI, human amyloid beta knock-in;WT, wild type.

its relative abundance gradually declined thereafter. Another organism

that showed the influence of co-housing was Akkermansia muciniphilia,

which had a high relative abundance in the 4-month-old WT males

residing in the second cage (Figure 1D). Trends in genotype, sex, or

consistent age-associated differences are not readily apparent in this

representation of the data. A similar analysis of the metabolomic data

(Figure S1 in supporting information) showed that most of the named

metabolites were organoheterocyclic compounds, organic acids (or

derivatives), or lipids. Few discernible trends in genotype, sex, or age

were observed.

Expanding our observational analysis to less abundant microbe and

metabolite signatures revealed several trends,mostly pertaining to age

and sample type (cecal vs. fecal). A heatmap of the 100 most abundant

microbes (Figure S2A in supporting information) shows a general clus-

tering between thosemicrobes thatwere eithermore or less abundant

in the 18-month cecal samples relative to the fecal samples, with some
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clear sex-specific effects (e.g., reduced Alistipes spp. in males relative

to females). Several notable organisms are present on this plot, includ-

ing two Turicibacter spp. (T. sp. H121 and T. sanguinis), which appeared

at elevated abundances in 18-month hAβ-KI mice relative to WT ani-

mals. From a metabolomics perspective (Figure S2B) we see similar

(but less pronounced) trends. A large group of metabolites near the

bottomof the plot (tryptophan through glutamic acid) hadhigher abun-

dance in 18-month fecal and cecal samples relative to the younger

mice, and another grouping near the top of the heatmap (octadecanoic

acid through trimethylamine n-oxide [TMAO]) were more abundant in

the 4-month samples. Broadmetabolic trends relative to genotype and

sex are difficult to observe in this representation of the data.

3.3 Correlation between microbes and
metabolites

Spearman’s correlations between the 100 most abundant metabolites

andmicrobes at the species level showed several distinct clusters of co-

occurrence (Figure 2;Mantel statistic: r= 0.065, significance= 0.029).

Segregating the heatmap into nine groups revealed two clusters of

strong correlations (yellow clusters in upper left and lower right), two

clusters of anticorrelations (blue region clusters upper right and lower

left), and seven clusters in which the correlations were null or mixed.

Several noteworthy observations can be drawn from these correla-

tions. First, Alistipes and Bacteroides spp. showed similar correlation

patterns and were positively correlated with ≈ 40% of the metabo-

lites and negatively correlated with another 45%. The bottom cluster

of microbes was more diverse and exhibited the opposite correlation

pattern. Second, several smaller groupings of bacteria defied these

trends. For example, Limosilactobacillus reuteri and Lactobacillus john-

sonii (which formed their own distinct cluster near the center of the

correlation heatmap) were positively correlated with the middle clus-

ter of metabolites, and otherwise showed mixed correlation patterns

with the remaining metabolite clusters. The five bacteria found at the

top of the plot (Romboutsia ilealis, Turicibacter sp. H121, Turicibacter

sanguinis, Bifidobacterium pseudolongum, and Bifidobacterium animalis)

showed similar correlation patterns and were weakly correlated or

weakly anticorrelated with most metabolites. Analogous correlation

analyses applied to each sex, cohort, or genotype separately did not

show statistically significant trends (Mantel significance> 0.05).

3.4 Alpha diversity of microbiomes and
metabolomes

The alpha diversities of the hAβ-KI mice microbiomes and

metabolomes were compared to their WT counterparts across all

age groups, sample type, and sexes. As shown in Figure 3A,microbiome

richness (the number of identified species) was similar for males and

females across all age groups and genotypes, except for the 4-month

hAβ-KI females, which had fewer detected species relative to age- and

sex-matched WT samples. Species evenness (Figure 3B) and Shannon

diversity (Figure 3C; a diversity metric that includes both richness and

evenness) were significantly lower in 18-month hAβ-KI females rela-

tive to their age- and sex-matched WT counterparts. The difference

was more pronounced in the 18-month cecal microbiomes than the

fecal microbiomes, and altogether absent from the males. Analogous

diversity metrics applied to themetabolomes did not significantly vary

with age, sex, or genotype (Figures 3D-F).

3.5 Beta diversity of microbiomes and
metabolomes

NMDS of the Bray–Curtis dissimilarity matrices (a measure for beta

diversity) was performed separately on the four cohorts (Figure 4A-H),

with 95% confidence interval ellipses drawn around each genotype–

sex pairing (i.e., hAβ-KI females,WT females, hAβ-KI males,WTmales).

In both the microbiome (Figure 4A-D), and metabolome (Figure 4E-H)

data, samples from different groupings overlapped, with slightly more

separation for females thanmales.

PERMANOVA of the Bray–Curtis dissimilarity matrices was per-

formed for both the microbiome (Figure 4I-J) and metabolome data

(Figure 4K-L) with the males and females of each cohort treated sep-

arately. The female microbiome samples from each cohort (Figure 4I)

varied significantly with respect to both genotype and housing ID, with

genotype explaining 13%, 9.8%, 14%, and 18% of the variance in the

4-month fecal, 12-month fecal, 18-month fecal, and 18-month cecal

samples. The finding with the female microbiomes stands in stark con-

trast to analogous analysis inmales (Figure 4J), where genotype did not

explain a significant portion of variation in any cohort (Padj > 0.05).

Housing was a significant variable in all cohorts for both males and

females (except for the 12-month fecal males), where it accounted for

as much as 58% of the variance in themicrobiome.

For the metabolomes (Figures 4K-L), housing accounted for a large

proportion of the variance (> 10% in all cases) but was only significant

for the 12-month male fecal samples. Differences in the metabolome

attributable to genotype were not significant.

3.6 Differentially abundant microbes and
metabolites

Random forest modeling was performed on the microbes and metabo-

lites foundwithin the longitudinal hAβ-KI samples for each cohort,with

differentiation by each sex–genotype grouping (Figure S3 in support-

ing information). In themicrobiomedata (FigureS3A-D), strongoverlap

and low predictive confidence were observed in all cases, with the

possible exception of the 18-month cecal samples (Figure S3D), which

showed sex–genotype separation with 66% accuracy. Random forest

modeling for the metabolomics data (Figure S3E-H) showed a more

pronounced separation for sex, butminimal separation by genotype for

all cohorts.

Because of the clear genotype differences observed elsewhere

for females (and not males), we also performed random forest
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F IGURE 2 Spearman correlation between the 100most abundant microbes (rows) and 100most abundant metabolites (columns) in all
longitudinal human amyloid beta knock-in (hAβ-KI) samples (161 samples from 41 animals). Each small square represents a correlation between
the row and column variables, and is colored according to the correlation coefficient. Rows and columns are ordered by hierarchical clustering. The
top 100microbes andmetabolites are significantly correlated (Mantel statistic: r= 0.065; significance= 0.029).

modeling on the females and males separately. As can be seen in

the microbiome random forest analysis of Figure 5, three out of the

four female cohorts exhibited clear separation by genotype (> 80%

confidence), while all males did not (< 65% confidence). The clearest

separation was observed for the 18-month female cecal samples

(90% confidence), with Staphylococcus aureus, Desulfitobacterium

dehalogenans, Thermoanaerobacterium thermosaccharolyticum, and

Pseudoalteromonas sp Scap06 identified as the variables of greatest

importance.

Random forest modeling of the hAβ-KI metabolomics data showed

similar, although less pronounced, trends, with strong genotype dif-

ferentiation in the females but not the males (Figure S4 in supporting

information). For the females, themodel predicted genotypewith 80%,

88%, 70%, and 75% accuracy for the 4-month fecal, 12-month fecal,
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(A) (B) (C)

(D) (E) (F)

F IGURE 3 Alpha diversity of longitudinal (A-C) microbiomes and (D-F) metabolomes from hAβ-KI andWT animals withmales and females
considered separately. Microbial evenness and Shannon diversity were reduced for hAβ-KI mice relative to theirWT counterparts in cecal samples
from 18-month females. Richness was also significantly reduced for 4-month hAβ-KI females relative to 4-monthWT females. x-axis labels:
4f= 4-month fecal, 12f= 12-month fecal, 18f= 18-month fecal, and 18c= 18-month cecal. Themicrobiome andmetabolome analysis included
161 and 145 samples, respectively, from 41 animals. *P-values were computed using the Kruskal–Wallis rank sum test with Benjamini–Hochberg
false discovery rate correction. hAβ-KI, human amyloid beta knock-in;WT, wild type.

18-month fecal, and 18-month cecal samples, respectively. For the

males, the model achieved an accuracy of 50%, 76%, 55%, and 65%

for the 4-month fecal, 12-month fecal, 18-month fecal, and 18-month

cecal samples, respectively.

We used a LME model to find microbes with significantly different

abundances with respect to genotype when considering co-housing as

a compounding factor. We performed LME on all cohorts and sexes

together, each sex (all cohorts), each cohort (both sexes), and each sex–

cohort group. Differently abundant species (Padj < 0.05) were only

observed for 18-month female cecal samples (14 bacterial species) and

4-month female fecal samples (Muribaculum sp. TLL-A4 only). All differ-

entially abundant species except forMuribaculum sp. TLL-A4 exhibited

a lower relative abundance in female hAβ-KI mice relative to female

WT mice (Figure 6). Remarkably, no differentially abundant species

were found inmalemice.

Performing the same set of LMEanalyseswith respect to sex instead

of genotype revealed only one bacterial species (Limosilactobacillus

reuteri) to be differently abundant. L. reuteriwas found at a significantly

higher abundance in female mice relative to males (Padj = 3 × 10−7),

a trend that held true for both hAβ-KI and WT animals (Figure S5 in

supporting information).

Applying LME modeling to the metabolomics data, no metabo-

lites were significantly different between genotypes, while the abun-

dances of sevenmetaboliteswere found to significantly differ between

sexes after FDR correction: 2-(1-methyl-1H-imidazol-5-yl)acetic acid,

benzoic acid, taurodeoxycholic acid, leucine, N-methyl tyrosine, 4-

morpholinopropanesulfonic acid, and the di-peptide Leu-Lys.

Analyzing all cohorts together and using Mouse ID in place of

Housing ID as the random effect in the LME model yielded a sep-

arate collection of differentially abundant species with respect to

both genotype and sex (14 with respect to genotype when analyz-

ing females only, and 39 with respect to sex). This method ignores

the variability introduced by cage effects and therefore leaves ambi-

guity. For example, by this analysis, the abundance of Bifidobacterium

pseudolongum was significantly lower in WT females relative to hAβ-
KI females (Padj = 0.016), but not consistently across all cages (Figure

S6 in supporting information). Mice in two out of five cages showed

B. pseudolongum abundances similar to the WT females (cages d & e
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F IGURE 4 NMDS of Bray–Curtis dissimilarities of (A-D) microbes and (E-H) metabolites, and PERMANOVA of themicrobes (I-J) and
metabolites (K-L). Ellipses in (A)–(H) represent the 95% confidence interval for each genotype and sex grouping. The bars in (I)–(L) represent the
magnitude of the PERMANOVA variance explained by each variable, with P values shown as a data label above each bar. The “Residuals” variable in
(I)–(L) represents the variance unaccounted for by Genotype and housing. Themicrobiome andmetabolome analysis included 161 and 145
samples, respectively, from 41 animals. PERMANOVAwas performed on each sex-specific hAβ-KI cohort by nesting Genotype within Housing_ID
and using the following formula: adonis2(formula= data_subset∼Genotype/Housing_ID, data=meta_test, method= “bray”, permutations= 999,
parallel= 32, by= “terms”). The resulting PERMANOVA P values (text above the bars in I-L) were adjusted with a Benjamini–Hochberg false
discover rate corrected. hAβ-KI, human amyloid beta knock-in; PERMANOVA, permutational multivariate analysis of variance;WT, wild type.

in Figure S6). When performing LME with Housing ID as a random

effect, spurious correlations between B. pseudolongum abundance and

co-housingwere accounted for, and themodel deemed the relationship

to be above the significance threshold. Because of the ambiguity aris-

ing from cage effects, differential abundance analysis using Mouse ID

as the random effect was not explored further.

3.7 Comparison of 18 mo hAβ-KI and 3xTg-AD
microbiomes

We compared the microbiomes of the 18-month hAβ-KI mice to age-

matched animals from the 3xTg-ADmodel for familial AD. The genetic

background for each linewas also included: B6J for hAβ-KI (henceforth

denoted as hAβ-KI WT) and B6129 for 3xTg-AD (henceforth denoted

as 3xTg-AD WT). The hAβ-KI homozygous (HO) and hAβ-KI WT sam-

ples used in this comparison were the same as those analyzed in prior

sections of this article.

The two lines shared many of their most abundant microbial

species, with more apparent taxonomic differences observed between

sample types (i.e., fecal and cecal) than between genotypes or genetic

background (Figure S7A-D in supporting information). Many of the

3xTg-AD WT samples (Figures S7C-D) contained more F. rodentium

than the other groupings, and generally had a higher proportion

of the 12 most abundant species relative to the lower abundance

species. These observations are also reflected in the alpha diversity

metrics (Figure S7E-G), which showed reduced richness and evenness

for the 3xTg-AD WT samples. Beta diversity analysis (NMDS of the
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(A) (E)

(B) (F)

(C) (G)

(D) (H)

F IGURE 5 Random forest proximity plots and variables of importance for the longitudinal hAβ-KI microbiomewith females (A-D) andmales
(E-H) considered separately for each cohort. 95% confidence interval ellipses are drawn around each genotype grouping; 161 samples from 41
animals were included. hAβ-KI, human amyloid beta knock-in.

Bray–Curtis dissimilarity matrix) showed large overlap for micro-

biomes from all genotypes and sexes, and strong separation by sample

type (Figure S7H-J). PERMANOVA showed that all variables examined

were significant (P < 0.001) with variances of 2%, 2%, 5%, 15%, and

36% for genotype, line, sex, sample type, and cage (nesting variable).

Random forest modeling showed separation by line and genotype

(67% accurate, Figure 7A), sex (81% accurate, Figure 7B), and sample

type (78% accurate, Figure 7C). A closer examination of the random

forest model for line and genotype (Figure 7A) showed that most

of the separation arose from genetic background (i.e., hAβ-KI vs.

3xTg-AD) rather than AD genotype (HO vs. WT). We explored this

distinction further by focusing the model separately on the HO and

WT samples from both genetic backgrounds (Figure 7D and 7E).

Both the HO and WT samples showed distinct groupings, with 81%

and 91% accuracy, respectively. Separation of the HO samples was

driven by Romboutsia ilealis, T. sanguinis, Turicibacter sp. H121, and
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F IGURE 6 Microbes whose abundances significantly differ between genotypes as identified by LMEwith Benjamini–Hochberg false discovery
rate correction; 161 samples from 41 animals were included. hAβ-KI, human amyloid beta knock-in; LME, linear mixed effects;WT, wild type.
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(A) (B) (C)

(D) (E) (F)

F IGURE 7 Random forest modeling of cecal and fecal microbiomes collected from 18-month hAβ-KI HO (n= 18), hAβ-KIWT (B6J, n= 23),
3xTg-ADHO (n= 18), and 3xTg-ADWT (B6129, n= 18) mice. Modeling was performedwith separation by line-genotype grouping (A), sex (B), and
sample type (C). Random forest was also used for the HO (D),WT (E), and 3xTg-AD (F) samples separately. hAβ-KI, human amyloid beta knock-in;
HO, homozygous;WT, wild type.
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Duncaniella sp. C9 (mean decrease accuracy [MDE] > 5). Separation

of the WT samples was largely driven by a different set of bacteria,

namely Staphylococcus xylosus, Streptococcus sp. NSJ.72, A. muciniphila,

Alistipes communis, Alistipes onderdonkii, and five other species with

a MDE greater than 5. We also examined the relationship between

the 3xTg-AD HO and 3xTg-AD WT samples (Figure 7F), which

showed strong overlap between microbiomes from the two genotypes

(64% accuracy).

The appearance of two Turicibacter spp. as top variables of impor-

tance in our random forest modeling (Figure 7D), and the prior studies

highlighting a connection between Turicibacter spp. and AD5,9,16 led us

to further investigate Turicibacter spp. abundance (Figure S8 in sup-

porting information). The relative abundances of both T. sanguinis and

Turicibacter sp. H121were significantly greater in cecal and fecal mate-

rial from hAβ-KI HO mice relative to the 3xTg-AD HO mice (by a

Wilcoxon rank sum test, Padj < 0.05). The abundances of the two Turi-

cibacter spp.were not significantly different comparing theHOandWT

samples from within either genetic background (i.e., 3xTg-AD HO vs.

3xTg-AD WT, or hAβ-KI HO vs. hAβ-KI WT), or comparing the hAβ-KI
WTmice to the 3xTg-ADWTmice.

4 DISCUSSION

We examined the composition of the longitudinal microbiome and

metabolome in the hAβ-KI mouse model for LOAD, with consideration

of sex, age, and cage effects.

4.1 Female hAβ-KI mice harbor distinct
microbiomes, while male hAβ-KI mice do not

AD-specific differences are observed in female hAβ-KI microbiomes

but not in males. These sex-specific trends are present in our alpha

and beta diversity metrics (Figures 3 and 4), our random forest analy-

sis (Figure 5), and the LMEmodeling for differentially abundant species

(Figure 6). The PERMANOVA results (Figure 4I-L) are particularly illus-

trative of this dichotomy, with genotype-specific differences in beta

diversity accounting for as much as 18% of the variance in the female

microbiomes.

This finding partially recapitulates the sex-specific results of other

studies of the AD microbiome. For example, in their 2019 study

of calorie restriction in Tg2576 mice, Cox et al. found more sub-

stantial age-related microbiome changes in female mice, which were

directly linked to differential Aβ levels.34 Some studies have chosen

to use only female mice, presumably to increase the effect size.18

As a cautionary point to excluding males, a recent preprint studying

the microbiota–microglia–amyloid axis only observed effects in male

mice.35 Sex-specific differences in peoplewith AD are alsowell known,

with females disproportionately diagnosed with AD.36 As of this writ-

ing, sexual dimorphism in hAβ-KI mouse cognition, behavior, or AD

severity has not been otherwise observed.

4.2 Female hAβ-KI microbiomes diverge as the
mice age, particularly in the cecum

The differences in female hAβ-KI microbiomes with respect to geno-

type generally increase with age and are most pronounced in the

cecal samples. This trend of an age-dependent increase is expected

for a mouse model that recapitulates a progressive disease. hAβ-
KI mice exhibit progressively worsening disease pathology, includ-

ing age-dependent impairments in cognition, brain volume, and

inflammation.19

4.3 Female hAβ-KI gut metabolomes are more
similar than microbiomes

Our results suggest that the female hAβ-KI fecal microbiomes vary

more between genotypes than do the metabolomes. Remarkably,

even the 4-month hAβ-KI females exhibited significantly different

microbiome beta diversity compared to their WT counterparts (PER-

MANOVA Padj = 0.04, R2 = 13%). This suggests that gut microbiome-

based diagnostic tools may be more promising than those based

on the gut metabolome. Plasma metabolome-based diagnostic tools

for pre-clinical AD are under development,37,38 and other studies

have indicated the potential use of gut microbiome biomarkers for

diagnostics.39,40

4.4 Differentially abundant microbes are found
only in females

LME modeling identified 14 microbes (all anaerobes) whose abun-

dances differedbetweengenotypes (Figure 6). Aside fromMuribaculum

sp. TLL-A4 (which was elevated in hAβ-KI females), all microbes were

present at significantly lower abundances in 18-month hAβ-KI females

relative to age- and sex-matched controls. No specieswere found to be

differentially abundant in males. All microbes except for Muribaculum

sp. TLL-A4 were found at low abundances, with several (7/14) having

relative abundances < 0.1%. These rare species may be an indicator of

underlying disease physiology andmay present diagnostic value.

4.5 Microbiomes of late and early onset AD
models are distinguishable by PERMANOVA and
random forest

Microbiomes from the early and late onset AD models (3xTg-AD and

hAβ-KI) showed similar alpha diversity but were distinguishable by

PERMANOVA and random forest. Genotype and line each accounted

for ≈ 2% of the PERMANOVA variance, a robust finding in the con-

text of both host-associated and environmental microbiome studies,

in which 2% variance is comparable to other factors important for

microbiome composition such as age or antibiotic use.41,42 Random
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forest (Figure 7) distinguished the two lines with accuracies of 81%

and 91% for hAβ-KI HO versus 3xTg-AD HO and hAβ-KI WT versus

3xTg-ADWT, respectively, further suggesting that genetic background

drives microbiome composition. Separation of the HO samples was

driven by many of the same microbes (Romboutsia, Turicibacter, Turi-

cibacter, andDuncaniella) that were found to be differentially abundant

in the 5xfAD mouse.9 Perhaps surprisingly, our analysis did not reveal

genotype-specific differences between 18-month 3xTg-AD animals. As

the 3xTg-AD mouse was not the primary focus of our study, we leave

further exploration of this finding to others and refer the reader toBor-

som et al.18 Direct comparison of hAβ-KI and 3xTg-AD to the 5xfAD

mice from our prior study9 was hindered by batch-to-batch variation

in sequencing runs.

4.6 Turicibacter spp. and AD

Turicibacter spp. were more abundant in the cecal and fecal material of

hAβ-KI HO animals relative to those from the early onset AD model

(3xTg-AD HO) (Figure S8). The differences in Turicibacter spp. abun-

dance within each line were not significant. Turicibacter has previously

been associated with AD, both in 5xfAD mice (where Turicibacter spp.

are depleted in older mice with AD pathology)9 and in humans, where

it is depleted in people with AD relative to healthy counterparts.5 Turi-

cibacter spp. are established mediators of the gut–brain axis in AD,

through both the consumption of serotonin and the regulation of its

production.43,44 Although Turicibacter spp. are at relatively low abun-

dances (<1%), the consistent emergence of these microbes as top

variables of importance suggests their importance in AD.

4.7 Some rare taxa may have dietary or spurious
database-related origins

Taxonomic assignments for several species (including some found to

be differentially abundant) may be spurious. We used a metagenomic

sequencing pipeline (Kraken) that provides thousands of species, and

not all assignments may be accurate. For example, Blattabacterium

cuenoti and Buchnera aphidicola are obligate endosymbionts of insects

and therefore unlikely to exist outside of their hosts.45,46 DNA from

these organismsmay have come from themouse chow, but their differ-

ential abundance is still unexplained. Although it has been reported as

a low abundance species in human fecal microbiomes,47 another dubi-

ous assignment isMahella australiensis, which is a thermophile originally

isolated from an Australian oil well.48

4.8 Most of our metagenomic reads and
metabolomic ions remain unassigned

Only 26% of our shotgun microbial reads matched sequences in the

Kraken database, and only 10% of the metabolites detected with mass

spectroscopy could be identified. The large proportion of unknowns is

typical for omics methods, even in a well-studied environments such

as a mouse gut.49,50 Further analysis of these unidentified signals may

unearth important biomarkers, or even causative agents, for AD.

4.9 Cage effects obscure potentially important
trends

A universal finding of microbiome research (including in humans) is

that most microbiome variance is dictated by the subject and the

housing unit in which the subject resides.51–53 These effects are even

larger in coprophagic animals, who develop similar microbiomes to

their cage-mates. Small, unintended variations in the microbiome can

alter seemingly unrelated study results, and therefore the researcher

may be unable to determine whether a result is the true effect of

the test parameter or a manifestation of the cage effect. Microbiome-

informed animal husbandry practices, clever experimental design,

and creative statistical modeling are needed to tease out accurate

results.11,14,17,54–56

We found here that cage effects accounted for a plurality of the

variance in the microbiome (37%–58% by PERMANOVA); however,

we identified differentially abundant species by including housing ID

as a random effect in our LME model. Cage effects were also sub-

stantial for the metabolome (21%–58%) but they were not significant

(P > 0.05 by PERMANOVA). High variance explained with a lack of

significance can occur when the PERMANOVA model does not fit

the data well, or when there is inadequate variance in the replicates.

Cage effects likely obscure relevant associations between the micro-

biome/metabolome composition and AD. For example, Bifidobacterium

pseudolongum (Figure S6) appears to be differentially abundant at first

glance but is ultimately an ambiguous result when cage effects are

considered.

Kim et al. provided several suggestions on how best to design

microbiome-focused experiments, includingmaximizing the number of

cages and treating the cage as a variable in any statistical analysis.56

More cages may increase expense, which will likely constrain the

number of animals. Others have obtained favorable results through

randomized cohousing, which can enable statistical disentanglement

of the effects of genotype and housing.17 Cage effects may also be

mitigated through intentional microbiome design. Inoculation with

“wilding” microbiomes increases resilience,57 potentially preventing

the unintentional microbiome-induced perturbation of mouse physi-

ology, behavior, and study outcomes. Wildling microbiomes may also

better represent human immune response.58

5 CONCLUSIONS

Weexamined the longitudinalmicrobiomeandmetabolomeof amouse

model for LOAD (hAβ-KI) and explored the association with AD geno-

type, age, and sex. AD-dependent differences were observed in gut

microbial diversity and taxonomic composition, but only in 18-month

females, suggesting that the impact of hAβ-KI genotype on the gut
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microbiome ismore pronounced in females thanmales. Unsurprisingly,

we also found that a plurality of the microbiome andmetabolome vari-

ance is attributable to cage affects. Animals that are housed together

share similar microbiomes, regardless of other factors. Considering

housing design and early microbial exposures in LOAD animal model

studies is imperative for our continued development of robust animal

models of AD.
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