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Across the life sciences, an ongoing effort over the last 50 years has made data and methods more reproducible and
transparent. This openness has led to transformative insights and vastly accelerated scientific progress1,2. For example,
structural biology3 and genomics4,5 have undertaken systematic collection and publication of protein sequences and
structures over the past half-century, and these data have led to scientific breakthroughs that were unthinkable when
data collection first began (e.g.6). We believe that neuroscience is poised to follow the same path, and that principles
of open data and open science will transform our understanding of the nervous system in ways that are impossible to
predict at the moment.
To this end, new social structures along with active and open scientific communities are essential7 to facilitate and
expand the still limited adoption of open science practices in our field8. Unified by shared values of openness, we
set out to organize a symposium for Open Data in Neuroscience (ODIN) to strengthen our community and facilitate
transformative neuroscience research at large. In this report, we share what we learned during this first ODIN event.
We also lay out plans for how to grow this movement, document emerging conversations, and propose a path toward a
better and more transparent science of tomorrow.
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I. OPEN DATA IN NEUROSCIENCE

The symposium for Open Data in Neuroscience (ODIN)
2023, hosted by the initiative of the same name under the
auspices of the McGovern Institute for Brain Research at the
Massachusetts Institute of Technology, assembled experts in
the development of advanced tools, methods, and models in
neurophysiology. Exploring recent and forthcoming advance-
ments in neurophysiology, the group paid particular attention
to the increased resolution of emerging technologies and an-
ticipated growth of data over the next years. Thus, a focus of
the dialogue were challenges these technologies are expected
to present for existing data infrastructures and for the broader
adoption of open science practices. The symposium sought
to foster collaborative discourse identifying such challenges,
as well as mitigation strategies and solutions. Crucially, these
technological advancements mark a significant frontier in neu-
rophysiological research. There is a clear imperative for novel
mathematical and computational models, and artificial intelli-
gence (AI) or machine learning (ML) solutions that will en-
able the community to effectively navigate and leverage the
full potential of high-resolution, high-dimensional, and multi-
modal data.

The ODIN symposium was structured in a manner rem-
iniscent of the Brain Research through Advancing Inno-
vative Neurotechnologies (BRAIN) Initiative meetings and
COSYNE (Computational & System Neuroscience Meeting)
as single stream sessions. The symposium’s agenda was orga-
nized as a series of succinct presentations on themes ranging
from acquisition devices to simulated neural activity models
(Fig. 1). The latest large-scale open releases of neurophysiol-
ogy data and novel insights derived from these datasets were
also discussed. The selection of presenters was intended to
showcase the neurophysiology community’s various subfields
and a diversity of perspectives, covering a spectrum of emerg-
ing scholars to established scientists. Each session of talks
was followed by an interactive discussion between the audi-
ence and presenters. Additionally, each day’s topics were re-
visited in an hour long synthesis session that focused on com-
mon themes and their connections to one another.

The symposium’s agenda was organized into a series of ses-
sions over three days, each addressing critical facets of neuro-
physiology research:

• Day 1: Devices, Neuroinformatics, and Platforms,
featuring sessions on new devices and high through-
put acquisition systems, the neuroinformatics of neuro-
physiology, and platforms/infrastructures that underpin
research efforts.

• Day 2: Knowledge Extraction, Software, Modeling,
encompassing discussions on OpenData2Knowledge
pipelines for deriving scientific insights from multi-
scale, high-dimensional data, neuroscience toolkits pro-
moting open software and science, and approaches to
modeling and benchmarking.

• Day 3: Neuroinformatics Breakouts. In the final day
of the meeting, the audience and presenters broke up
into small discussion groups tasked with (1) delving in

greater detail into the problems faced by neurophysiol-
ogy as a field, and proposed solutions, including com-
mon infrastructure, data formats and standards, and (2)
exploring the role of AI/ML, computing, and visualiza-
tion in enhancing neuroinformatics.

Overall, ODIN 2023 was characterized by palpable enthu-
siasm and rich exchanges, reflecting the community’s need
for a commitment to advancing open science in neuroscience.
To sustain this momentum, we aim to continue this sympo-
sium as a bi-annual event. This continuity will reinforce the
symposium’s founding principles of open communication and
collaborative exploration across diverse neurophysiology and
systems neuroscience domains. In this paper, we present a
comprehensive overview of ODIN 2023. Our aim is to enable
and inspire the broader neurophysiology community to join
us in this project. We begin by providing concise summaries
of each session and discussion (with full versions available
online9). Next, we synthesize the insights from the breakout
sessions held on the final day. Lastly, we share a forward-
looking perspective on the future of open data and neurophys-
iology research.

II. DEVICES, NEUROINFORMATICS, AND PLATFORMS

Introductory remarks from the BRAIN Initiative. In her
opening keynote, Andrea Beckel-Mitchener, Deputy Director
of the National Institutes of Health (NIH) BRAIN Initiative,
commemorated the decennial of the Initiative, a cornerstone
in the evolution of brain research through cutting-edge neu-
rotechnologies. She delineated the significant strides made
since its inception in 2013, spotlighting the launch of pioneer-
ing projects that have enriched our understanding of neural
circuits and behaviors across the spectra of health and dis-
ease. Beckel-Mitchener lauded the collaborative spirit that
has spurred over (US)$3 billion in investments across more
than 1300 projects, and synergy among federal agencies, pri-
vate entities, and the research community. This keynote un-
derscored the symposium’s close alignment with the BRAIN
Initiative’s ethos of transparency and the democratization of
scientific resources, reflecting a shared ambition for broaden-
ing the accessibility and application of data and resources in
the scientific and clinical realms.

A. New Devices and High Throughput Acquisitions

The first session of the symposium on “New devices
and high throughput acquisitions” highlighted the latest ad-
vancements in neurotechnology, marking a significant shift
from traditional methods to innovative approaches that al-
low for high-resolution, comprehensive recording of brain
activity. The session covered both electrical and optical
recordings of brain activity at high spatiotemporal resolution.
The presenters discussed the development and application of
multi-thousand channel electrocorticography grids, volumet-
ric recording at the single-cell resolution across the cortex, ad-
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Open Data in Neurophysiology (2023) Ecosystem
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FIG. 1: The ecosystem of open source neurophysiology toolkits presented or discussed during ODIN 2023. See Table I for
more information about each toolkit.

vancements in the all-optical electrophysiology study of neu-
ron excitability, and the introduction of Neuropixels NXT for
in vivo high-density electrophysiology.

These technologies represent a paradigm shift towards
more precise methods for studying and treating neurological
conditions. They provide insights into the complex dynam-
ics that emerge in neural networks. However, despite the ex-
citement surrounding these advancements, the speakers also
highlighted the challenges associated with managing the vo-
luminous data generated, the fidelity of spike sorting, and the
importance of recording neurons simultaneously.

The session underscored the critical need for interdisci-
plinary collaboration, improved computational methods for
data handling, and thoughtful consideration of the scientific
value versus the practicality of collecting and analyzing mas-
sive datasets in neuroscience research. The session concluded
with a discussion on the future of high throughput neuro-
science, emphasizing the importance of these advancements
as well as the challenges that lie ahead.

a. Mapping the Human Brain with High Spatiotempo-

ral Resolution. In the opening talk, Shadi Dayeh (Univer-
sity of California San Diego) discussed the advancements in
recording human brain activity using multi-thousand channel
electrocorticography (ECoG) grids. He highlighted the shift
from traditional clinical electrodes with limited coverage and
resolution to modern microelectrode technologies that densely
pack thousands of channels into compact areas. This advance-
ment, facilitated by progress in thin-film microfabrication, al-
lows for comprehensive brain activity mapping. Dayeh de-
tailed the technological challenges that needed to be overcome
to achieve this, such as scaling down electrode size to increase
signal-to-noise ratio and adapting the electrodes to the brain’s

curvilinear surface for stable contact10. Dayeh also introduced
innovative devices like platinum nanorod grids (PtNRGrids)
and their clinical applications, from acute to chronic mon-
itoring. He highlighted the move towards wireless systems
for efficient and less intrusive monitoring, marking a potential
paradigm shift in neurophysiology, both for the experimental
and clinical settings.

b. High Channel Count Electrophysiology: Present,

future. Neuropixels, a silicon probe which allows high-
density simultaneous recording of hundreds of neurons in
awake and freely moving animals, have revolutionized sys-
tems neuroscience11. Tim Harris (HHMI Janelia Research
Campus/JHU) discussed the development and applications of
Neuropixels NXT, the latest innovation in high-density elec-
trophysiology, emphasizing its capacity to capture neural ac-
tivity across a broad spectrum of species with unprecedented
detail and scale. By integrating multiple components of tra-
ditional electrophysiology systems into a single, sophisticated
device, Neuropixels NXT represents a significant leap forward
in neuroscience research tools, offering researchers the abil-
ity to gather data from thousands of neurons simultaneously.
Harris highlighted the transformational impact of Neuropixels
technology on neuroscience, allowing for more comprehen-
sive and detailed observations of neural dynamics than ever
before. However, he also raised critical concerns about the
challenges associated with the increased data volume, includ-
ing issues related to spike sorting fidelity, data management,
and the interpretation of vast datasets, questioning the neces-
sity and practicality of recording every neuron simultaneously
for meaningful scientific discovery.

Furthermore, Harris reflected on the broader implications of
deploying Neuropixels NXT in research, including the poten-
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tial to change the landscape of primate neuroscience by dra-
matically increasing the number of neurons observed in a sin-
gle experiment. He shared insights into the community’s en-
thusiasm for the technology, as evidenced by the widespread
adoption of Neuropixels across various species and research
contexts, and the collaborative efforts that made such techno-
logical advancements possible. Despite the excitement, Har-
ris expressed reservations about the scientific community’s
readiness to handle the deluge of data produced by such high-
density recording techniques. He underscored the urgent need
for more effective strategies for data compression, sharing,
and analysis to fully leverage the technological capabilities of
Neuropixels NXT, challenging researchers to think critically
about the balance between data collection capabilities and our
ability to extract of meaningful insights from complex neural
recordings.

c. Towards Cortex-Wide Recording of Neuroactivity at

Cellular Resolution. Alipasha Vaziri (Rockefeller Univer-
sity) showcased his lab’s breakthroughs in developing tech-
nologies for cortex-wide, volumetric recording of neuronal
activity at single-cell resolution, addressing the fundamen-
tal question of how sensory inputs and neural activity trans-
late into behavior and computational processes in the brain.
His approach, which incorporates light sculpting and tempo-
ral multiplexing, expands the volume and scale of neuronal
recordings while maintaining the necessary spatial resolution,
allowing for the simultaneous recording of activity from mil-
lions of neurons across the mouse brain12.

This achievement enables unprecedented insight into the
complex dynamics of neuronal populations revealing intricate
networks of correlated activity across significant distances
within the brain. Notably, Vaziri’s findings challenge conven-
tional assumptions about neural data dimensionality. He high-
lighted evidence that there is a smooth decay in the variance
spectrum across thousands of functional brain components.
Such an observation, if replicated, would offer a novel van-
tage point on our understanding of brain function and could
inspire future explorations of the anatomical and temporal or-
ganization of these higher dimensions of brain activity.

d. Voltage Imaging: All-optical electrophysiology of

neuron excitability. Adam Cohen’s (Harvard University)
presentation centered on the innovative approach of using
voltage imaging to study neuron excitability through an all-
optical electrophysiology framework. By leveraging voltage-
sensitive fluorescent proteins activated by red light, and
blue-light-activated channelrhodopsins for neuronal stimula-
tion, his team has developed a powerful neuro-optical in-
terface. This tool allows for comprehensive monitoring of
electrical activity across neuron populations, including spikes
and subthreshold voltages, with high spatial and temporal
resolution13. Cohen’s work aims to unravel the complex dy-
namics evolving within neurons and their networks by ex-
amining the input-output relationships and the plasticity rules
that govern changes in neural function.

Again, the vast amount of data generated through these ad-
vanced imaging techniques presents significant challenges in
terms of analysis, interpretation, and sharing. Cohen pointed
out the difficulties in extracting meaningful information from

a noisy signal and in distilling the data to manageable pro-
portions for scientific inquiry. Furthermore, he discussed the
ongoing struggle to meet NIH mandates for data sharing, em-
phasizing the need for better tools and methodologies for man-
aging and disseminating large-scale neural imaging datasets.
Cohen’s call for improved computational methods to handle
these high-dimensional data highlights a critical intersection
between neuroscience and data science, suggesting that fu-
ture advancements in understanding neural dynamics and ex-
citability will likely emerge from collaborative efforts that
bridge these fields.

e. Concerns & Challenges. The panel discussion be-
tween the speakers and the audience, moderated by Ben
Dichter (CatalystNeuro), centered around the utility of col-
lecting extensive neural data, the fidelity of spike sorting, and
the practicalities of data compression and sharing. Speak-
ers shared concerns about the reliability of identifying neural
units and the potential false positive or false negative spikes
derived from current methodologies. It was agreed that signal
extraction is challenging, given background noise, the large
amount of data to sift through, and the complex relationship
between intracellular neuronal excitability and extracellular
signatures of neural activity. The discussion highlighted the
need for intermediate data compression strategies that ensure
data can be feasibly stored, while allowing information essen-
tial for reanalysis to be retained. Further discussions under-
scored that in contrast to imaging, electrophysiological data
do not provide precise anatomical insights. It was pointed out
that without spatial context, critical information is missing,
emphasizing the subjective and artisanal nature of developing
models based on such data.

Furthermore, the dialogue explored strategies for efficient
data handling, like reducing data dimensionality for more
manageable analysis. The Brain Initiative’s concerns about
the scalability of online data sharing given the astronomical
data generation rates of new technologies prompted a pro-
posal that, instead of sharing the overwhelming volumes of
raw data, a more viable approach might involve detailing the
methodologies for data acquisition, ensuring others can repli-
cate experiments if needed. This sentiment was also echoed
by those advocating for sharing analyzed results and interpre-
tations rather than unmanageable raw datasets. This approach,
while it addresses practical constraints, also emphasizes the
importance of having experimental and analytical insight into
the raw data one is working with. It suggests that a shift to-
wards sharing distilled knowledge and methodologies in the
neuroscience community might be more effective.

Data Management in the Age of High Throughput:

Technological advances, while pushing the frontiers of neuro-
science, raise a crucial question for the open science commu-
nity: how should we manage the terabytes (TBs) of data gen-
erated? Large-scale repositories like DANDI are challenged
not only by storage needs, but also by the need to efficiently
share such voluminous data. Yet, comparisons with data man-
agement practices at institutions like the European Organiza-
tion for Nuclear Research (CERN), which typically handles
50-100 petabytes of data annually14 , suggest that neurophys-
iological data repositories likely have the capacity to store and



ODIN: Open Data In Neurophysiology 5

share this data effectively, at least until data generation scales
significantly. However, one significant difference between a
centralized facility like CERN and the more dispersed lab-
oratories of the neurophysiology community is the ease of
access to data engineers possessing the expertise to handle
such large throughput. For the former, maintaining a fleet of
highly trained personnel is a necessity of operation - for the
latter, budgetary concerns can often offload the responsibil-
ity to students who lack training in the technical aspects of
PB-scale data management. Although comparing current data
scales suggests that the problem is not immediate, concerns
about storage capacity limits eventually being met prompted a
broader dialogue about the principles that should guide a shift
towards storing only pre-processed data to ensure the quality
and feasibility of data sharing in the long term.

Overall, the discussion highlighted a pivotal moment that
may soon be reached in neurophysiology, at which the field’s
ability to generate data will outpace its strategies for man-
aging, analyzing, and sharing that data. The conversation
pointed towards a need for a paradigm shift in how neuro-
scientific data is handled, emphasizing the importance of an-
alytical insight and methodological transparency over the in-
discriminate sharing of raw data.

B. Neuroinformatics of Neurophysiology

The neuroinformatics landscape is currently undergoing
a transformations, bolstered by significant advancements in
data standards, repositories, and computational tools designed
to meet the evolving needs of the neuroscience community.
These developments are pivotal to addressing the challenges
discussed above associated with the management, sharing,
and analysis of the rapidly growing volume and complexity
of neurophysiology data. This session spotlighted leading in-
novations in this domain.

a. The Neurodata Without Borders Ecosystem for Neu-

rophysiology Data Standardization: Driving collaboration

in neuroscience. Oliver Rübel (Lawrence Berkeley Na-
tional Lab) focused on the role of Neurodata Without Bor-
ders (NWB) as a comprehensive data standard for the neuro-
physiology community, developed under the NIH BRAIN Ini-
tiative with additional support provided by the Kavli founda-
tion. It was emphasized that NWB is not just a singular effort,
but a collaborative, multidisciplinary project that incorporates
contributions from various researchers and institutions, aim-
ing to address the wide range of needs in neurophysiology
data management. This standard facilitates the organization,
alignment, and integration of diverse datatypes, from neural
activity recordings to experimental metadata by enabling re-
searchers to store all relevant data in a single, hierarchical,
accessible format. A highlight of the talk was the detailed
overview of the growing NWB ecosystem, which has been
expanded to include a range of tools and application program-
ming interfaces (APIs) for data conversion, inspection, and
analysis, aiming to lower barriers to adoption and promote
widespread use15. The talk also addressed the evolving needs
of the neuroinformatics community, reflecting the complex-

ity of the analyses deployed on neurophysiology data. En-
hancements aiming to address these needs include support for
cloud-based data access and analysis, integration with exter-
nal resources, and efforts to make the standard and its asso-
ciated tools more accessible to users with diverse skill sets,
underscoring NWB’s critical role in the neurodata lifecycle
(from acquisition to analysis and sharing) and how it is contin-
uously evolving to meet the community’s changing needs16.

b. DANDI: An archive and collaboration space for neu-

rophysiology projects. Satrajit Ghosh’s (Massachusetts In-
stitute of Technology (MIT)) presentation on DANDI (Dis-
tributed Archives for Neurophysiology Data Integration)17 fo-
cused on its role not only as a data repository, but as a col-
laborative space designed to integrate neurophysiology data
across a diverse range of research areas. DANDI, a project
supported by the Brain Initiative and AWS public dataset pro-
gram, and operated in collaboration with MIT, Kitware, and
Catalyst Neuro, aims to make neurophysiology data, includ-
ing but not limited to electrophysiology and optophysiology
data, readily accessible and usable for the research commu-
nity. Ghosh highlighted DANDI’s cloud-based infrastructure,
and the fact that it hosts the largest collection of neurophysi-
ology data globally. He also discussed the importance of stan-
dards, computing resources, shared ecosystems, and trainings
for making data available, discoverable, and usable. He under-
scored DANDI’s commitment to Creative Commons licens-
ing, its support for standardized data formats like NWB and
BIDS, and the ongoing development of tools to facilitate data
submission, collaboration, and analysis. Notably, it was em-
phasized that the vision for DANDI extends beyond data stor-
age to fostering a comprehensive ecosystem for neuroscience
research, highlighting the critical need for community-driven
standards, curation, and education to enhance data utility and
sustainability in the face of rapidly growing data volumes.

c. End-to-end Computational Workflows for Neuro-

science Research. Dimitri Yatsenko’s (DataJoint) presenta-
tion focused on the development and application of end-to-end
computational workflows in neuroscience research, facilitated
by tools commercially available from DataJoint18. He out-
lined the importance of considering a project’s entire lifecy-
cle, from data acquisition to analysis, emphasizing that differ-
ent stages present unique challenges. He highlighted the di-
verse needs that arise in neuroscience studies, such as animal
management, electrophysiology, spike sorting, and behavior
analysis. Through their collaborations with various laborato-
ries, DataJoint has constructed a framework of “operational
maturity” in neuroscience research, which assesses a lab’s
ability to execute projects efficiently19. This model delin-
eates the maturity of systems ranging from ad-hoc processes
to AI-enabled operations. The DataJoint Elements resource
offers open-source solutions tailored to specific neurophysi-
ology experiments, aiming to elevate laboratories to higher
operational maturity levels and foster collaboration within the
neuroscience community through standardized workflows and
fair data principles20. Yatsenko also discussed how laborato-
ries can transition towards more sophisticated levels of oper-
ational maturity by, for example, adopting open-source tools
and better integrating computational data pipelines. The pre-
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sentation touched on the future of neuroscience research, de-
picting AI-enabled workflows as the pinnacle of operational
maturity. Examples like the creation of an interactive envi-
ronment for working with the MICrONS dataset21, and the
coordination and automation of various collaborative projects
illustrate the practical application of DataJoint tools in elevat-
ing the operational capabilities of neuroscience laboratories.

d. Web-based Visualization and Analysis of Neurophys-

iology Data. Jeremy Magland’s (Flatiron Institute) presen-
tation introduced innovative open-source software tools for
web-based visualization and analysis of neurophysiology
data, highlighting the advantages of leveraging web-based
platforms such as ease of use, shareability, and cross-platform
functionality. He presented three main tools he has been de-
veloping: Figurl, a framework for creating and sharing inter-
active visualizations22; Neurosift, a tool for browsing NWB
files, particularly those hosted on DANDI23; and Dendro, a
prototype web app for analyzing neurophysiology data in the
cloud, or using local or cluster compute resources24. Magland
detailed how these tools facilitate scientific collaboration, re-
producibility, and knowledge transfer by simplifying the shar-
ing of interactive figures and visualizations through URLs
generated by Python scripts. The integration of these tools
with data standards like NWB and platforms like DANDI was
emphasized, along with the advantages of client-only appli-
cations which do not require server maintenance. Magland’s
presentation showcased the potential of these types of tools
to revolutionize how neurophysiology data is visualized, ana-
lyzed, and shared within the scientific community, generally
enhancing the accessibility and collaborative potential of neu-
rophysiology research data.

e. Concerns & Challenges. During the panel discus-
sion, moderated by Yaroslav Halchenko (Dartmouth College),
a rich dialogue unfolded on the topic of implementation chal-
lenges and ethical considerations that arise when applying
neuroinformatics tools and standards to diverse neuroscien-
tific research environments. The key takeaways were:

• Integration and Utilization of Resources: In response
to an inquiry about how to best integrate and utilize
resources in systems neuroscience laboratories, several
approaches were recommended, including consulting
early with resource developers (such as NWB, DANDI,
and DataJoint), integrating standardized processes into
workflows to streamline data management and analysis,
and publishing effective workflows to share them with
the community.

• Usability: Relatedly, the panel discussion touched on
the critical need for enhancing the usability of neuroin-
formatics tools and ensuring robust user support to fa-
cilitate widespread adoption. Panelists concurred that
maintaining a low barrier to entry is essential for en-
abling researchers to effectively integrate these sophis-
ticated tools into their workflows, thereby ensuring the
community can keep pace with the rapidly increasing
volume and complexity of neurophysiology data.

• Standardization and Risk Management: The panelists
pointed out the necessity of standardizing data acquisi-
tion systems to facilitate data sharing and analysis. This

standardization can also help address risks associated
with data identifiability to ensure that shared data com-
plies with privacy standards (in clinical settings).

• Transparency and Reproducibility in Cloud-based

Analysis: Panelists argued that automated workflows
and containerization technologies enhance the repro-
ducibility and observability of computational research,
making cloud-based analysis a viable and transparent
option for neuroscientific research.

Overall, the discussion underscored both the difficulties and
opportunities that arise when adopting neuroinformatics tools
and standards, highlighting the importance of community col-
laboration, ethical considerations in data sharing, and the po-
tential benefits of cloud-based computational workflows for
the future of neuroscience research.

In summary, NWB has emerged as a comprehensive data
standard, fostering a collaborative, multidisciplinary effort to
streamline neurophysiology data management, and the cre-
ation of intuitive tools such as NeuroConv and NWB GUIDE
has helped simplify the conversion of proprietary data into
the NWB format. These initiatives reflect a concerted effort
to enhance the accessibility and usability of data sharing be-
tween research laboratories, and position NWB as a corner-
stone of neurophysiology data management. Reflecting its
rapid growth, the DANDI repository currently hosts an im-
pressive 276 TB of public neurophysiology data and is poised
to play a pivotal role in shifting the neuroscience community
toward open science. DANDI’s rapid expansion is a testament
to its inclusive approach, accommodating a wide spectrum of
neurophysiology data, from raw to processed forms, across
various species. This versatility broadens the repository’s util-
ity and sets a leading example for the burgeoning ecosystem
of tools and standards facilitating open science practices.

Further enriching this landscape are emerging commercial
services and web-based tools that aid laboratories in scal-
ing their data management and analysis capabilities. Ser-
vices such as DataJoint and CatalystNeuro offer tailored soft-
ware solutions, enhancing operational efficiency and support-
ing end-to-end data lifecycle management. Innovative web-
based platforms like Neurosift, Dendro and Figurl represent
technological advancements supporting accessible, collabora-
tive neuroscience research. These tools enable seamless in-
teraction with complex datasets and foster scientific collabo-
ration through shared, interactive visualizations, highlighting
a shift towards more accessible and collaborative neuroscien-
tific research.

Integrating these standards, repositories, and tools reflects
a collective stride towards addressing the neuroinformatics
community’s growing needs, and underscores a pivotal mo-
ment in the evolution of neurophysiology research. As we
navigate this era of transformation, the continual development
and adoption of these resources will be instrumental in en-
hancing data utility, promoting open science, and advancing
our understanding of the brain.
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C. Platforms/Infrastructures

This third session focused on the critical importance of
collaboration, standardization, and open science in advanc-
ing our understanding of neurophysiology and tackling the re-
producibility crisis in neuroscience research. A shared goal
emerged across the talks for creating integrated databases and
analytical frameworks that not only facilitate the exploration
of neuronal activity and brain function across species, but also
provide invaluable resources for the global scientific commu-
nity. Efforts in this direction underscore an ongoing transi-
tion towards inclusive, transparent, and collaborative research
infrastructures, promising to accelerate discoveries in neuro-
science. The session highlighted not only the advancements
in neuroscientific research methodologies and technologies,
but also the challenges ahead in achieving consensus on data
interpretation, and the need for continued innovation in data
analysis and sharing practices.

a. Brain Mapping and Disease Modellings using Ge-

netically Modified Marmosets. Hideyuki Okano (Keio Uni-
versity/Riken) laid out the Japan’s Brain/MINDS project’s
groundbreaking work in brain mapping and disease model-
ing using genetically modified marmosets. The initiative has
made significant contributions to open science by publicly
sharing the collected marmoset datasets, including structural,
diffusion and resting-state MRI datasets, as well as quanti-
tative 3D data, and an in situ hybridization-based marmoset
gene atlas25–27. By integrating gene expression and brain
structure data, this comprehensive database serving as a valu-
able reference for detecting abnormalities in disease mod-
els and facilitating interspecies comparisons. The initiative’s
research has notably revealed, among other discoveries, be-
tween and within-column connectivity patterns in the pre-
frontal cortex of marmosets that are not observed in mice. The
initiative also developed models of certain neurodegenerative
and neurodevelopmental diseases. This has enabled, for ex-
ample, a detailed study of Rett syndrome using CRISPR Cas9,
which revealed reduced connectivity, poor dendritic arboriza-
tion, and a disruption in excitatory/inhibitory balance due to
hypermaturation of parvalbumin neurons. These studies also
showed that MECP2 knock-out marmosets display gene ex-
pression changes similar to those observed in human patients,
bolstering the potential of this research to provide insights into
the molecular mechanisms underlying Rett syndrome, and to
reveal potential therapeutic targets.

b. OpenScope: The first astronomical observatory in

neuroscience. Jérôme Lecoq (Allen Institute for Neural Dy-
namics) gave an introduction to the Brain Observatory, a vast
database of cellular-level activity in the mouse visual system,
and to OpenScope28, a platform allowing external scientists to
propose a project for which high-throughput and reproducible
neurophysiology data is then collected. He highlighted these
projects as pioneering initiatives in the community, poised to
transform the landscape of neuroscience research, and empha-
sized their significance as being akin to having an astronom-
ical observatory for neurophysiology29,30. Lecoq also under-
scored the collaborative nature of these projects, spotlighting
the essential role of a wide range of professionals, from sci-

entists and engineers to animal care staff, in their success. He
traced the evolution of neurophysiological research method-
ologies over the past decade, showcasing the development of
pipelines for two-photon microscopy and Neuropixels record-
ings in the Brain Observatory, and of OpenScope platforms
that have facilitated comprehensive analysis of brain activity
in behaving mice. Lecoq demonstrated the impact of these
efforts through the growing number of scientific publications
exploiting these datasets and discussed the operational model
of OpenScope, which allows researchers to submit projects
for consideration in a manner analogous to time allocation for
shared telescopes in astronomy.

The core of Lecoq’s talk focused on the OpenScope
project’s operational model and future aspirations. Open-
Scope permits researchers globally to submit project propos-
als through a process that aims to be highly equitable and in-
clusive of researchers who would not otherwise have access
to such resources. As such, this model not only maximizes re-
search efficiency and community engagement, but also fosters
scientific innovation by breaking down traditional barriers to
data access and tool utilization. Lecoq detailed the rigorous,
double-blinded review process designed to minimize bias and
ensure that projects are selected based on scientific merit. He
also discussed the platform’s ongoing efforts to enhance the
neuroscience data analysis ecosystem, such as the develop-
ment of the OpenScope Databook31. This initiative aims to
democratize access to expertise in sophisticated data acquis-
tion techniques and support the community’s increasing use
of standardized computational tools. Lecoq’s insights into the
challenges involved in updating the community’s technologi-
cal toolkit, coupled with his recognition of the substantial fi-
nancial investment required to run these high-caliber projects,
illustrate the pivotal role platforms like OpenScope may play
in shaping the future of neuroscience research.

c. Compute, Data & Standards in Large-Scale Neuro-

science. David Feng’s (Allen Institute for Neural Dynamics)
talk on open data in neurophysiology delved into the crucial
roles of computing, data management, and standards within
the context of large-scale neuroscience research, specifically
at the Allen Institute for Neural Dynamics. Feng introduced
the Institute’s ambitious mission to uncover the neural un-
derpinnings of emotions, memories, and actions, utilizing ad-
vanced neurotechnology tools to simultaneously capture com-
prehensive brain-wide recordings and extensive behavioral
data.

He emphasized the Institute’s commitment to open science,
highlighting their efforts to make vast amounts of data widely
accessible and useful to the scientific community. Feng dis-
cussed the challenges associated with managing, sharing, and
analyzing petabytes of data, reinforcing the need for robust,
human- and machine-readable metadata generated at the time
of data acquisition and moving beyond the common practice
of creating retrospective documentation at the time of publi-
cation. This approach supports making data FAIR (Findable,
Accessible, Interoperable, Reusable) immediately upon col-
lection, by leveraging community standards like BIDS, NWB,
and OME.

Additionally, Feng pointed out the importance of cloud
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computing for enhancing the utility and inclusiveness of open
science initiatives. He elaborated on the following advantages
of cloud platforms in:

• Reducing the logistical challenges associated with mov-
ing and storing terabytes to petabytes of data.

• Simplifying the sharing of complete software and hard-
ware environments, making reproducible science feasi-
ble on a large scale with tools such as “Code Ocean”

and “GitHub Codespaces”.

He also addressed the critical need for fully reproducible
processing pipelines in neuroscience. Despite the existence
of many relevant tools, most present installation difficulties,
show inconsistent performance across different environments,
and involve a myriad of lightly documented parameters that
require fine-tuning. To overcome these hurdles, the Allen
Institute is developing containerized “NextFlow” pipelines
tailored to neurophysiology data. These pipelines are de-
signed to operate efficiently in both cloud environments and
on-premise infrastructure, ensuring they are accessible and
beneficial to the broader neuroscience community.

This vision for the Allen Institute mirrors a broader shift
towards transparency and accessibility in neuroscience, and
aims to foster a more collaborative and efficient research
ecosystem.

d. International Brain Laboratory: A brain-wide map of

neuronal activity during behavior. Matteo Carandini (Uni-
versity College London) introduced the groundbreaking work
of the International Brain Laboratory (IBL), a collaborative
effort involving 22 laboratories across various countries to
create a brain-wide map of neuronal activity during behavior
in mice32. Carandini discussed common challenges faced in
neuroscience research, such as reproducibility problems and
discrepancies in experimental findings across different stud-
ies. He highlighted the IBL’s mission to overcome these chal-
lenges by jointly developing standardized experimental proto-
cols and then pooling the data collected by participating lab-
oratories. The project aimed to understand how brain-wide
circuits underpin complex behaviors, exploiting in particular
the ability of Neuropixels probes to capture neuronal activ-
ity across many brain areas simultaneously during a behav-
ioral task. The IBL’s approach yielded a massive dataset from
nearly 33,000 neurons, enabling a comprehensive analysis of
how different brain regions process information related to sen-
sation, decisions, actions, and prior beliefs33–35.

Carandini also touched on challenges encountered by the
IBL. In particular, despite achieving significant reproducibil-
ity and uncovering consistent and widespread encoding of be-
havioral information across the brain, the IBL team found
that different analytical methods used on the same data could
nonetheless yield distinct interpretations. This problem under-
scores a deeper issue in neuroscience: the difficulty in achiev-
ing consensus on interpretations and conclusions drawn from
neuroscientific data. The IBL’s approach, focusing on repro-
ducibility and standardization across an international collab-
orative network, argues for the value of developing unified
methodologies and emphasizing open science practices to ad-
dress these challenges. The variability in analytical outcomes,

nonetheless, serves as a reminder that our grasp on the tools
themselves that we use to understand the brain remains lim-
ited, and is jostled by each new discovery and methodological
advancement. Thus, we must continue to exercise caution in
drawing conclusions about the intricacies of brain function.

e. Concerns & Challenges. The panel discussion fol-
lowing the session was moderated by Katherine Fairchild
(MIT). It delved into several critical topics related to the col-
lection, sharing, and reuse of neuroscientific data. The crucial
role of metadata and auxiliary data in enhancing the value and
applicability of neuroscience datasets was emphasized, and
several broader insights about the advancement of neurophys-
iology research and the effective use of open data platforms
were raised:

• Importance of Comprehensive Metadata: There was
a consensus on the necessity of capturing extensive
metadata to account for as many variables as possi-
ble that might affect experimental outcomes. This in-
cludes environmental conditions, experimental proto-
cols, and even minor details that could influence the
data, such as the presence of specific individuals dur-
ing the experiments36.

• Challenges in Metadata Collection: It was also dis-
cussed how difficult is can be to accurately capture and
maintain metadata, and that there is a lack of assis-
tive tools that are both comprehensive and user-friendly.
This makes it challenging to consistently record essen-
tial data, which is crucial for replicating and under-
standing the context of experiments.

• Data Privacy and Transparency: The conversation
touched on the need to balance data sharing with pri-
vacy, particularly when recording potentially sensitive
information within experimental settings. In particular,
the discussion underscored the complexity of managing
open data while respecting privacy and confidentiality.

• The Need for Hypothesis-driven Research: There was
a call for more hypothesis-driven approaches when col-
lecting and sharing large-scale data. This includes the
development of benchmarking platforms that would al-
low researchers to test specific predictions and hypothe-
ses, potentially addressing the challenge of data over-
collection and focusing research efforts on the compar-
ative testing of theoretical models.

• Engaging Data Analysts: The panel identified a discon-
nect in the neuroscientific community where the efforts
and concerns of data analysts, those who primarily an-
alyze and derive insights from existing datasets, are not
well integrated in the modes of operation of experimen-
tal laboratories. Engaging this group more effectively
could provide valuable feedback on data and metadata
needs, potentially guiding more efficient and targeted
data collection and sharing practices.

• Diversity of Research Approaches: The discussion
acknowledged the diversity of approaches in neuro-
science, from data-driven to hypothesis-driven research,
reflecting the broad range of questions and methodolo-
gies represented in the field. This diversity gives rise to
a need for flexible and adaptable data platforms that can
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accommodate different research needs and objectives.
• Future Directions and Community Engagement: The

conversation emphasized the importance of commu-
nity engagement in developing and refining data shar-
ing platforms. This includes not just tool developers,
but also those focused on using shared data for discov-
ery, suggesting a collaborative approach is needed to
improve data usefulness and accessibility for the neuro-
scientific community at large.

The Japan Marmoset Initiative, the International Brain Lab-
oratory, and the Allen Institute for Neural Dynamics exem-
plify a shift towards large-scale, collaborative neuroscien-
tific projects. These initiatives not only harness cutting-edge
technologies for brain mapping and disease modeling, but
have also pioneered the development of comprehensive, in-
tegrated databases accessible to the global scientific commu-
nity. Such collaborative projects, which transcend traditional
single-laboratory models, are crucial to tackling the opera-
tional and analytical challenges posed by the scale and com-
plexity of contemporary neurophysiology research.

These initiatives also underscore the critical importance of
open, reproducible research in neurophysiology. Their com-
mitment to sharing large-scale neural circuit mapping data, ac-
companied by public analysis pipelines exemplifies a forward-
thinking approach to scientific inquiry. Importantly, it enables
researchers worldwide to engage with complex datasets with-
out extensive software engineering expertise, fostering a more
inclusive and collaborative scientific community.

The discussions surrounding the sustainability of storing
and sharing vast amounts of raw data, alongside the com-
plexity of capturing standardized metadata, highlight critical
infrastructural challenges for neurophysiology research. As
neuroscience research evolves, the community should con-
tinue to explore balanced strategies for data lifecycle manage-
ment, emphasizing the selective maintenance of high-reuse
datasets and the development of automated metadata capture
systems.

III. KNOWLEDGE EXTRACTION, SOFTWARE,
MODELING

A. OpenData2Knowledge

This session was a deep dive into how the open sharing of
neuroscience data facilitates scientific discovery, enabling re-
searchers to build upon each other’s work and accelerate the
pace of innovation. The speakers presented a range of ap-
proaches, from the use of organoids and data-driven mod-
els to applications of computational techniques and innova-
tive recording technologies, highlighting the interdisciplinary
effort required to decode a complex system like the brain.
The overarching theme of the session was the exploration of
novel methodologies and technologies to address longstand-
ing questions in neuroscience, such as the mechanisms under-
lying neural circuit development, the processing of complex
sensory information, and the generalization capabilities of the
brain compared to AI systems.

a. Intrinsic Activity In Human Cortical Organoids Re-

veal Protosequences that Model Default States in the De-

veloping Cortex. In his talk, Kenneth Kosik (University of
California, Santa Barbara) delved into how organoids can be
harnessed to study network development and electrical signal-
ing within neural circuits, specifically through the use of inte-
grated optofluidic-CMOS multielectrode arrays37. He opened
his presentation by addressing skepticism around organoids,
arguing that their value should not be judged solely based on
their similarity to the brain, but also on how they have pro-
pelled the field beyond two-dimensional neuronal cultures.
This transition has produced significant new biological in-
sights, including discoveries related to the lamination patterns
and local field potentials which emerge in organoids, but are
not observed in dissociated cultures.

Kosik emphasized the usefulness of organoids for model-
ing the intrinsic activity of the cortex, in the absence of ex-
periential input, using advanced technologies like MaxWell
Biosystems microelectrode arrays and Neuropixels to explore
network dynamics and the distribution of various cell types
and neurotransmitter receptors. Further, Kosik shared the po-
tential of organoids for modeling learning processes, while
acknowledging the speculative nature of such applications.
He discussed both the possibilities for inducing learning and
memory formation within organoids, and related challenges,
describing experiments in which repeated stimulation is used
to mimic repeated sensory input. These endeavors illustrate
the evolving interplay between neuroscience and technology,
with the development of organoid research potentially open-
ing a new door for investigating in a versatile way neural
development, network dynamics, and potentially, the mech-
anisms underlying learning and memory.

b. Data-driven Dynamic Models of Large-scale Neu-

ral Data. In her presentation, Bing Brunton (University of
Washington) explored the potential of data-driven models to
enable researchers to decode and understand large-scale neu-
ral data. She described a project in which video-annotated
human electrocorticography recordings were used to study,
in a natural setting, the relationship between brain activity,
and complex and dynamic natural behaviors, with the aim of
improving brain-computer interface technologies38. This re-
search not only advances our understanding of brain activity in
realistic contexts, it also exemplifies the transformative power
of open science and collaborative research in advancing the
clinical applications of neurophysiology research. By making
their findings and methodologies publicly available39, Brun-
ton’s laboratory enabled new discoveries to be made by other
researchers, supporting inclusion and collaboration within the
scientific community. The AJILE12 dataset has also been in-
tegrated into Neuromatch Academy Projects, providing stu-
dents around the world with firsthand experience analyzing
real data40.

c. A Less Artificial Intelligence: Exploring mecha-

nisms through MICrONS. Andreas Tolias (Stanford Uni-
versity) presented an insightful exploration of cortical net-
works through the lens of the MICrONS project, tackling the
enduring question of what distinguishes the cognitive capa-
bilities of the brain from the capabilities of AI systems. The
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MICrONS project, a collaborative scientific endeavor, pro-
vides an open and publicly accessible data portal for accessing
connectivity and functional imaging data collected by a con-
sortium of laboratories. These data include large-scale elec-
tron microscopy-based reconstructions of cortical circuitry
from mouse visual cortex, along with corresponding func-
tional imaging data from some of those same neurons41.

Tolias highlighted the brain’s exceptional ability to gen-
eralize from limited datasets—a feat AI continues to strug-
gle with. He explained how projects like MICrONS have
the potential to revolutionize machine learning by guiding us
in reverse-engineering the brain’s algorithms. By employing
innovative methodologies like “inception loops”, whereby a
neural network is trained on neurophysiological recordings to
discover stimuli that maximally excite specific neurons42, his
team was able to uncover previously unappreciated organi-
zation features of visual processing circuits. This approach
provides grounds for comparing biological and AI perfor-
mance, but more importantly charts a course for integrating
biological insights into the development of more sophisticated
AI systems. Tolias’ exploration of the cortical structure and
function, as part of the MICrONS project, sets a precedent
for future multi-team research projects aimed at deciphering
the neural code underlying the brain’s unique cognitive abili-
ties. In addition, by making this data available to researchers
worldwide, MICrONS fosters transparency, accelerates scien-
tific progress, and helps bridge the gap between biological in-
sights and the development of sophisticated AI systems.

d. The Role of Inhibitory Neurons in Auditory Process-

ing. Maria Geffen’s (University of Pennsylvania) presenta-
tion delved into the intricate roles of inhibitory neurons in the
auditory cortex, focusing on how these cells influence phe-
nomena related to auditory processing and perception, like
frequency discrimination and adaptation to temporal regular-
ities in sound. Her laboratory uses a combination of opto-
electric recordings and computational techniques to discern
the influence of different types of inhibitory neurons on au-
ditory perception and network dynamics, particularly in the
context of complex sound processing43,44. Through this ap-
proach, she has demonstrated that manipulating specific in-
hibitory neurons can profoundly affect the brain’s ability to
discern frequencies, thereby impacting auditory perception at
a fundamental level.

e. Concerns & Challenges. The panel discussions,
moderated by Colleen Gillon (Imperial College London),
opened with reflections on challenges and successes in mak-
ing neurophysiological data accessible and useful for broad
scientific endeavors. Highlighting the importance of plat-
forms like GitHub and of data repositories, speakers discussed
their strategies for ensuring their data and code are not just
perfunctorily made available, but also genuinely reusable by
the community. This part of the discussion highlighted a re-
curring theme from the symposium: the pivotal role of effec-
tive data sharing and the necessity of including comprehensive
metadata to enhance data utility for different research groups.
The key takeaways for how to steer the community towards
novel discoveries and theoretical advancements were:

• Open Science Practices: Panelists highlighted the im-

portance of sharing data and code through common
platforms, underscoring a commitment to open science
principles that facilitate wider accessibility and reuse of
research outputs.

• Challenges in Data Reuse: A significant challenge dis-
cussed was navigating the plethora of data repositories
available and identifying the best sources for specific
data. This concern reflects the need for better guidance
on where to find reusable data, as well as the importance
of providing comprehensive and searchable metadata to
ensure datasets are findable, understandable and usable
without direct communication with the original authors.

• Importance of Metadata: The panel re-emphasized that
well-documented metadata is crucial for effective reuse
of datasets. Metadata quality directly impacts the abil-
ity to understand an existing dataset and apply it to new
research questions without needing to consult the data
creators.

• Integration of Dynamical Systems Theory: The pan-
elists strongly advocated for applying dynamical sys-
tems theory to neuroscience. This reflects the shared
view that this mathematical lens is best suited to ex-
ploring the temporal patterns that emerge in biological
systems.

• Need for New Mathematical and Computational Mod-

els that Can Meet Challenges in Modeling Complex

Systems: During the discussion, participants high-
lighted the limited ability of current mathematical
frameworks to fully capture the complexity of neural
systems. There was a consensus on the necessity of
developing new computational methods that can pro-
vide more flexible and stable solutions for modeling bi-
ological data. Additionally, the difficulties inherent in
modeling nonlinearity, non-stationarity, and the sheer
scale of neural data were emphasized. These chal-
lenges will necessitate the development of novel com-
putational tools and mathematical approaches capable
of handling this level of complexity.

• Digital Twins and Intuitive Modeling: The concept of
“digital twins” (a virtual representation of an object or
system designed to accurately reflect the dynamics and
processes of that object or system) and the idea of incor-
porating scientific intuition and expertise into machine
learning models were discussed as promising directions
for future research. These approaches offer one way
to meaningfully incorporate the insights gained from
decades of scientific exploration into detailed system
models.

• Perspectives on Understanding through Analytical vs.

Numerical Methods: There was a debate on the value
of analytical solvability versus numerical approaches
for gaining true conceptual insight into systems. While
some panelists and audience members argued that ana-
lytical methods are indispensable for gaining deep un-
derstanding of a system, others advocated for the prag-
matic use of numerical methods and data-driven ap-
proaches to tackle complex systems like the brain.

• Future Directions in Neuroscience Research: The panel
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discussion concluded with a forward-looking perspec-
tive on neuroscience, emphasizing the importance of in-
tegrating knowledge across disciplines and methodolo-
gies. This means embracing dynamical systems, control
theory, and developing novel mathematical frameworks
to better understand and model the brain’s dynamic be-
haviors and its interactions with the physical world.

B. Neuroscience Toolkits

A common thread running through the presentations in this
session was the innovative use of digital tools and machine
learning to tackle complex questions using neurophysiologi-
cal data, breaking new ground in how we study and under-
stand neural mechanisms. From the nuanced dissection of
animal behaviors to the standardization of electrophysiolog-
ical data analysis, and from harnessing machine learning to
decode neural activity patterns to leveraging the vast collabo-
rative networks of large projects, each talk highlighted the im-
portance of promoting synergy between technology and neu-
roscience. This convergence in ideas reflects not only signifi-
cant advances in individual tools or methodologies, but also a
broader movement towards democratizing science, enhancing
access to these tools, and fostering a global scientific commu-
nity united by the shared goal. Table I provides a summary of
the neuroscience toolkits presented in this symposium.

a. Linking Large-scale Neural Data to Behavior: Al-

gorithms & opportunities. In her keynote talk, Mackenzie
Mathis (École Polytechnique Fédérale de Lausanne) empha-
sized the importance of approaching neurophysiology and
animal behavior data through a shared scientific lens. She
demonstrated the pivotal role cutting-edge computational al-
gorithms and AI play in enabling researchers to decipher
the relationship between neural activity and complex behav-
iors. For example, “DeepLabCut”45, an AI-based toolkit
developed by her laboratory, has revolutionized the qual-
ity and efficiency of automated pose-estimation from animal
recordings46. Mathis also introduced “Cebra,”47, an encod-
ing tool for learning for joint embeddings of behavioral and
neural data48. These tools exemplify the power of open sci-
ence and the practical applications of AI for quantifying and
understanding behavior. Importantly, these contributions ex-
tend beyond the development of analytical tools to an active
investment by and for the community in their long-term adop-
tion, reliability and longevity. Mathis’ work presents a clear
example of how scientific inquiry is democratized when ad-
vanced computational resources are made openly available to
the broader scientific community.

b. MoSeq (Motion Sequencing): Quantifying 3D video

of freely behaving animals. Bob Datta (Harvard Medical
School) introduced MoSeq (Motion Sequencing), a cutting-
edge tool for parsing 3D videos of freely behaving animals,
emphasizing how it can be used to codify the complex and
dynamic behaviors of animals in naturalistic settings. MoSeq
utilizes depth cameras to capture detailed 3D movements of
rodents, provides insights into their natural behaviors by iden-
tifying distinct behavioral “syllables”, and constructs behav-

ioral state maps to help researchers understand the sequen-
tial and contextual structure underpinning these behaviors49.
This unsupervised machine learning approach not only dis-
sects the intricate patterns underlying animal behavior, but
also allows researchers to explore the impact of various ex-
ternal perturbations on these behavioral patterns. Datta high-
lighted MoSeq’s potential contributions to neuroscience re-
search, amongst other things through its ability to distinguish
between the effects of different drugs on behavior and reveal
variability in behavior across individuals that is both signifi-
cant and consistent over time. The talk also delved into the
technological advancements and collaborations that have en-
hanced MoSeq’s applicability, such as the integration of key-
point tracking to improve data quality in complex environ-
ments. With the open and accessible nature of this tool, and
its robustness and versatility, MoSeq represents another sig-
nificant contribution to the field, poised to gain wide adoption
and continue to develop through collaborative contributions50.

c. SpikeInterface: Spike sorting in large-scale record-

ings. Alessio Buccino (Allen Institute for Neural Dynam-
ics) highlighted developments and advancements in SpikeIn-
terface, a comprehensive Python package designed to sim-
plify and standardize the spike sorting step in electrophysiol-
ogy data processing51. Buccino detailed the challenges faced
in the field, such as the wide variety of acquisition systems
and of file formats, along with the lack of reproducibility
across toolboxes and often missing data provenance informa-
tion. SpikeInterface addresses these by providing a unified
interface for comparing the outputs of various spike sorting
algorithms and pre-processing tools, applying them to data
and generating detailed pre-processing reports. The initiative,
which began in 2018 through a collaboration across multiple
institutions, aims to tackle the fragmentation in electrophys-
iology data analysis by offering an easy-to-use, standardized
solution. SpikeInterface supports over 15 spike sorters and fa-
cilitates the entire spike sorting pipeline, from pre-processing
and sorting to post-processing and visualization, all while en-
abling reproducibility and community development52.

In the latter part of his talk, Buccino described recent fea-
tures added to SpikeInterface to enhance its compatibility
with cloud-based processing, showcasing its efficiency in han-
dling large-scale recordings. These advancements include a
data compression framework that significantly reduces the file
size of recordings53, streamlined and reproducible pipelines
that accommodate various computational backends, and web-
based, shareable visualizations for quality control and manual
curation. These features not only make SpikeInterface a more
versatile tool for researchers, but also foster a community-
driven approach to improving electrophysiology data analy-
sis. Going forward, community engagement, including ac-
tive feedback, will be critical not only for refining tools like
SpikeInterface, but also, more broadly, addressing evolving
challenges in electrophysiology research.

d. Machine Learning Tools for Understanding Complex

Hippocampal Patterns in Learning and Memory. Andrea
Navas-Olive (IST-Austria) presented new machine learning
tools for analyzing electrophysiological data, with a specific
focus on sharp wave-ripples (SWRs), which are crucially in-
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volved in memory consolidation. She discussed challenges
in detecting SWRs due to the variability in their statistics,
and how traditional spectral methods might bias the types of
events that are detected. Employing machine learning tech-
niques, she and her colleagues have developed algorithms
that improve detection performance, while reducing depen-
dency on often arbitrarily selected thresholds which can bias
the characteristics of detected events54. These algorithms are
not only applicable across different areas of the brain but also
generalize to other species, demonstrating their potential for
broad applications in neuroscience research55. The innovative
aspects of this work extend beyond the development of so-
phisticated detection algorithms; they also encompass the col-
laborative, crowd-sourced approach to problem-solving be-
hind the project. Navas-Olive co-organized the BrainCode
Games hackathon, engaging a diverse group of participants
from various backgrounds to tackle the challenge of SWR
detection. This collaborative effort not only led to the cre-
ation of multiple effective machine learning models, but also
fostered the development of a community of interdisciplinary
researchers and industry professionals united by a common
goal. The hackathon’s success highlights the value of inclu-
sive, community-driven research endeavors for generating un-
biased, comprehensive solutions to shared problems. Thus, in
addition to producing significant scientific findings, this work
also showcased a novel approach for engaging a broad spec-
trum of talents to advance neuroscience research56.

e. Neural Ensemble & HBP/EBRAINS Knowledge

Graph. Andrew Davison (Université Paris-Saclay/Centre
National de la Recherche Scientifique) focused on the
achievements of the Human Brain Project (HBP) and its inte-
gration in the EBRAINS Knowledge Graph57, two initiatives
aimed at advancing digital neuroscience. The HBP, a decade-
long EU-funded project with a budget of approximately 600
million Euros brought together over 500 researchers and 100
universities to push the boundaries of science and engineering
in pursuit of understanding the human brain. A culminating
outcome of this project was the establishment of EBRAINS,
a comprehensive research infrastructure offering digital tools
and services for neuroscientists. Davison highlighted the
transformative potential of EBRAINS for facilitating data-
driven science, emphasizing its role in providing sustainable,
high-quality digital resources for the neuroscience commu-
nity. The EBRAINS Knowledge Graph, a core component of
this infrastructure, serves as a universal metadata repository
for the project, enhancing data discoverability and interoper-
ability. This digital repository enables the sharing of exper-
imental data, computational models, and software tools, all
interconnected within a semantic, linked data framework58,59.
Through its sophisticated architecture and community-driven
approach, the EBRAINS initiative exemplifies the importance
of collaborative science and open data when tackling the most
complex questions in neuroscience.

f. Concerns & Challenges. The panel discussion fol-
lowing these talks, moderated by Ryan Ly (Lawrence Berke-
ley Lab), centered on critical challenges that emerge when de-
veloping, maintaining, and sustaining open-source tools for
neurophysiology research. Panelists shared their personal ex-

periences and the various hurdles they’ve encountered, such
as transitioning project responsibilities, securing funding, and
fostering community engagement. A recurring theme was the
essential role of financial support in not only developing these
tools, but also in hiring dedicated personnel to maintain and
promote these resources, and support potential users. Despite
these challenges, there was an underlying optimism about the
future, with mentions of the field’s gradually improving recog-
nition of the importance of funding open-source software de-
velopment. The key takeaways covered a variety of topics,
including:

• Transitioning Project Responsibilities: A challenge
highlighted was how project maintenance is disrupted
and can fail entirely when the original developers, of-
ten PhD students or postdocs, leave the laboratory. This
constitutes a major barrier to the longevity and reliabil-
ity of open-source tools.

• Funding for Maintenance: Panelists unanimously
agreed that securing funding is a major hurdle for the
development and maintenance of open-source tools. Fi-
nancial support is necessary not only for initial develop-
ment, but also for ongoing maintenance, updates, and
community engagement efforts.

• Importance of Dedicated Personnel: Relatedly, the im-
portance of investing in dedicated personnel, such as
community managers and full-time developers, was
emphasized. Roles like these are critical for promoting
a tool, supporting users, and ensuring the tool remains
up-to-date, reliable, and user-friendly.

• Community Engagement and Collaboration: Engaging
the wider community and fostering collaboration were
highlighted as key to the success and sustainability of
open-source projects. Contributions can range from fix-
ing documentation to adding new features, enhancing a
tool’s quality and applicability.

• Automation and Testing: Implementing automation,
continuous integration, and comprehensive testing pro-
tocols is essential for ensuring the reliability and stabil-
ity of open-source tools, facilitating maintenance and
updates.

• The Role of Code Readability: Ensuring that code
is readable and standardized is important for making
open-source projects accessible to new contributors,
and makes it easier for users to understand and use soft-
ware.

• Structural Changes in Research Support: Panelists
called for structural changes in how research and de-
velopment are funded and supported, advocating for a
model that recognizes and funds software development
as an integral part of scientific research.

• Increased Recognition of Software Development in

Academia: Relatedly, it was recognized that there is a
promising growth in acknowledgment within the scien-
tific community and among funding bodies of the im-
portance of supporting open-source software develop-
ment. This is seen as a positive trend towards improving
the sustainability of digital tools in research.

• Challenges to Reproducibility with AI Classifiers: The
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TABLE I: Neuroscience toolkits presented or discussed at ODIN 2023.

Resource Website Tags

DANDI Archive https://dandiarchive.org/ data repository

EBRAINS https://search.kg.ebrains.eu dataset search, knowledge graph, web app

DataJoint https://datajoint.com/ data management, database, SQL, Python

SpyGlass https://github.com/LorenFrankLab/spyglass data management, database, Python

Dendro https://github.com/flatironinstitute/dendro cloud computing, web app

Neurosift https://neurosift.app visualization, dataset exploration, web app

NWB GUIDE https://github.com/NeurodataWithoutBorders/nwb-guide data format conversion, desktop app

NeuroConv https://github.com/catalystneuro/neuroconv data format conversion, Python

Neo https://github.com/NeuralEnsemble/python-neo data format reading, Python

SpikeInterface https://github.com/SpikeInterface/spikeinterface spike sorting, electrophysiology, Python

rippl-AI https://github.com/PridaLab/rippl-AI SWR detection, electrophysiology, Python

OptiNiSt https://github.com/oist/optinist ROI segmentation, optical physiology, desktop app

Caiman https://github.com/flatironinstitute/CaImAn ROI segmentation, optical physiology, Python

EXTRACT https://github.com/schnitzer-lab/EXTRACT-public ROI segmentation, optical physiology, MATLAB

suite2p https://github.com/MouseLand/suite2p ROI segmentation, optical physiology, Python

DeepLabCut https://github.com/DeepLabCut/DeepLabCut pose estimation, behavior, Python & desktop app

Lightning Pose https://github.com/danbider/lightning-pose pose estimation, behavior, Python

SLEAP https://github.com/talmolab/sleap pose estimation, behavior, Python & desktop app

VAME https://github.com/LINCellularNeuroscience/VAME pose estimation, behavior, Python

MoSeq https://github.com/dattalab/moseq2-app video sequencing, behavior, Python

CEBRA https://github.com/AdaptiveMotorControlLab/CEBRA data analysis, latent space, behavior, Python

Pynapple https://github.com/pynapple-org/pynapple data analysis, Python

discussion touched upon challenges to ensuring repro-
ducibility when using AI classifiers, emphasizing the
need for classifiers to be re-generated and validated as
part of the research process to ensure reliability.

• Annual Hackathons and Community Events: The idea
of organizing annual hackathons or community events
was proposed as a strategy to maintain momentum, en-
gage a broader audience, and generate fresh ideas for
the continued development of open-source tools.

C. Modeling and Benchmarking

The last session covered a wide range of topics, from
benchmarking frameworks and integrative modeling to inves-
tigating neural variability and dynamics underlying learning
and memory. A common theme that emerged from these
talks was the importance of going beyond simple analyses
performed on isolated experiments in neuroscience, toward
a more holistic approach combining sophisticated computa-
tional tools and models, with large-scale collaborative data
collection efforts. This shared viewpoint highlights a pivotal

shift towards leveraging computational neuroscience not just
as a tool but as a foundational pillar for elucidating the intrica-
cies of brain function, behavior variability, and the underlying
neural representations.

a. Brain-Score (Integrative Benchmarks For Models at

Scale). Martin Schrimpf’s (École Polytechnique Fédérale
de Lausanne) talk shed light on the importance of harness-
ing large-scale datasets and establishing experimental bench-
marks for advancing brain modeling techniques. Schrimpf
emphasized the collaborative effort required in this burgeon-
ing field, noting that the accumulation of large, but dis-
connected, datasets, while valuable, is not sufficient by it-
self for comprehensive brain modeling. He argued that dis-
parate datasets should be connected through approaches like
integrative benchmarking, which streamline how data are
used to evaluate models and compare them to one another.
This, in turn, provides more unified and effective guidance
and constraints for the development of new and improved
models60–62. This strategy is exemplified by the Brain-Score
platform63,64, a tool designed to evaluate models on a wide
array of neural and behavioral tasks, offering a holistic ap-
proach to identifying the class of models that best recapitu-
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late the brain’s functions65. Schrimpf also demonstrated how
models of the brain can be used to predict experimental out-
comes and optimize data collection, suggesting a future where
such models can crucially inform experiment design and neu-
ral data interpretation.

b. Taming Machine Learning Models of Neural Dynam-

ics with Anatomical and Behavioral Constraints. Shreya
Saxena (Yale University) delved into the complexities of the
neural computations underlying motor functions. She empha-
sized the importance of integrating biophysical and anatomi-
cal constraints into machine learning models, demonstrating
how this improves the ability of models to recapitulate the
neural activity observed during movement and interactions be-
tween subjects. One aspect of her research involves dissect-
ing the neural encoding strategies that underlie flexible motor
control, i.e., how the motor cortex adapts its activity patterns
to drive different muscle movements as tasks change. Consid-
ering how different variables, such as visual signals and indi-
vidual muscle movements, contribute to coordinated actions,
Saxena proposed a novel approach that combines traditional
neural network models with detailed biophysical knowledge.
In this approach, changes in motor task demands are analyzed
to determine how they affect neural representations in the mo-
tor cortex. These representation changes are then studied to
understand how they guide the activation patterns of differ-
ent muscle groups that allow animals to make precise adjust-
ments to their movements66–68. This approach aims to en-
hance the ability of models to generalize across different con-
ditions and tasks by grounding them in relevant physiological
and anatomical constraints. In addition to directly improv-
ing models of the neural basis of motor control, this approach
has the potential to generate computational models that could
contribute to shared databases and frameworks.

c. Low-dimensional Manifolds for Neural Population

Dynamics. Hannah Wirtshafter (Northwestern University)
offered an insightful exploration of the dynamic learning
and memory representations in the hippocampus, particu-
larly focusing on how they evolve based on spatial context.
Wirtshafter discussed a specific hippocampal-dependent task,
Trace Eyeblink Conditioning, that is used to examine how
animals generalize learned responses across different envi-
ronmental contexts. Using calcium imaging and open-source
analysis tools, she observed that animals were able to rapidly
reapply conditioned responses when transitioning between en-
vironments, despite extensive place cell remapping in their
hippocampus. This adaptability raises intriguing questions
about the neural mechanisms that maintain task-specific learn-
ing against the backdrop of changing spatial representations.
Through preliminary analyses using a variety of dimensional-
ity reduction and data analysis techniques, Wirtshafter aimed
to uncover whether the neural representations of space and of
the task were maintained within distinct or overlapping neu-
ral manifolds, in order to gain insight into the complex inter-
play between spatial navigation and memory processes in the
hippocampus. Wirtshafter’s work comparing insights drawn
from different data analysis techniques, and in particular dif-
ferent dimensionality reduction techniques, highlights the im-
portance of shared libraries documenting the applicability and

theoretical grounding of different analytical tools and method-
ologies used in neuroscience research.

d. Quantifying Animal-to-animal Variability in Large-

Scale Neural Recordings through Shape Metrics. Alex
Williams (Flatiron Institute/NYU) highlighted both the chal-
lenge and potential value of quantifying animal-to-animal
variability in large-scale neural recordings for advancing sys-
tems neuroscience research. Emphasizing that comparative
approaches are a fundamental methodology in biology for
understanding complex systems, Williams argued that such
methodologies are underutilized in systems neuroscience,
largely due to limitations in experimental techniques and the
lack of scaled collaborative efforts. Leveraging data from
initiatives like the IBL, in which standardized data was col-
lected across multiple laboratories, Williams demonstrated
how “shape metrics” can be used to compare neural repre-
sentations or manifolds across different animals in a high-
dimensional space, irrespective of individual differences in
neuron populations69–72. Using this approach, which draws
on principles from shape theory, he aims to develop open-
source tools for analyzing neural data that go beyond tra-
ditional R-squared scores, and instead allow models to be
matched to specific hypotheses. Williams’ work leveraging
IBL data shows how understanding the neural basis of behav-
ioral variability can help us elucidate the links between dis-
tinct neural representation patterns in brains and the diversity
of learning and performance outcomes observed across indi-
viduals.

e. Concerns & Challenges. The following panel dis-
cussion, moderated by Manuel Schottdorf (Princeton Univer-
sity), highlighted several critical concerns for current neuro-
scientific research8, and emphasized the importance of bench-
marks, interpretability, and the quality of input data. A con-
sensus emerged on the necessity of using both supervised and
unsupervised methods in neuroscience research, with bench-
marks constituting valuable tools for quantifying model per-
formance in certain contexts, but not being suitable as the sole
criterion for model selection or validation. The key points
were:

• The Need for Open-Source Resources: The discus-
sion underscored the importance of open-source tools
and tutorials that make complex models accessible and
comparable. Efforts at the Flatiron Institute to develop
such resources, enhancing the accessibility and usabil-
ity of computational tools in neuroscience, were partic-
ularly noted.

• Benchmark Development for Neuroscience: The idea
of creating benchmarks, especially in areas that are
not as well covered like motor function, was discussed
as a means to enable standardized comparisons across
studies. The panel discussed on the potential for such
benchmarks to improve our understanding of the neural
mechanisms underlying behavior and of model perfor-
mance.

• Model Complexity and Interpretability: A significant
part of the discussion revolved around balancing model
complexity with interpretability. The conversation
highlighted the tension between developing detailed
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models and the practicality of simpler models that still
provide valuable insights. Broadly, it was acknowl-
edged that models should be as simple as possible, but
sufficiently complex to capture the nuances of neural
data.

• Supervised vs. Unsupervised Methods: Participants re-
flected on the usefulness of both supervised and unsu-
pervised analytical methods. While supervised meth-
ods allow for targeted analyses based on expected out-
comes, unsupervised methods are crucial for exploring
data without predefined categories or labels, offering a
potentially broader understanding of neural dynamics.

• Quality Assurance for Input Data: The quality and reli-
ability of input data were acknowledged as critical fac-
tors influencing the success of computational models
in neuroscience. As a result, it was emphasized that
thorough quality assurance and metadata richness are
required to ensure that the data used in analyses ac-
curately reflect the neural activity and behaviors being
studied.

• Community Effort and Collaboration: Throughout the
discussion, there was a strong emphasis on the impor-
tance of community effort and collaboration to improve
research methodologies, develop benchmarks, and en-
sure data quality. Collaboration was recognized as es-
sential for advancing the field of computational neuro-
science and making meaningful progress in understand-
ing the brain.

These key reflections highlight a collective vision towards
a more integrated, accessible, and collaborative neuroscience
research landscape, where computational models and bench-
marks play a crucial role in advancing our understanding of
the brain.

IV. SYNTHESIS SESSIONS

The first two days of the symposium each ended with a
“synthesis session”. During these synthesis sessions, partic-
ipants came together to integrate and consolidate the diverse
ideas, perspectives, and insights shared throughout the day.
Synthesis sessions also served as a bridge between individ-
ual sessions, allowing for cross-pollination of knowledge and
fostering a broader understanding of challenges ahead.

A. Synthesis Session for Day 1 – Devices, Neuroinformatics,
and Platform

The Day 1 Synthesis Session, moderated by Nima De-
hghani (MIT) with panelists Mark Harnett (MIT) and Joseph
Monaco (NIH Brain Initiative), was an in-depth discussion of
the multifaceted challenges and opportunities in neurophys-
iology research, especially when it comes to data sharing,
technological advancements, and research ethics. This sum-
mary synthesizes key points raised in the session, focusing
on experience-based insights shared by participants within the

overarching framework of seeking to advance neuroscientific
research.

a. Technological Innovations and their Implications.

Participants reflected on the significant strides that have been
made in neurotechnology, particularly with the development
of new high-throughput acquisition devices. The discussion
specifically underscored the ability of innovations in elec-
trocorticography grids, volumetric recordings, and all-optical
electrophysiology to critically improve both the spatial and
temporal resolution of brain activity recordings, alleviating
long-standing limitations in neuroscience research. These ad-
vances have the potential to enable groundbreaking discover-
ies and deepen our understanding of complex neural dynam-
ics. However, with the ability of these technologies to im-
prove experimental precision comes the challenges they pose
in terms of data management and analysis.

b. Ethical Considerations and Animal Welfare. A no-
table topic of discussion, unanimously recognized for its im-
portance, was the ethical dimension of neurophysiology re-
search, particularly concerning the use of animals. The di-
alogue underscored the importance of responsible research
practices and the potential for open data to minimize animal
use by maximizing the reuse of existing datasets.

c. Data Sharing, Metadata, and the Role of AI. The
session delved into challenges in data sharing and reuse, high-
lighting the critical role of comprehensive metadata in ensur-
ing reusability and the challenges that arise when standardiz-
ing data formats. The potential pitfalls of metadata manage-
ment and the paradoxical nature of data as both a boon and an
obstacle to scientific progress were emphasized. The conver-
sation also touched upon the role of AI and ML in enhancing
data analysis and visualization, suggesting a future where AI
could offer novel insights and improve efficiency in data han-
dling.

d. Infrastructure, Support, and the Scientific Ecosys-

tem. Participants discussed the need for robust infrastructure
and support systems to facilitate data sharing and collabora-
tion. The conversation highlighted the challenges laboratories
face when trying to adapt to rapidly evolving technologies and
standards, and reinforced how access to centralized expertise
or support teams could help alleviate this problem. The dia-
logue reflected a consensus on the need for sustainable models
for conducting neuroscience research that enable scientists to
focus on research questions rather than the technical nuances
of data collection, analysis, and management.

e. Forward-looking Perspectives. The synthesis session
concluded with an acknowledgment of the persistent chal-
lenges in the field discussed above, but also a communal op-
timism when it comes to surmounting these obstacles through
technological advancements, collaborative efforts, and sup-
portive policies. The day’s discussions illuminated a path
forward, characterized by a community-wide dedication to
advancing neurophysiology research through open data, the
pursuit of ethical practices, and the judicious integration of
emerging technologies.
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B. Synthesis Session for Day 2 – Knowledge Extraction,
Software, Modeling

The Day 2 Synthesis Session, moderated by Nima De-
hghani (MIT) with panelists Matt Wilson (MIT), Ila Fiete
(MIT) and Jim DiCarlo (MIT), ventured into the realms of
collaborative efforts in data sharing, synergies between neuro-
science and AI, and the difficulties that lie ahead for the anal-
ysis and interpretation of rich multimodal neurophysiologi-
cal data. The session underscored the pivotal role of commu-
nity, the imperative for developing advanced predictive mod-
els, and the necessity of creating robust educational and incen-
tive frameworks to nurture a culture of innovation and open-
ness in neuroscience.

a. Community and Data Sharing. A strong emphasis
was placed on the need for collaborative efforts within the
neuroscience community to tackle the increasingly complex
challenges that lie ahead. This includes the development and
adoption of open data sharing platforms and scalable models
that can support the future demands of the field. The ses-
sion underscored the importance of creating and maintaining
an infrastructure that fosters data sharing and collaborative re-
search to accelerate scientific discovery and innovation.

b. Neuroscience and AI Integration. Discussions
delved into the interplay between neuroscience and AI,
exploring how advancements in one field can propel the other
forward. The conversation pointed out the current limitations
faced by AI models when extrapolating beyond their limited
training data, highlighting the unique insights that neuro-
science can offer to improve AI models by drawing on the
brain’s impressive generalization abilities. Conversely, AI’s
potential to analyze vast datasets could unlock new knowl-
edge in neuroscience, pointing to a symbiotic relationship
between the two disciplines.

c. Data Models and Predictive Analysis. A significant
part of the conversation was dedicated to discussing how to
develop models that better predict and simulate brain func-
tions. Ideas included better integrating empirical data into the-
oretical models, thus enhancing the predictive power of these
models. The need for benchmarks and standards to evaluate
these models was also a point of focus.

d. Educational and Incentive Structures. There was a
call for enhancing educational resources to better equip re-
searchers with the tools and knowledge necessary to navigate
the growing complexity of neuroscience data and tools. Addi-
tionally, the discussion highlighted the need to rethink incen-
tive structures within the scientific community to encourage
data sharing, model development, and interdisciplinary col-
laboration.

e. Ethical Considerations and Data Quality. Ethical
considerations in data collection and sharing, particularly re-
garding human/patient consent and privacy, were raised. At
the same time, concerns about the quality of data, and the im-
portance of metadata and of standardizing data formats were
brought up, with participants emphasizing the need for rigor-
ous standards that ensure open data is both reliable and us-
able following FAIR (findable, accessible, interoperable, and
reusable) standards.

f. Forward-looking Perspectives. The session con-
cluded with forward-looking statements about the future of
neuroscience, pondering the types of technological advance-
ments, community efforts, and theoretical breakthroughs
needed to advance the field. The conversation touched on the
prospects of building digital twins of the brain on which ex-
perimental questions could be tested, and the role of large-
scale data analysis in understanding brain function at a deeper
level.

V. NEUROINFORMATICS BREAKOUTS

The third day of the symposium started with a keynote from
a BRAIN Initiative representative. Following the keynote, at-
tendees were divided into two focus groups. The first group
concentrated on dissecting the challenges inherent to the field
of neurophysiology, actively seeking and proposing solutions
related to common infrastructure, data formats, and standards.
This exploration aimed to identify and address the bottlenecks
hindering data sharing and interoperability within the commu-
nity. Meanwhile, the second group embarked on a deep dive
into the transformative potential of AI/ML, computing, and
visualization technologies in neuroinformatics. This group
discussed how to leverage cutting-edge computational tools to
enhance the analysis, interpretation, and visualization of com-
plex neuroscience data, with the ultimate aim of accelerating
discoveries and innovations in brain research. Through these
parallel sessions, the symposium fostered a collaborative en-
vironment, encouraging the sharing of insights, experiences,
and strategies to overcome the multifaceted challenges that
face neurophysiology research.

Beyond ‘FAIR’: What does sustainable protocolization

of open data in neuroscience look like? In his keynote for
the breakout sessions, Joseph Monaco, a Scientific Program
Manager in the Office of the BRAIN Director of NIH BRAIN
Initiative, detailed the initiative’s strategic efforts towards es-
tablishing a sustainable and open data ecosystem in neuro-
science. He revisited the BRAIN 2025 core principles, partic-
ularly emphasizing the commitment to establishing platforms
for data sharing, with a focus on public, integrated reposito-
ries for datasets and analysis tools73. This approach is un-
derpinned by a commitment to ethical standards in research
involving both human and non-human subjects, and reflects a
dual focus on innovation and responsibility.

Monaco elaborated on the envisioned BRAIN Data Ecosys-
tem, describing a dynamic infrastructure designed to sup-
port data coordination, integration, interoperability, and reuse.
This infrastructure aims to facilitate not only data sharing, but
also replication studies, rigor studies, and secondary analyses
for enhanced reproducibility and discovery. Central to this vi-
sion is the creation of a healthy, vibrant, multidisciplinary data
ecosystem that aligns with open science principles, thereby
accelerating the development and testing of theories and mod-
els of brain function. Monaco underscored the significance of
the BRAIN Data Sharing Policy, which mandates regular sub-
missions to the BRAIN data repositories, ensuring that data
generated from BRAIN Initiative-funded research are made
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accessible to the wider research community in a timely man-
ner.

Monaco also provided an overview of the diverse data
domains within the BRAIN Initiative’s purview, includ-
ing light microscopy, multi-omics, neurophysiology, human
neuroimaging, spread across various repositories such as
BossDB, NeMO, DANDI, OpenNeuro, and DABI (see Ta-
ble II and III). These repositories collectively house thousands
of datasets, demonstrating the vast scale and scope of neuro-
science data being shared and analyzed already. Through this
extensive data sharing and management policy, and through
targeted funding opportunities and strategic mission goals, the
BRAIN Initiative is fostering advances in data science and
creating a robust infrastructure to ensure that research data
can be widely leveraged to secure a deeper understanding of
the brain, paving the way for groundbreaking discoveries in
brain health and disease.

A. Common Infrastructure, Data Formats & Standards

This breakout session, moderated by Dorota Jarecka (MIT),
Billy Broderick (Flatiron Institute), Edoardo Balzani (Flatiron
Institute) and Christian Horea (Dartmouth College), provided
a detailed discourse on standardization and reproducibility.
The session highlighted the ongoing challenges and evolving
solutions to maintaining the integrity and verifiability of neu-
rophysiology research as the use of large datasets and complex
data analyses increases.

1. Data Formats and Standards

The session started with a discussion of what the terms
“data format” and “data standard” are commonly under-
stood to mean, which was followed by an examination
of the detailed definition of “data standard” provided by
resources.data.gov. Reviewing the associated list of data
standard components, i.e., datatype, identifiers, vocabulary,
schema, format and API74, provided common ground for the
subsequent discussion of the current status of and need for
data standards within the community.

a. Ontology. Discussions focused on how best to link
descriptive terms used in neurophysiology with standardized
ontologies (Ontologies provide a structured framework for or-
ganizing and connecting descriptive terms, facilitating better
understanding and communication within the field). For in-
stance, it can be very helpful to associate a brain area stud-
ied in an experiment with its defined region in a widely
used brain atlas. Despite resources like the National Cen-
ter for Biotechnology Information (NCBI) Taxonomy, Mouse
Genome Informatics (MGI) database, and Neuroscience In-
formation Framework (NIF) Standard Ontology being avail-
able, they are not always used by researchers due to the com-
plexity and effort involved in entering precise and detailed
metadata. To overcome these hurdles, participants in the
breakout session proposed developing interfaces that provide
default options or infer metadata from the data, simplifying

the metadata identification and entry process. Participants
also discussed the trade-off between strictly enforcing of ac-
cepted ontologies and maintaining flexibility even though the
latter can decrease the data usability.

b. Data Standards. Part of the discussion focused on
the connection between schema, format, and API. The conver-
sation emphasized the importance of not only storing data, but
also structuring it in ways that facilitate access and interoper-
ability. The flexibility of the NWB standard was highlighted,
with debates around whether more components, such as the
vocabulary used in metadata fields, storage formats, and APIs,
should be standardized. The consensus leaned towards pro-
viding best practices and defaults rather than turning to strin-
gent enforcement, to ensure the NWB standard can adapted to
diverse research needs.

c. Improving Metadata Recording. To promote the
adoption of the NWB standard, it was proposed that data
acquisition systems should be enabled to write raw data di-
rectly into NWB format. However, this direct conversion ap-
proach presents challenges, particularly regarding the com-
prehensiveness of metadata. Metadata includes information
about data collection, experimental design, and subject de-
tails, all of which provide essential context for experimental
data. However, many of these details are often collated af-
ter data acquisition begins. As a result, the NWB files cre-
ated during acquisition may initially lack compliance with the
standard’s own metadata requirements.

The session also highlighted the complexity of integrating
multiple time-based data streams into a single NWB file, as
this requires all data to be synchronized to the same clock.
Given the diversity of experimental setups used in neuro-
science, with data streams often operate on separate clocks,
a potential solution discussed was to modify the NWB stan-
dard. This modification would allow the storage of raw data
streams in their native clocks along with synchronizing pulse
data, enabling post-hoc time alignment. This approach, how-
ever, would be hindered by the lack of universally accepted
methods for sending synchronizing signals and performing
time alignment across diverse systems.

Moreover, specific challenges arise with devices like the
Neuropixels probe, where data from various channels are not
sampled exactly simultaneously, but are instead slightly off-
set. The developers of SpikeGLX, commonly used with Neu-
ropixels, recommend a method called “tshift” for aligning
channels. It was therefore proposed that data acquisition sys-
tems initially store unaligned data in NWB format, allowing
users or automated software tools to later apply tshift or sim-
ilar methods to synchronize the channels. Further processing,
like common average referencing or cross-stream alignment,
could then be applied, with the processed data being cached
either in the same NWB file or a new one for subsequent anal-
ysis.

Additionally, environmental metadata (e.g., temperature,
humidity, luminance) is often omitted when recording experi-
ment variables. To address this, NWB could introduce an op-
tional schema for incorporating such environmental factors.
Some of these metadata elements might even become manda-
tory as community practices evolve.

resources.data.gov
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TABLE II: BRAIN Initiative data archives.
These archives are generally public access, although some house restricted datasets. Mostof these archives also allow

embargoes, i.e., restricted access for a fixed period of time after initial publication.

Archive Link Datatypes Access Restrictions

BIL

(Brain Imaging Library)
https://www.brainimagelibrary.org/ Confocal microscopy brain

imaging
Some restricted datasets

bossDB

(Block and Object
Storage Service Database)

https://bossdb.org/ Electron microscopy and
x-ray microtomography

Public

DABI

(Data Archive for the BRAIN Initiative)
https://dabi.loni.usc.edu/ Invasive human

neurophysiology
Some restricted datasets
and requires registration

DANDI

(Distributed Archives
for Neurophysiology Data Integration)

https://www.dandiarchive.org/ Cellular, systems, and
behavioral neurophysiology

Public

NEMAR

(Neuroelectromagnetic Data Archive
and Tools Resource)

https://nemar.org/ Electroencephalogram (EEG) and
magnetoencephalography (MEG)

Public

NeMO

(Neuroscience Multi-Omic
Data Archive)

https://nemoarchive.org/ Multi-omics Some restricted datasets

OpenNeuro https://openneuro.org/ Magnetic resonance
imaging (MRI) and other
types of neuroimaging

Public

TABLE III: Generic archives that contain some neurophysiology data.
All of these are public access.

Archive Link Datatype

Brain/MINDS Data Portal

(Japan’s Brain Mapping Project)
https://dataportal.brainminds.jp/ Includes marmoset structural

and functional physiological data

CRCNS

(Collaborative Research
in Computational Neuroscience)

https://crcns.org/ Neurophysiology data

Dryad https://datadryad.org/ General research data

EBRAINS https://ebrains.eu/ Various types of neuroscience data

Figshare https://figshare.com/ General research data

G-NODE

(German Neuroinformatics Node)
https://gin.g-node.org/ Neurophysiology data

Zenodo https://zenodo.org/ General research data

d. Data Curation. Discussions also covered how exper-
imental information — such as session or subject exclusions
from analyses — is currently stored in laboratory notebooks
or separate databases. Integrating this information into the
NWB standard is crucial for fully understanding dataset usage
and interpreting analysis results. However, since these anno-
tations are highly specific and free-form, breakout participants
debated best practices for including them in NWB files while
maintaining flexibility to accommodate diverse experimental
designs.

In summary, these discussions underscore the broader chal-

lenge of standardizing experimental metadata. Community-
driven standards are essential to accommodate the complexi-
ties of neurophysiology research, striking a balance between
strict standards and the flexibility needed for compatibility
across various experimental designs.
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ODIN: Open Data In Neurophysiology 19

2. Common Infrastructure and Computational
Reproducibility

The reliability of neurophysiology data processing and
analysis is often jeopardized by the fact that software pack-
ages depend on specific environments and operating systems,
both of which can vary widely in behavior and availability.
Details as to which versions were used for software packages
and their dependencies, and what environment they were in-
stalled in are seldom recorded alongside analysis results. This
complicating the processes of reproducing results and of ver-
ifying how certain software bugs could affect data analysis
outcomes.

a. Containerization as a Solution. The potential of us-
ing containerization, through tools like Docker, to address
these reproducibility challenges was discussed. Docker con-
tainers package an application with all of its dependencies
into a single unit, ensuring it runs consistently across different
computing environments. Writing a Dockerfile, which docu-
ments all commands necessary to build the application’s en-
vironment and install necessary packages, facilitates the pro-
cess of containerization75. Using this approach, researchers
to share not only their data but also the exact computational
environment used to process that data, enhancing the repro-
ducibility of scientific results.

b. Linking Containers with NWB. The possibility of
integrating Docker containers with NWB was considered as
a way to further improve computational reproducibility. The
NWB standard includes an optional “source-script” field,
which could be used to store a Uniform Resource Identifier
(URI) linking to a container image and the analysis scripts
used, allowing other researchers to replicate the computa-
tional environment and analyses. However, NWB files of-
ten contain multiple processed data streams generated through
different scripts, and NWB does not currently offer a stan-
dardized method for linking individual data streams to specific
scripts or container URIs.

c. Debating Provenance Storage. During the breakout
session, participants engaged in discussions about where to
store provenance information - specifically, details related to
the inputs, settings, and outputs of computational analyses.
The central question was whether this information should re-
side within NWB files or be managed externally. Provenance
data play a crucial role in enabling users to understand the
computational history of data files. When determining where
and how such data should be stored in NWB files, an impor-
tant consideration is how other standards and data manage-
ment systems store provenance data. Notably, certain work-
flow engines and data frameworks already handle provenance
information outside of NWB, e.g., ALPACA which stores the
provenance data in Resource Description Framework (RDF)
files76 or DataJoint which stores provenance data indirectly
through a data processing pipeline backed by a database77.
Thus, although these resources provide potential templates for
how NWB could store provenance data, it might be more prac-
tical to instead leave the management of provenance data to
these external resources.

d. Community Concerns and Realism. It was recog-
nized that while the technological solutions discussed above
could significantly improve reproducibility, their widespread
adoption by the neuroscience community might be hindered
by lack of familiarity with and accessibility of containeriza-
tion tools. Moreover, long-term archiving and costs associated
with maintaining container images present additional hurdles
that must be addressed to ensure these solutions are viable for
the broader community.

B. AI/ML, Computing & Visualization in Neurophysiology
Research

Integrating AI and ML into neurophysiology research, par-
ticularly in the context of leveraging open data, comes with
promise, but also challenges. In this breakout session, the dis-
cussion, moderated by Cody Baker (CatalystNeuro) and Guil-
lame Viejo (Flatiron Institute), delved into strategies for har-
nessing the full potential of these technologies, while navigat-
ing the peculiarities of neurophysiology data.

a. Strategy. To create a collaborative environment, the
session began with participants specifying the point in the data
lifecycle most relevant to their work. It was noted that the ef-
ficiency of computational performance is bound by existing
infrastructure and data formats, which were focus points of
the other breakout session. The discussion introduced the po-
tential role of state-of-the-art large language models (LLMs),
such as AmadeusGPT and BrainGPT, setting the stage for a
comprehensive examination of AI/ML applications and their
constraints in neurophysiology.

b. Morning Discussions. The dialogue aimed to differ-
entiate between AI and ML, defining AI as encompassing con-
ceptual models, while ML encompasses practical tools. Par-
ticipants in the breakout session also raised questions about
the true advancement of AI beyond its application in sophis-
ticated statistical learning. Distinguishing AI from ML tools
is crucial for enhancing data sharing and discovery. The con-
cept of an ‘AI-ready dataset’ emerged as a central theme—an
adequately large and internally consistent dataset suitable for
training and testing models. During the discussion, topics
ranged from dimensionality reduction to the need for uni-
versal descriptions of computation types. Additionally, ap-
proaches for accurately aligning behavioral and neural data
streams temporally were explored. Notably, the lack of stan-
dardized experimental protocols for time alignment posed a
significant barrier, alongside challenges in effectively utiliz-
ing pre-configured rigs for new experiments.

c. Addressing Core Questions. The conversation tack-
led several critical questions:

• Reliance on LLMs for Data Analysis: Whether the sci-
entific community is ready to depend on large language
models for critical tasks or reamins too skeptical due to
the opaque nature of LLMs.

• Balancing AI Tools with Mastery of Computational

Skills: Whether PhD students should focus on learning
computational skills or rely on AI tools and specialists
for efficiency.
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• Challenges for Neuroscience Researchers with Non-

computational Backgrounds: What emphasis should be
placed on developing a solid understanding of the tools
and techniques, to prevent misguided use of AI tools
and incorrect interpretation of analysis results.

d. Identified Problems. Two primary barriers to lever-
aging statistical learning methods in neurophysiology were
pinpointed:

• Experiment Diversity and Dataset Quality: The sig-
nificant diversity and heterogeneity of neurophysiol-
ogy experiments pose a hurdle for ensuring data qual-
ity for meta-analyses, highlighting the need for ‘AI-
ready datasets’. Additionally, difficulties in achieving
precise temporal synchronization between behavioral
events and neural data streams present a substantial
challenge, and reflect the need for standardized prac-
tices.

• Common Vocabulary for Neural Patterns: The lack of
agreement on a common vocabulary to describe neural
patterns (such as ripples, bursts, avalanches, etc.) inter-
feres with our ability to generalize statistical learning
methods, and is a hindrance to community-wide com-
munication.

e. Communication and Community Interaction. The
discussions underscored difficulties that arise when communi-
cating about these nuanced topics, as laboratories worldwide
have developed their own unique frameworks and terminolo-
gies centered on their own experimental setup designs and
task protocols. Although this diversity may present certain
advantages, it also reveals the need for enhanced community
interaction and common ground to enable clear communica-
tion, bridge gaps in understanding, and enable a certain degree
of standardization across the field.

f. Afternoon Insights. Focus shifted towards the impor-
tance of establishing benchmarks and identifying data quality
metrics to boost research reproducibility and reliability. In-
novative strategies were proposed for enhancing overall data
quality, like allowing external users to annotate datasets on
DANDI, as well as derivative datasets (reprocessed from ex-
isting raw data sources). Suggestions like these reflect the
need for collaborative approaches to overcome the multi-
faceted challenges that will arise as we move to better inte-
grate AI/ML tools into neurophysiology research, including,
but not limited to, community-driven efforts to establish com-
mon standards and improve data utility.

1. Consistent Curation of Diverse Data

During the symposium, a consensus emerged that there
is an abundance of machine learning models ready to meta-
analyze data from repositories like the BRAIN Initiative’s
DANDI repository. However, concerns were raised regard-
ing the adequacy of available data annotations. The critical
question was whether the data standards mandated by these
repositories include sufficient provenance information to ac-
curately describe the experimental session parameters78.

Creating and maintaining robust ‘AI-ready datasets’, of

which prominent examples are MNIST for computer vision79

and GigaSpeech for speech recognition80, demands signifi-
cant effort to ensure the accuracy of labeled features. The
meticulous approach required to ensure this level of qual-
ity for neurophysiology data must contend with the typically
high complexity of the data, which is often tailored to very
specific experimental questions that may never be repeated
closely enough across datasets. Although certain physiolog-
ical datatypes, like fluorescence traces and spike trains, or
behavioral metrics such as maze exploration trajectories, in-
ferred running velocity on a rotating disc or ball, etc., are
common to many experiments, they nonetheless require de-
tailed descriptors to be fully understood. However, annotat-
ing behavioral data is often challenging. This highlights the
need for tools and frameworks like the BAABL extension for
NWB81 and Hierarchical Event Descriptors (HED)82 to stan-
dardize and improve data annotations for better reusability.
Three primary reproducibility concerns were highlighted.

a. Hyperparameters and Metadata Documentation.

The neurophysiology community lacks consensus on the ne-
cessity of documenting all variables, including software ver-
sions involved in analyses (like spike sorting), to achieve iden-
tical results from the same raw data. It remains unclear what
level of granularity is necessary for reliable reproducibility.

1. Complexity of Models: AI/ML models often rely on
a myriad of hyperparameters that can dramatically in-
fluence their performance. Precisely documenting and
replicating these hyperparameter settings is pivotal to
ensuring results can be reproduced. Without such
records, reproducing the exact behaviors of complex
models becomes nearly impossible, leading to discrep-
ancies in findings and interpretations across, and even
within, research groups.

2. Software Evolution: The rapid evolution of software
through continuous updates can introduce variability
into analysis outcomes. Different versions of the same
software can produce diverging results due to major,
or even minor, alterations in the code underlying al-
gorithms or processing techniques. Documenting soft-
ware versions is thus essential for reproducibility, yet
this practice is inconsistently applied across the com-
munity.

3. Community Consensus: The lack of consensus on
whether highly granular reproducibility is needed re-
flects a broader challenge in the AI/ML and neurophys-
iology fields. While some argue that every aspect of an
experimental setup and analysis should be detailed to
ensure fidelity in replications, others view this level of
detail as unnecessary or impractical, especially when
considering the rapid pace at which technology and
methodologies are advancing.

4. Impact on Machine Learning Methods: The effective-
ness of AI/ML methods in learning from data and gen-
eralizing from their training datasets relies on the con-
sistency and accuracy of the data and metadata they are
trained on. Inconsistencies or omissions in model hy-
perparameters and metadata documentation can hinder
the training process, potentially resulting in less effec-
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tive models or, worse, models that perpetuate errors.
5. Barriers to Collaboration and Innovation: Inconsistent

documentation practices not only hinder reproducibil-
ity, but also pose barriers to collaboration and inno-
vation. Researchers attempting to build upon previous
work may find it difficult to replicate studies accurately,
slowing progress and potentially leading to a fragmen-
tation of efforts across the field.

b. Documentation of Anomalies. During experiments,
non-protocol events (such as seizures, sneezing, or exter-
nal disturbances) are seldom formally registered or manually
recorded by the experimenter. If they are documented, it is
often done informally, such as by jotting down a note in a
laboratory notebook. Unfortunately, this information may not
always find its way into the shared version of the data. This
poses a challenge for data reusers, as these events, if not prop-
erly taken into account, can interfere with and bias analy-
ses, including ML/AI analyses. The discussion underscored
a significant concern: without the ability to effectively filter
out data affected by anomalous events, ML/AI methods might
mistakenly identify them as significant and, if these events are
included in algorithm training datasets, this could lead to bi-
ases in how these algorithms are then applied to standard data.
This problem underscores the importance of developing assis-
tive tools for consistently annotating data on the fly, and ma-
chine learning tools with robust filtering capabilities that can
distinguish between typical experimental data and anomalies
arising from unforeseen events.

c. Enhancement of Data Quality through Quality Met-

rics. To enhance data quality in neurophysiology reposito-
ries, a suite of quality metrics is proposed. Taking inspiration
from the MRIQC package for MRI data83, the goal is to create
a common software package that allows real-time quality as-
sessment of data during experiments. Researchers, while con-
ducting experiments, can utilize this tool to assess data quality
promptly. By establishing agreed-upon quality metrics across
various modalities, we can significantly improve users’ ability
to identify high-quality datasets, leading to more reliable and
interpretable scientific findings.

2. Temporal Alignment of Neural and Behavioral Streams

Neurophysiology experiments characteristically involve si-
multaneous acquisition of neural recordings and tracking of
behavior. The importance of precise synchronization between
these data streams cannot be overstated, especially consid-
ering the rapid timescales at which neural activity evolves.
Traditionally, laboratories have addressed this requirement
through two main approaches: developing customized in-
house rigs tailored to their specific experiments, or invest-
ing in pre-fabricated setups purchased from specialized man-
ufacturers. While pre-fabricated setups offer convenience and
standardization, they often come with high costs and potential
vendor lock-in, limiting flexibility for integrating additional
data streams. In contrast, custom in-house rigs, despite their
potential for tailored experimental design, introduce a signif-
icant risk of errors. These can stem from a lack of standard-

ization or insufficient technical expertise, both of which can
compromise data integrity and, thus, the validity of experi-
mental outcomes.

Overall, it can be very challenging to balance customization
with reliability in experimental setups. However, even when
a laboratory converges on reliable and sufficiently customized
experimental setups, the notable scarcity of educational re-
sources or comprehensive guides, and the high turnover rate
within laboratories can lead to serious knowledge transfer fail-
ures. Altogether, these obstacles make it difficult to ensure
that complex and sensitive tasks like precise temporal align-
ment are correctly performed. They also make it challenging
for the open science community to develop widely applica-
ble solutions to shared problems like the temporal alignment
problem.

a. Proposed Solutions. To mitigate these challenges, it
was proposed that a public repository for documenting exper-
imental protocols be created. This repository would serve as a
centralized resource for finding detailed protocols, like those
pertaining to correct temporal alignment across data streams.
Currently, the granularity of method sections in publications is
often insufficient for replicating or adapting experimental de-
signs. Direct communication with the original researchers is
then required, even though it is likely to be time-consuming on
both ends and inefficient. However, in some cases, the infor-
mation is simply unavailable. If the person who conducted the
experiments is no longer accessible, and knowledge transfer
(KT) was not adequately done, critical details about the exper-
imental setup may be lost. Contributing detailed instructions
to a communal repository could significantly enhance inter-
laboratory communication, streamline the design process for
new experiments, and ensure a higher degree of reproducibil-
ity across the field. By providing a path to standardizing and
validating these protocols, such a repository would facilitate
knowledge sharing, while also supporting the creative diver-
sity essential for scientific innovation.

b. Balancing Learning with Efficiency. While there
has been a push to streamline experimental setup designs
through standardized protocols, it is also important to rec-
ognize the value of experiential learning for students, post-
docs and junior researchers. Engaging deeply with the pro-
cess of designing and implementing neurophysiology exper-
iments, from conceptualization to the intricate work of set-
ting up equipment, can set early-career researchers up for suc-
cess by solidifying their grasp of the technology used in their
research. This hands-on experience is crucial for ensuring
each new generation of scientists are generally able to trou-
bleshoot their own experiments and innovate within the com-
plex landscape of neurophysiology research. In conclusion,
while standardized documentation and shared protocols can
significantly reduce entry barriers and enhance experimental
reproducibility, they must complement, rather than replace,
the invaluable learning that comes from direct engagement
with experimental design and execution.
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3. Vocabulary of Neural Patterns

Progress has been made in standardizing how behavior is
represented and recorded in neurophysiology experiments.
Yet, consensus is elusive regarding how to ensure that spe-
cific neural activity patterns are characterized and identified
in a consistent manner across different experimental condi-
tions. This area of study includes, for example, classifying
cell types based on waveforms from spiking events84–86 and
identifying graphoelements such as hippocampal sharp-wave
ripples or cortical spindles, which are observed over time, in
response to stimuli, or as a result of intricate thalamocortical
interactions. Typically, these types of neural activity are cat-
egorized through visual inspection and expert judgment, of-
ten supplemented by contextual information like knowledge
of the subject’s engagement in a task or state of conscious-
ness. However, it is debated whether these subjective meth-
ods of classification are sufficiently consistent and rigorous
to accurately describing neural patterns. A major challenge
to automating the process of quantifying graphoelements is
the lack of consensus among experts about the key spatiotem-
poral characteristics of elements like sharp-wave ripples87,88.
More standardized definitions and methodologies for label-
ing these neural patterns are needed to ensure that research
findings in the field are clearly interpretable and reproducible.
Successful examples of automatic detection and characteriza-
tion of complex spatiotemporal graphoelements include the
use of sequential spectral density methods or neural networks
for the characterization of spindles89,90, and deep learning for
the detection of sharp-wave ripples54.

Improving the specificity and consistency of data label-
ing, particularly for datasets involving experimentally intro-
duced stimuli, presents a unique challenge. One proposal is
to sequester certain data segments within public datasets for
server-side verification purposes, a technique commonly em-
ployed in ML/AI competitions. This approach would balance
the importance of making all original experimental data open
access for reproducibility and reuse, with the value of reserv-
ing some data for assessing and validating derivative ML/AI
algorithms.

Considerations like these reveal a broader issue: the fact
that specific assumptions are made when interpreting data for
individual studies, and that this in turn influences how datasets
are curated and can subsequently be reused. A move to-
wards universally accepted metrics and labeling conventions
could substantially benefit the scientific community, ensuring
datasets preserve a wider relevance when shared, and allow-
ing for more straightforward cross-study comparisons and in-
tegration.

Recognizing the need for greater standardization, initia-
tives like the Brain Behavior Quantification Synchronization
(BBQS) have been launched by funding agencies, including
the NIH. These efforts aim to establish clearer guidelines and
tools for documenting and analyzing behavioral and neural
data, ultimately fostering a more cohesive and collaborative
research environment.

VI. A FORWARD LOOKING PERSPECTIVE

A. Building Communities

a. Building a Community. Open science thrives in a
well-supported ecosystem where community-based gover-
nance and communication can flourish7. The nascent ODIN
community will require robust mechanisms for dialogue and
self-regulation, ideally emerging organically from within the
community itself. An prime example of this model is
Wikipedia, which thrives under self-imposed rules and a trans-
parent decision-making process. Unlike transient tools like
team communication platforms, a wiki provides a durable,
public, and cumulative resource for community discourse91.
Engaging in quality discussions and integrating these along-
side the data itself will ensure accessibility and transparency
for the wider public.

b. Annual Meetings. The enthusiasm shared during this
symposium suggests a strong desire for it to continue annu-
ally. These meetings are envisioned as key catalysts for foster-
ing a robust ODIN community, and drawing together diverse
voices from across the neurophysiology and systems neuro-
science spectrum. By maintaining open communication chan-
nels and featuring varied perspectives, we hope to enrich our
collective knowledge. In addition, we hope that continuing to
share these talks on widely-used and open video sharing plat-
forms will ensure broad, public accessibility and engagement.

B. Harnessing Large Language Models (LLMs)

The advent of advanced LLMs such as OntoGPT92 and
BrainGPT93 heralds a transformative shift in how scientific
information can be processed, understood, and utilized. These
models have demonstrated a remarkable ability to distill and
predict complex patterns from vast datasets, suggesting a po-
tential role in enhancing user interaction with neuroscientific
databases. AmadeusGPT showcases an innovative applica-
tion in this direction, using LLMs to convert natural lan-
guage descriptions of animal behaviors into executable anal-
ysis code, thereby facilitating interactive behavioral research,
and increasing its accessibility94. Tools like these exemplify
the potential of LLMs to help bridge gaps between complex
biological knowledge and expertise in computational analy-
sis, enhancing scientists’ ability to access and analyze neuro-
science data in their research. Discussions at the symposium
also touched upon how LLMs could help researchers engage
more effectively with existing scientific knowledge, for exam-
ple through enhanced literature searches and dynamic knowl-
edge base augmentation via scientific journal content distilla-
tion.

For example, BrainGPT has been specifically trained to an-
ticipate the outcomes of neuroscience experiments by ingest-
ing extensive portions of the neuroscientific literature. Its pro-
ficiency, as demonstrated by the BrainBench benchmark, sur-
passes that of human experts in distinguishing between true
experiment results and modified abstracts93. Capabilities like
these suggest a future where LLMs could be used to reliably
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navigate and summarize existing scientific knowledge. It is
important to note, however, that LLMs are subject to halluci-
nations. For this reason, BrainGPT is not currently enabled
to perform this type of task95, and this potential use remains
a matter of conjecture for the moment. Likewise, another po-
tential use for LLMs is in inductive reasoning96. In the case
of open data, an LLM trained in this way could be harnessed
for hypothesis generation and experiment planning.

OntoGPT’s approach to enhancing knowledge bases
through natural language processing highlights another very
promissing application for LLMs92. By helping construct and
refine knowledge bases, LLMs can facilitate more accurate
and dynamic querying of complex data structures. When it
comes to managing extensive open neuroscientific data repos-
itories, integrating LLMs could dramatically improve the pre-
cision and scope of data retrieval processes, enabling re-
searchers to generate interconnected insights from disparate
datasets.

a. Practical Applications of LLMs in open neuro-

science.

• Enhanced Literature Search: LLMs could be utilized
to refine literature search mechanisms, enabling re-
searchers to rapidly locate relevant studies and datasets.
By processing queries using LLMs trained on the latest
research and reviews, we could offer more contextually
aware search results, reducing the time spent on litera-
ture reviews and increasing the relevance of the infor-
mation retrieved.

• Knowledge Base Augmentation: Using LLMs like
OntoGPT to assist in the ongoing development and ex-
pansion of neuroscientific knowledge bases could help
ensure that data curation and query management fol-
low standard nomenclature and are consistent with open
neuroscience practices. For example, LLMs can assist
in linking new data entries with existing ontologies and
suggest updates to improve the comprehensiveness and
utility of a database.

b. Future Directions. As LLMs evolve, we should be
able to leverage them not only to manage and query exist-
ing data, but also to anticipate and prepare for future research
developments. Continuous updates to LLM training sets and
algorithms and fine-tuning, using methods like LoRA97 and
Retrieval Augmented Generation (RAG)98 techniques, will be
essential to maintaining their effectiveness and relevance to
the neuroscientific context. Overall, incorporating LLMs into
open data in neuroscience promises to enhance utility as a dy-
namic, forward-looking tool that not only serves current user
needs, but also adapts to and anticipates future scientific chal-
lenges.

C. Addressing Community Needs

For open science to advance in neuroscience, it is critical
to understand and address the needs of the community. This
includes continuing to develop resources and tools that make

open science practices easier to adopt for users of all back-
grounds, while also ensuring that funding and incentives are
in place to enable users to invest the time and effort that is still
required. Table IV summarizes key community needs identi-
fied during the symposium.

D. Recommendations for the Practicing Neuroscientist

As we continue to innovate and advocate for community-
wide advancements in open science, practicing neuroscientists
have several opportunities to engage with the existing open
science practices. This section makes recommendations that
span the entire lifespan of a project and can greatly improve
the reproducibility and efficiency of one’s research. Depend-
ing on their projects and access to resources, individual re-
search groups may find certain recommendations more rele-
vant, helpful or feasible to implement than others. We recom-
mend identifying these priorities and approaching the adop-
tion of open science practices incrementally.

a. Data Management and Sharing Plan. It is impor-
tant to prepare a data management and sharing plan early in
the research process. Funders like the NIH and many scien-
tific journals now require open sharing of data collected un-
der their grants and for publication, respectively. Deciding
early on which repository to use, understanding its data format
requirements, and planning the workflow from data acquisi-
tion to publication can greatly facilitate the process. Adopt-
ing standards such as NWB early in data acquisition can also
streamline the process and save time by ensuring consistency
is maintained through data processing, analysis, and publica-
tion. Steps to follow are (see Fig. 2):

1. Identify the repository where your data will be de-
posited.

2. Understand the data format requirements of the chosen
repository. Determine whether your data needs to con-
form to specific standards such as NWB.

3. Plan how you will manage, process, analyze, and visu-
alize your data:

• What software tools will you use?

• What data formats do these tools accept, and what
formats do they output?

4. Plan for and implement the use of common data stan-
dards as early as possible in the data lifecycle: from
acquisition through processing, analysis, and up to pub-
lication and sharing. Early adoption streamlines work-
flows, avoids the need to refactor custom code down the
road, and enhances the reusability of data, saving time
and resources.

5. Standardize the process of converting your data into the
required standard format. If done at the acquisition step,
make sure that the proper metadata is included. If cer-
tain post-processing steps are required routines in your
laboratory, make sure to track the details of how they
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TABLE IV: Community needs and actions for advancing open science.

Category Actions Key Concepts

Guidance • Provide community guidance on sharing methodologies, datatypes (raw,
processed).

• Standardize required and recommended metadata types.
• Select and unify ontologies for metadata standardization.
• Define essential provenance information for shared data.

Provenance, shared method-
ologies, standardized meta-
data, unified ontologies

Tool Development • Enhance tools for data compression, conversion, sharing, and analysis.
• Develop cloud-based data access and analysis solutions.
• Establish benchmarking platforms for model and theory evaluation.
• Develop platforms for tool comparison.
• Support large-scale data pooling and annotation.
• Simplify metadata entry through user-friendly interfaces.
• Improve automated metadata capture tools.
• Enable on-the-fly data annotation of anomalies during experiments.
• Improve ability to detect and filter anomalous data.

Cloud solutions, data
compression, data pool-
ing, metadata entry, tool
benchmarking

Research • Improve models for understanding complex data.
• Create benchmarks and metrics for model evaluation.
• Develop data quality assurance metrics.
• Innovate automated data labeling for enhanced data reuse.

Advanced model zoo,
automated data labeling,
data quality metrics, model
benchmarks

Databases • Maintain centralized databases for datasets, methodologies, and tools.
• Facilitate community feedback mechanisms for shared resources.

Centralized databases

Knowledge Graphs • Create knowledge graphs for describing entities and their relationships, and
for linking disparate databases.

Knowledge graphs

Education • Continue to develop online resources and training for data processing and
analysis tools.

Online resources, training
workshops

Funding & Incentives • Support community engagement and multi-laboratory collaborations.
• Fund technical personnel for open-source software maintenance.
• Encourage and facilitate adoption of new technologies and open science

practices.
• Invest in scaling data storage solutions.

Community engagement,
multi-laboratory collabora-
tion, open-source support

were run and include the relevant information during
data conversion to standardized formats.

b. Documentation and Metadata.

• Detailed Documentation: Providing thorough and
structured metadata is essential for enabling effective
use of your data and reuse by researchers who are not
familiar with your project. When storing and sharing
data, aim to (see Fig. 3):

1. Document the source script and any other pro-
cesses used to generate the dataset, even if they
are not mandatory fields in your chosen data stan-
dard.

2. Include comprehensive details about the devices,
software versions, and analysis algorithms used
during the experiments.

3. Record any stimuli presented during the exper-
iments, and include a detailed table specifying
which stimuli were presented when.

4. Clearly describe how neural, behavioral and

stimulus data streams were aligned temporally.

5. Record key subject descriptors, like genotype,
referencing external databases for standard defi-
nitions where applicable.

6. Annotate any anomalies or unusual occurrences

during data collection that might affect subsequent
analyses.

• Utilize tools like NWB GUIDE for user-friendly and
automated capture of important metadata to minimize
effort and enhance standardization.

• As AI/ML methods become increasingly integrated into
neurophysiology data analysis, ensuring your datasets
are AI-ready with rich metadata will greatly enhance
their reuse and the reliability of subsequent findings.

c. Utilizing Existing Tools. Several steps can help opti-
mize your use of existing tools (see Fig. 4):

• Choosing Open-Source Software: Due to the com-
plexity of neurophysiological data analysis, it is advis-
able to use established open-source software packages,
when applicable. These are less prone to errors and
are continually vetted by the community. Examples in-
clude:
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Start: Start
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Data Acquisition:
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and understand
the data format
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Data Analysis:
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tools for data

processing
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Data Sharing:
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the research

project with data
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and shared

FIG. 2: Data management plan flowchart.
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multiple data
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Anomaly An-
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any experimental
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usable for the
broader research

community
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well-documented,
reusable data

that can support
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FIG. 3: Documentation/Metadata flowchart.

1. Spike Sorting and Processing: Consider tools
like SpikeInterface and KiloSort.

2. Calcium Imaging Data Processing: Consider
tools like suite2p and CaImAn.

3. Pose Estimation: Consider tools such as
DeepLabCut and SLEAP.

• Contributing to Tool Development: If existing tools
lack certain features or could be improved, contribute
your enhancements back to the project. This type of
collaboration:

– Allows the community to verify the robustness of
the new feature.

– Enhances tool functionality and utility for the en-
tire community.

– Accelerates scientific discovery and increases the
robustness of research outcomes.

– Builds a culture of reuse and improvement, align-
ing with open science principles.

d. Developing New Tools. If you develop new tools
from scratch, it can be very valuable to share these with the
broader community. To maximize the robustness, usability,
and findability of these tools, it is particularly helpful to:

• Share the code on a platform like GitHub that enables
robust version-control, as well as user feedback and
contributions, ideally under a license that is highly per-
missive for code reuse and adaptation.

• Document the code by including at minimum a
README explaining the tool’s intended use, the pro-
gramming language it is designed in, its dependencies,
usage examples, and ideally an interactive tutorial users
can run in the cloud. More detailed recommendations
can be found in previously published articles99.

• Make a plan for long-term maintenance and promo-
tion of the tool. This may require investing financial
resources and hiring of dedicated personnel, but is gen-
erally critical for the longevity and usability of an open-
source tool.
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FIG. 4: Tooling flowchart.

VII. CONCLUDING REMARKS

This first ODIN symposium highlighted a growing momen-
tum in neurophysiology research to incorporate the values and
practices of open science. The key takeaways from the sym-
posium are summarized in Fig. 5. Innovations revolution-
izing the quality and quantity of data we collect have been
complemented by the development of robust data standard-
ization and sharing platforms, along with a variety of com-
putational resources for data processing, analysis and visu-
alization. Large-scale data collection efforts are tackling the
challenges of reproducibility and reliability in the field, with
centralized approaches providing access to high quality data
collection pipelines and decentralized ones encouraging col-
laborative protocol and analysis designs. However, significant
challenges remain, particularly for laboratories with limited
resources, where incorporating open science practices can be
daunting and time-consuming. Furthermore, when laborato-
ries do invest in adopting these practices, the time and ef-
fort required are often not sufficiently recognized by the tra-
ditional incentive structures of academic research.

Funding sponsors, publishers, and institutions wield the
power to drive collaborative progress and sustain momentum.
Their active support and recognition of researchers’ time and
effort invested in open science initiatives are crucial for en-
abling this pivotal change in modern neuroscience. By ac-
knowledging the value of open science practices, they elevate
the entire field. Through incentivizing open data practices,
funding robust infrastructure, and promoting tool dissemina-
tion, they create an environment where open science becomes
a central pillar of neurophysiology research.

Meanwhile, we encourage researchers to actively engage
in open science practices and leverage existing resources. By
participating in the communities that build and use advanced
tools, individuals can discover solutions to challenges they
face, and tap into valuable community support. When solu-
tions are lacking, researchers can provide feedback reflecting
their specific research needs, increasing the likelihood that fu-

ture iterations will address those needs. Thus, while trans-
formative impact arises from collective action with the much
needed support of funders and institutions, it is essential to
recognize the power of individual voices in shaping this ac-
tion.

Overall, we anticipate gradual, collaborative progress in
the field, rather than an overnight transformation, engaging
researchers, sponsors and institutions. We advocate for ac-
knowledging and celebrating symbiotic developments, which
together will propel us toward more open, transparent, and
impactful science. In this context, the ODIN symposium (in-
tended as a bi-annual event) can serve as a vital platform for
sustaining momentum, sharing novel developments, and ad-
dressing the evolving needs of the community.
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Key Takeaways for Advancing Open Science in Neurophysiology

• Education and training of neuroscientists at every level is crucial for ensuring open data practices are effectively adopted and
utilized.

• Funding investment in the development, dissemination, and maintenance of open-source tools and infrastructure is necessary
to support long-term sustainability and reliability of research outputs. Sponsors that value open data must be prepared to
fund the health of the ecosystem, which includes supporting practicing neuroscientists, tool disseminators, and continuous
maintenance/development to keep tools up to date.

• Improving research methodologies by establishing benchmarks and standardized methodologies for data analysis and model
evaluation will improve the reproducibility and comparability of research findings. Appropriately harnessing large language
models (LLMs) and AI tools to enhance data analysis, literature search, and hypothesis generation could also significantly
improve research quality and pertinence.

• Development of robust and user-friendly tools for data management, analysis, and sharing is essential to support the adoption
of open science practices across laboratories with varying resources. Enhancing metadata quality and standardization is critical
for the reusability and reproducibility of shared datasets, and comprehensive searchable metadata will greatly improving data
utility. Such practices have the potential to help address important ethical considerations, like animal use in neurophysiology
research, as optimal reuse of existing datasets can help keep animal use to a minimum.

• Alternative career paths should be established within academia to support individuals skilled in data management and analy-
sis, whose work is less focused on specific research hypotheses. Such positions would provide much needed job opportunities
and security, while helping bridge the gap between traditional academic hierarchies and the increasingly complex technical
landscape of neuroscience research.

• Progressive changes in culture and social infrastructure are necessary and must occur alongside changes in incentives and
credit assignment. Tool development and dataset contributions should receive greater appreciation and formal recognition (e.g.
by hiring and promotion committees). Participating in this transformation is essential for fostering an environment that values
and rewards open science.

FIG. 5: Key takeaways.
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