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Abstract

Critical evaluation of computational tools for predicting variant effects is important considering
their increased use in disease diagnosis and driving molecular discoveries. In the sixth edition
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of the Critical Assessment of Genome Interpretation (CAGI) challenge, a dataset of 28 STK11
rare variants (27 missense, 1 single amino acid deletion), identified in primary non-small cell
lung cancer biopsies, was experimentally assayed to characterize computational methods from
four participating teams and five publicly available tools. Predictors demonstrated a high level of
performance on key evaluation metrics, measuring correlation with the assay outputs and sepa-
rating loss-of-function (LoF) variants from wildtype-like (WT-like) variants. The best participant
model, 3Cnet, performed competitively with well-known tools. Unique to this challenge was that
the functional data was generated with both biological and technical replicates, thus allowing
the assessors to realistically establish maximum predictive performance based on experimental
variability. Three out of the five publicly available tools and 3Cnet approached the performance
of the assay replicates in separating LoF variants from WT-like variants. Surprisingly, REVEL,
an often-used model, achieved a comparable correlation with the real-valued assay output as
that seen for the experimental replicates. Performing variant interpretation by combining the
new functional evidence with computational and population data evidence led to 16 new vari-
ants receiving a clinically actionable classification of likely pathogenic (LP) or likely benign (LB).
Overall, the STK11 challenge highlights the utility of variant effect predictors in biomedical sci-
ences and provides encouraging results for driving research in the field of computational genome
interpretation.

Keywords: CAGI, STK11, kinase, machine learning, variant effect prediction, cancer, Peutz-Jeghers
syndrome

1 Introduction

The STK11 gene, formerly known as LKB1 (Liver Kinase B1), encodes the enzyme Serine/Threo-
nine Kinase 11 (NP 000446.1) that is considered to be a “master kinase” and functions as a tumor
suppressor. It regulates many intracellular signaling networks, impacting metabolism, proliferation,
transcription, and cell morphology (Hezel and Bardeesy, 2008; Lenahan et al, 2024). Unlike most
mammalian kinases that are activated by autophosphorylation of their activation loop, STK11 activ-
ity is regulated by its interaction with pseudokinase STRADα and the scaffolding protein MO25
forming a heterotrimeric complex, where its activation loop is stabilized in a conformation com-
petent for substrate binding (Zeqiraj et al, 2009). Autophosphorylation of STK11 occurs outside
the activation loop in the kinase (residues 49-309) and C-terminal regulatory (residues 309-433)
domains (Sapkota et al, 2002; Baas et al, 2003). The connection between autophosphorylation and
the activation of STK11 is still not well understood.

STK11 phosphorylates many members of the microtubule affinity-regulating kinases family, with
AMPK being studied most extensively (Lizcano et al, 2004; Nguyen et al, 2013). STK11 plays a
significant role in the p53 signaling axis, activated in response to various cellular stresses, such as
oncogene activation, DNA damage, and replication stress (Borrero and El-Deiry, 2021). It physically
associates with p53 in the nucleus and enhances p53’s transcriptional activity, impacting cell prolifer-
ation and apoptosis (Zeng and Berger, 2006). The exact mechanism(s) underlying STK11-mediated
activation of p53 are still unclear. It is possible that this activation occurs directly through STK11-
mediated phosphorylation of p53, or indirectly through the activation of AMPK and NUAK1 (Hou
et al, 2011; Zeng and Berger, 2006; Donnelly et al, 2021). However, regardless of the mechanism,
intact STK11 function is important for p53 activation.

STK11 is a significant disease gene due to its involvement in both the rare genetic disorder,
Peutz-Jeghers Syndrome (PJS), and cancer. Germline mutations in STK11 lead to uncontrolled cell
growth and the formation of polyps in the gastrointestinal tract, characterizing PJS (Zyla et al, 2021;
Khanabadi et al, 2023). Somatic alterations in STK11 are most prevalent in lung cancer, however,
they are also observed in other cancer types such as breast, head, and neck cancers (Pons-Tostivint
et al, 2021; Krishnamurthy et al, 2021). Notably, STK11 variants are frequently observed in non-
small cell lung cancer (NSCLC) adenocarcinomas and are associated with poor survival (La Fleur
et al, 2019). Recent studies have highlighted the substantial impact of STK11 mutations in the
highly prevalent KRAS-driven NSCLC adenocarcinomas, presenting distinct biological characteris-
tics, therapeutic susceptibilities, and immune profiles (Skoulidis et al, 2018). STK11 alterations in
KRAS-driven NSCLC adenocarcinomas are associated with low PD-L1 (Programmed Death-Ligand
1) levels, leading to reduced efficacy of anti-PD-1 monoclonal antibody therapy.
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Functional and computational characterization of variants in disease genes such as STK11 is
critical for the success of genomic medicine (Rost et al, 2016; Shendure et al, 2019; The Critical
Assessment of Genome Interpretation Consortium, 2024). The increasing rate of genetic testing has
resulted in a growing number of newly identified variants. However, the pace of variant discovery
has surpassed the rate of variant interpretation. The pathogenicity/benignity of many variants can-
not be established conclusively, leading to the variant of uncertain significance (VUS) categorization
being the largest category in clinical databases (Landrum et al, 2016). Functional assays and com-
putational tools are often used to provide evidence for moving VUS to pathogenic/benign categories
and improving variant interpretation (Richards et al, 2015). However, experimentally characterizing
the impact of all variants in a disease gene is often infeasible due to costs and technological lim-
itations. Consequently, for many disease genes, only a few variants are characterized functionally.
In contrast, computational predictions for pathogenicity and functional effect are readily available
for most variants (Zhu et al, 2020), making them a versatile tool for improving variant interpreta-
tion, broad functional characterization of underlying mechanisms, and prioritization of experimental
studies (Mort et al, 2010; Katsonis et al, 2022; Chen et al, 2023). Thus, continual improvement of
computational approaches and their independent evaluation is important.

To facilitate a thorough and unbiased evaluation of computational tools, the Critical Assess-
ment for Genome Interpretation (CAGI) consortium has worked with several experimental groups
to incorporate functional data from recent studies for a blind assessment of predictors in a number
of challenges (The Critical Assessment of Genome Interpretation Consortium, 2024). Since the func-
tional data is not available in the public domain during or before the prediction submission window, it
cannot be used in model training. The approach ensures that the tools’ performance is characterized
accurately, unaffected by model overfitting to training data, thereby also ensuring a fair compari-
son between tools. The STK11 challenge, in the sixth CAGI edition, invited computational groups
to submit their predictions on 28 coding variants (all but one missense) found in NSCLC biopsies,
that were functionally profiled with an in vitro gel-shift assay measuring autophosphorylation and a
cell-based p53-dependent luciferase reporter assay (Donnelly et al, 2021). Four participating models
and five publicly available tools were evaluated and compared using the functional data on key eval-
uation metrics. The experimental replicates were used to quantify the consistency of the assay, to
establish an upper limit on the predictive performance due to experimental variability, and to assess
whether the predictors are comparable to the assays in characterizing the variants’ kinase activity.
Lastly, clinical variant classification was performed by combining the evidence from the functional
assays, computational tools, allele frequency from population data and other co-located pathogenic
variants to move variants with uncertain significance to clinically actionable categories.

2 Challenge design and participation

A total of 28 STK11 (NP 000446.1) variants from primary non-small cell lung cancer (NSCLC)
biopsy specimens were assessed for biological impact in Dr. Seward’s laboratory at the Department
of Pathology and Laboratory Medicine, University of Vermont. The variants were released to the
community through the CAGI website, inviting computational groups to submit their predictions
for each variant’s kinase activity. The challenge was publicly announced on May 20, 2021, the set
of variants was released on June 8, 2021, and the submissions were accepted from June 21, 2021, to
August 31, 2021. A relatively short prediction season was impacted by the timeline for the public
release of the ground truth data (Donnelly et al, 2021).

The participants were asked to calibrate their predictions on a [0,∞) scale, wherein 0 indicates
no activity, 1 indicates wildtype activity and a value above 1 indicates greater than wildtype activity.
The submitted predictions were evaluated against experimentally validated kinase activities. Four
teams participated in the challenge, collectively submitting 14 predictors (Tables 4, 5). Two teams
submitted six predictors each and the other two teams submitted one predictor each. In addition to
evaluating the submitted predictions, we also evaluated five publicly available tools as baselines; see
Sec. 5.

3 Experimental data

The CAGI6 STK11 challenge presented 27 missense variants and 1 single amino acid deletion (Figure
1, Table 1) identified in primary NSCLC biopsy specimens with <1% allele frequency in gnomAD
(Karczewski et al, 2020). The STK11 activity of each variant was assessed experimentally via (1) a
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Table 1: CAGI6 STK11 challenge dataset of 28 variants found in primary NSCLC biopsy specimens.
Variants excluded from evaluation are marked by an asterisk in the first column. ClinVar (2024-01-
27) and HGMD (2021-04) annotations, before the prediction submission deadline, are shown along
with experimental results, as well as each variant’s allele count (AC) and allele frequency (AF) in
gnomAD (v4.1.0).
p.SYNTAX chr19:g.SYNTAX ClinVar HGMD gnomAD gnomAD R-WT activity TP53 mediated Autophosphorylation
(NP 000446.1) AC AF [25%, 75%] Luciferase assay Result assay Result
D194Y* g.1220487G >T P/LP DM -0.09 [-0.24,0.08] LoF LoF
G56W g.1207078G>T -0.08 [-0.1,0] LoF LoF
P179R* g.1220443C>G DM -0.01 [-0.04,0.1] LoF LoF
S193Y g.1220485C>A 0.02 [-0.02,0.15] LoF LoF
S216F g.1220629C>T VUS 0.15 [0.01,0.36] LoF LoF
P221R g.1220644C>G 0.19 [0.04,0.37] LoF LoF
F148S g.1219391T>C 0.20 [-0.03,0.44] LoF LoF
G163R* g.1220394G>C LP DM 0.22 [0.06,0.32] LoF LoF
A241P* g.1220703G>C DM 0.27 [0.09,0.46] LoF LoF
R297M g.1221975G>T 0.32 [0.17,0.43] LoF LoF
H202R g.1220587A>G VUS 5 3.16E-06 0.34 [0.19,0.49] LoF WT
W308R g.1222985T>C VUS 0.38 [0.19,0.52] LoF LoF
G242V g.1220707G>T DM? 0.38 [0.31,0.43] LoF LoF
R297S* g.1221976G>T P 0.41 [0.32,0.49] LoF LoF
G251C g.1221228G>T 0.56 [0.36,0.79] LoF LoF (weak)
S31F g.1207004C>T 0.69 [0.56,0.89] WT WT
P275L g.1221301C>T VUS 0.81 [0.72,0.91] WT WT
K84del g.1207153 1207155delAAG VUS 7 4.34E-06 0.90 [0.61,1.09] WT WT
R211Q g.1220614G>A VUS/LB 29 1.81E-05 1.00 [0.79,1.18] WT WT
Q112E g.1218459C>G VUS 2 1.24E-06 1.06 [0.69,1.17] WT WT
G155R g.1219411G>A VUS 3 1.90E-06 1.07 [0.8,1.13] WT WT
R104G g.1218435A>G VUS 6 3.72E-06 1.08 [0.92,1.18] WT WT
R409W g.1226569C>T VUS/LB DM? 68 4.28E-05 1.11 [0.91,1.18] WT WT
A417S g.1226593G>T VUS 16 1.02E-05 1.29 [0.86,1.66] WT WT
A397S g.1226533G>T VUS/LB DM? 30 1.87E-05 1.30 [0.93,1.6] WT WT
P280A g.1221315C>G VUS 1.47 [1.39,1.68] WT WT
F354L* g.1223125C>G B/LB DM? 8225 5.10E-03 1.51 [0.93,1.88] WT WT
K311N g.1222996G>T 1.62 [1.25,2.03] WT WT

VUS: variant of uncertain significance; P: pathogenic; LP: likely pathogenic; B: benign; LB: likely
benign; DM: disease-causing mutation; DM?: possible disease-causing mutation.

luciferase reporter assay, measuring an STK11 variant’s effect on TP53’s transcriptional activity, and
(2) a gel-shift assay, putatively measuring whether an STK11 variant undergoes auto-phosphorylation
or not (Donnelly et al, 2021).

For the luciferase assay plasmids containing cDNAs encoding each of the STK11 variants
(STK11/eGFP) were transfected into A549 cells along with a plasmid encoding TP53 response ele-
ment with a firefly luciferase reporter (PG13-luc) and a transfection control plasmid with Renilla
reniformis luciferase reporter (pRL-SV40). The luciferase activity, adjusted for transfection efficiency,
serves as a measure of an STK11 variant’s effect on TP53’s transcriptional activity. In addition to the
somatic variants, the luciferase activity for the wildtype (WT) STK11, a kinase-dead point mutation
(p.K78I), and empty vector (EV) were also measured, as a positive control, negative control, and
baseline, respectively. Seventeen biological replicates were performed, each measuring the activity
for a subset of STK11 variants, across 2-3 technical replicates. The two controls and baseline (WT,
p.K78I, and EV) were measured across all biological and technical replicates. Each variant from the
set of 28 cancer biopsy variants was validated in 3-6 biological replicates.

For the gel shift assay, mutant proteins were transfected into A549 cells lacking functional
STK11. The STK11 heterotrimeric complexes were immunoprecipitated with anti-Flag beads and
kinase assays were performed on the immunoprecipitated complexes. The kinase reactions were then
subjected to SDS-PAGE electrophoresis and transferred to nitrocellulose membranes, followed by
Western Blot analysis with anti-STK11 monoclonal antibody, and detected with anti-mouse-HRP.
The evaluated variants either demonstrated (1) a single unmodified band, representing an inability
to auto-phosphorylate, or (2) two bands, an unmodified band and a shifted higher molecular weight
band, presumably the result of autophosphorylation (although the possibility of phosphorylation by
another cell kinase cannot be excluded) indicating the variant behaved as WT. The addition of phos-
phatase eliminated the second band, confirming it was the product of phosphorylation. The assay
was essentially binary, classifying the variant as WT-like or loss of function (LoF).

The luciferase assay gave a continuous activity value for each variant. The data providers classified
each variant as either WT-like or LoF by applying a suitable threshold (Donnelly et al, 2021). The
class labels from the two assays agreed on 27 out of the 28 variants, with the disagreement on
p.H202R, assigned a LoF label as per the luciferase assay and a WT-like label as per the gel-shift
assay.
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4 Assessment methods

In our assessment, we used the data from the luciferase assay for our main results. The results of the
gel shift assay are provided in Supplementary File S1. Due to the agreement between the two assays
on the classification labels and the availability of the continuous activity values and replicates for
the luciferase assay, we deemed it to be better suited and sufficient for the primary assessment. The
predictors were evaluated over a regression and classification task to measure their performance on
the luciferase assay.

4.1 Ground truth for evaluation

The luciferase activity measured in the assay was normalized relative to the wildtype activity after
correcting for the background activity using the following formula.

R-WT ActivityVar =
ActivityVar −ActivityEV

ActivityWT −ActivityEV

,

where all the raw activity values come from the same biological and technical replication. The normal-
ization scaled the activity values such that values ≤0 correspond to no activity, values =1 correspond
to WT activity, and values >1 correspond to greater than WT activity. Note that the data providers
used a different normalization approach that scales the relative activity on a larger scale than 0-1.
We used a 0-1 scale based on the CAGI challenge guidelines. The relative wildtype activity (R-WT)
for variant i was averaged across all biological and technical replicates to give a robust measure of
its R-WT activity, which we consider the ground truth for the activity prediction task.

To evaluate the methods on a binary classification task, we assign a ground truth class label,
WT-like or LoF, to each variant by thresholding its R-WT activity. If it is less than 0.6, the variant is
considered to be LoF, otherwise it is considered WT-like. The class labels thus obtained are identical
to those from the data providers (Donnelly et al, 2021).

In this manner, out of the 28 variants, 13 were classified as WT-like, while the remaining 15
were classified as LoF (Figure 1). We validated the ground truth classifications and the R-WT
activity against known pathogenic and benign variants in ClinVar (2024-01-27) and HGMD (2021-
04). Out of 28, 6 variants (p.F354L, p.R297S, p.A241P, p.D194Y, p.P179R, p.G163R) were known
to be pathogenic (P/LP or DM) or benign (B/LB) without any conflicting information. The ground
truth classifications for these variants were consistent with the clinical assertions; i.e., all pathogenic
variants were labeled as LoF and all benign variants as WT-like. The assays were therefore considered
reliable.

4.2 Evaluation set

Since 6 variants (p.F354L, p.R297S, p.A241P, p.D194Y, p.P179R, p.G163R) out of the 28 were known
to be pathogenic or benign without conflicting information in clinical databases, we removed them
from our final evaluation set, to ensure that the evaluation set does not include variants possibly
used to train the predictors. There were 14 other variants in the clinical databases that were either
annotated as a VUS in ClinVar, a DM? in HGMD or had conflicting information and consequently
were retained in the evaluation set.

Since many tools are developed primarily for predicting the effects of missense variants, we also
investigated performance on a reduced evaluation set, obtained by the removal of p.K84del.

4.3 Evaluation metrics

To evaluate the predictors, we considered two sets of metrics for (1) R-WT activity prediction and
(2) predicting the ground truth class label (WT-like or LoF). For the R-WT activity prediction, we
used Pearson’s correlation and Kendall’s Tau, as standard performance metrics for regression. For
the binary class label prediction, we used the area under the ROC curve (AUC).

Since the submission guidelines explicitly elicited predictions for R-WT activity, the predictions
from the submitted model were used unaltered for computing Pearson’s correlation and Kendall’s
Tau. However, since computing AUC requires a prediction score for which a higher (lower) value cor-
responds to the positive (negative) class, LoF (WT-like), we negated the predictions (multiplying by
−1) for the AUC computation. The same approach was adopted for the Experimental-Max predic-
tor; see Sec. 5.1. Since all baseline predictors were built to give a higher value for function disruption
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Fig. 1: Relative wildtype (R-WT) activity of each variant measured by the luciferase assay. The
average activity over the biological and technical replicates is shown along with the 25th and the
75th percentile. LoF variants are displayed in orange, and WT-like variants in blue, separated based
on an R-WT activity threshold of 0.6. Any variant with an asterisk above its identifier was classified
without conflicts as pathogenic or benign in ClinVar (2024-01-27) (Landrum et al, 2016) and/or a
disease mutation in HGMD (2021-04) (Stenson et al, 2020) and has not been used in the assessment.
Labels inside or on top of the bars indicate clinical classification in ClinVar and HGMD, includ-
ing pathogenic (P), likely pathogenic (LP), variant of uncertain significance (VUS), benign (B),
likely benign (LB), disease-causing mutation (DM), and possible disease-causing mutation (DM?).
Abbreviations EV, KD, and WT stand for empty vector, kinase-dead point mutation (p.K78I), and
wildtype, respectively.

or pathogenicity and were calibrated as a probability between 0 and 1, we transformed their output,
ŷ, to 1− ŷ for computing Pearson’s correlation and Kendall’s Tau. Their unaltered output was used
to compute AUC.

If a tool did not predict on a variant, we replaced each missing prediction with an average of the
prediction made on all other variants. This allowed evaluation of all tools on the same set of variants;
i.e., the entire evaluation set, and consequently, ensured a fair comparison.

4.4 Uncertainty quantification

We calculated each performance metric on 1000 bootstrap variant sets created from the evaluation
set by sampling with replacement (Efron and Tibshirani, 1986). In this manner, we obtained 1000
bootstrap estimates of each metric. In Figure 2 and Table 2 we show the 90% confidence interval
for each metric, obtained from the 5th and 95th percentile of its bootstrap estimates. In Figure
3 we provide a Gaussian approximation based 95% confidence interval for the AUC values as the
1.96×standard deviation derived from its bootstrap estimates.

4.5 Ranking

The methods were ranked based on their performance on three metrics: Pearson’s correlation,
Kendall’s Tau, and AUC. The predictors were first ranked based on each of the three metrics sepa-
rately. The final rank of a predictor was obtained by averaging its ranks over the three metrics. The
ranking was performed first between the predictors submitted by each team separately to pick the
best predictor from each team. The ranking was then performed between the representative predictors
from all teams. The baseline predictors were ranked separately from the submitted predictors.
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4.6 Identification of difficult-to-predict variants

In Figure 4, we quantify the difficulty in predicting each variant across predictors. For this analysis,
we only incorporated the best predictor from each team (based on ranking) that also had an AUC
above 0.8. Thus only 3Cnet and Evolutionary Action qualified based on this criteria. We additionally
incorporated the publicly available baseline predictors (see Sec. 5) for this analysis, since all of them
had an AUC greater than 0.8. For each predictor, we quantified the difficulty of predicting a LoF
variant as the false positive rate (FPR) of the predictor when using the predicted value at the variant
as a classification threshold. In other words, it is the fraction of variants in the WT-like set that were
predicted to have a lower R-WT activity than the LoF variant at hand. Similarly, the difficulty in
predicting a WT-like variant was quantified as the false negative rate (FNR) of the predictor based
on the predicted value at the variant as the classification threshold; i.e., the fraction of variants in the
LoF set that was predicted to have a higher R-WT activity than the WT-like variant at hand. An
LoF (or WT-like) variant consistently having a high FPR (or FNR) across predictors is considered to
be a difficult-to-predict variant. In this analysis, we considered all 28 variants, including those that
were removed from the evaluation set for comparing predictors.

4.7 Clinical variant classification

Only 4 out of the 28 variants considered in this work are clinically actionable with a definitive ClinVar
classification of P/LP or B/LP. To investigate if the remaining 24 variants could be moved to more
definitive categories, we collected and combined the evidence available for each variant under the
American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular
Pathology (AMP) variant classification guidelines for rare genetic disease diagnosis (Richards et al,
2015). Precisely, we considered the functional assay results, computational evidence, allele frequency
from population data and evidence from other co-located pathogenic variants by applying evidence
codes PS3/BS3, PP3/BP4, PM2/BS1 and PM5, respectively. The original guidelines interpreted
each evidence type on an ordinal scale of supporting, moderate, strong and very strong and provided
rules to combine evidence strength to make pathogenic (P or LP) or benign (B or LB) assertion. For
example, 1 strong, 2 moderate, and 2 supporting lines of evidence lead to P, whereas 2 moderate and
2 supporting lines lead to LP. The recently developed point-based system for variant interpretation
(Tavtigian et al, 2020) assigned points to each strength level: supporting, moderate, strong, and
very strong evidence towards pathogenicity (benignity) correspond to 1 (-1), 2 (-2), 4 (-4) and 8 (-8)
points, respectively. Here we use the point scale, under which a P, LP, VUS, LB, or B assertion is
made if the total points from the evidence collected for a variant were in the range ≥ 10, [6, 9], [0, 5],
[−6,−1] or ≤ −7, respectively. The VUS category is further divided into VUS-low, VUS-mid and
VUS-high categories corresponding to the range [0,1], [2,3] and [4,5], respectively.

Following the point-based system, if a variant was determined to be LoF from an assay’s output,
we applied the PS3 code with 1 point (supporting for pathogenicity), whereas if it was determined to
be WT-like, we applied the BS3 code with -1 point (supporting for benignity). Combining the results
from the luciferase and the gel-shift assay, this approach resulted in giving 2 points for each variant
annotated as LoF by both assays, and -2 points for each variant annotated as WT-like by both assays.
In the case of p.H202R where the two assays disagree, 1 point from the luciferase assay and -1 point
from the gel-shift assay led to a net score of 0 points. We incorporated population data evidence by
looking at a variant’s allele frequency from healthy controls in gnomAD v4.1 where there are 5 P/LP
variants, each with allele count of 1. All variants considered in this work were either absent from
gnomAD v4.1 or were found with very low allele frequency (AF ⪅ 10−5), except for p.F354L with
AF=0.0051. Peutz-Jeghers syndrome (PJS) being an autosomal dominant trait, we applied PM2 only
for variants absent from gnomAD as per the guidelines (Richards et al, 2015). Instead of applying
PM2 as a moderate level evidence, as recommended by the original guidelines, we applied PM2 at a
supporting level with 1 point based on the recent updates to the guidelines (ClinGen SVI Working
Group, 2019). For BS1 we used an allele frequency of 0.001 as a threshold above which the the code
was applied. Thus only p.F354L qualified for BS1 with -4 points (strong benignity). The remaining
variants present in gnomAD v4.1 with an allele frequency less than 0.001 were considered to have
indeterminate evidence. Consequently, no evidence code was applied for these variants. To quantify
the computational evidence on the point scale, we used REVEL scores and applied the recently
derived score intervals, corresponding to the evidence strength (Pejaver et al, 2022). Precisely, if the
score for a variant was in the interval [0.644, 0.773), [0.773, 0.932) and [0.932, 1], PP3 was applied as
supporting, moderate and strong, with 1, 2 and 4 points, respectively, whereas if the score was in the
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interval (0.183, 0.290], (0.016, 0.183] and (0.003, 0.016], BP4 was applied as supporting, moderate,
strong, with −1, −2 and −4 points, respectively. Other P and LP ClinVar variants at the same amino
acid position were considered as evidence (PM5) if the REVEL score rounded to 2 decimal places of
the tested variant was equal to or higher than the REVEL score of the co-located P and LP variants,
with 2 points for the first P variant, 1 point for the first LP variant, and 1 point for any additional
P or LP variant. Other B and LB variants at the same position were also considered but none were
identified. Since the variants were obtained from cancer biopsies and not PJS cases, no case data was
available for this study and consequently, de novo counts (PM6/PS2) or segregation data (PP1) was
not considered.

5 Models and baselines

The participant teams used a diverse set of approaches in terms of the features, machine learning
models and training datasets; see Table 4. The top performing model, 3CNet, an improved version
of the base model from Won et al (2021), used structure, conservation, and physical and biochemical
features. A long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) network, trained
on simulated variants from conservation data from UniRef (Suzek et al, 2007), was used as a feature
extractor. A random forest model based on the extracted features was then trained on variants from
ClinVar (Landrum et al, 2016) and gnomAD (Karczewski et al, 2020); see Supplementary File 2.
The second best-performing method, Evolutionary Action, is based on a mathematical model for the
action of coding mutations on fitness. Protein language model was based on Bidirectional encoder
representations from transformers (Devlin et al, 2019) (BERT) trained on Pfam (Mistry et al, 2021)
representative proteome domain sequence data. Bologna Biocomputing created a meta predictor from
three ∆∆G predictors, INPS3D (Savojardo et al, 2016), PoPMuSiC 2.1 (Dehouck et al, 2011) and
FOLDEF (Guerois et al, 2002), and a sequence based residue solvent exposure predictor, DeepREx
(Manfredi et al, 2021).

In addition to evaluating the submitted predictors, we also evaluated publicly available tools
PolyPhen-2 (Adzhubei et al, 2010), REVEL (Ioannidis et al, 2016), MutPred2 (Pejaver et al, 2020),
EVE (Frazer et al, 2021), and AlphaMissense (Cheng et al, 2023).

5.1 Experimental-Max

We derive an Experimental-Max predictor that incorporates the assay replicates to quantify its con-
sistency and also the maximum achievable performance on all three metrics. The biological and
technical replicates capture the variability of the assay in measuring the R-WT activity. We use the
average R-WT activity across the replicates as the ground truth for evaluation; see Sec. 4.1. High
variability of the replicates around the average indicates low consistency of the assay. Experimental-
Max’s predicted R-WT activity on a variant is determined by first randomly picking a biological
replicate in which it appears, and then using the R-WT activity of a randomly picked technical repli-
cate within the biological replicate. Unlike conventional predictors, Experimental-Max is stochastic;
i.e., has randomness in its output. Thus repeating the sampling is likely to give a different predicted
R-WT activity for the variant. Consequently, the performance measured with Experimental-Max pre-
dictions over a set of variants is also stochastic. To obtain a robust estimate of a performance metric,
we generated 1000 Experimental-Max predictors by resampling and averaged the performance com-
puted over them. The confidence interval for Experimental-Max’s performance in Figure 2 and Table
2 is obtained as the 5th and 95th percentile of the 1000 estimates. Pearson corr. and Kendall’s Tau
computed for Experimental-Max quantifies the consistency of the assay in measuring R-WT activity,
whereas its AUC quantifies the consistency in separating LoFs from WT-like variants. Experimental-
Max performance additionally serves as an upper limit to a predictor’s performance, since a predictor
can not be expected to predict the assay output better than the replicates. The small gap between a
predictor’s performance and Experimental-Max suggests that a predictor is comparable to the assay
in estimating the true R-WT activity of the variants and separating LoFs from WT-like variants.
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6 Results

6.1 Performance of submitted predictors

We evaluated the participant team models based on their performance on Pearson’s correlation,
Kendall’s Tau, and AUC, computed on the evaluation set of 22 variants. The best-performing pre-
dictor from each team was first selected based on the three metrics as the top-ranking predictor from
the team; see Sec. 4.5. The best-performing predictors from each team were then re-ranked based on
the three metrics; see Figures 2(a) and 3(a), and Table 2.Among the four participant team models,
3Cnet performed the best on all three metrics: Pearson’s corr = 0.78, Kendall’s Tau = 0.58, and AUC
= 0.93. Evolutionary Action performed the second best: Pearson’s corr. = 0.76, Kendall’s Tau = 0.52
and AUC = 0.83. The performance of 3Cnet was better than Evolutionary Action with statistical
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Fig. 2: Pearson’s correlation, Kendall’s Tau, and area under the ROC curve (AUC) for submitted
methods (blue), publicly available tools (grey) as baselines, and Experimental-Max (grey). The error
bars correspond to the 5th and 95th percentiles computed with 1000 bootstrap samples. Only the
best-performing method from each team is displayed. The submitted methods are shown in order of
their average ranks on the three metrics. The baselines are also shown in the order of their average
ranks and are ranked separately from the submitted methods.
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Table 2: Performance of the best model from each participating team, publicly available baseline
models and Experimental-Max along with 90% confidence interval. Participant models are listed in
the order of their rankings. Baseline models are ranked separately, and also listed in order of their
rankings.

Measures Pearson’s correlation Kendall’s Tau AUC
[5%, 95%] [5%, 95%] [5%, 95%]

3Cnet 0.783 [0.624, 0.909] 0.584 [0.390, 0.757] 0.933 [0.800, 1.000]
Evolutionary Action 0.756 [0.592, 0.886] 0.515 [0.280, 0.710] 0.825 [0.654, 0.975]
Protein language model 0.186 [-0.093, 0.675] 0.411 [0.213, 0.590] 0.775 [0.567, 0.967]
Bologna Biocomputing 0.321 [-0.064, 0.655] 0.264 [-0.056, 0.569] 0.733 [0.567, 0.875]
REVEL 0.821 [0.705, 0.916] 0.662 [0.473, 0.829] 0.950 [0.867, 1.000]
AlphaMissense 0.704 [0.414, 0.920] 0.610 [0.417, 0.790] 0.925 [0.825, 1.000]
MutPred2 0.682 [0.557, 0.811] 0.547 [0.352, 0.705] 0.933 [0.817, 1.000]
PolyPhen-2 0.613 [0.417, 0.786] 0.487 [0.283, 0.675] 0.883 [0.727, 1.000]
EVE 0.613 [0.368, 0.796] 0.396 [0.199, 0.605] 0.858 [0.700, 0.983]
Experimental-Max 0.836 [0.734, 0.917] 0.681 [0.558, 0.784] 0.964 [0.900, 1.000]

significance on all three metrics. Statistical significance was determined using a one-sided binomial
test with a number of wins on 1000 bootstrap samples as the test statistic. 3Cnet won 629, 687, and
838 times on Pearson’s corr., Kendall’s Tau and AUC, respectively, giving p-values less than 10−16,
10−32, and 10−110, respectively. The p-value was computed as the probability that the Binomial(0.5,
1000) variable is greater than or equal to the number of wins.

All participant models demonstrated improved performance to varying degrees on the reduced
evaluation set (removing p.K84del) containing only missense variants; see Figures 2(a) and 3(b).
Performance of Evolutionary Action, Protein language model, and Bologna Biocomputing improved
significantly on all three metrics, whereas 3Cnet only improved on AUC by a small margin. In
fact, Evolutionary Action performed better than 3Cnet on Pearson’s correlation (0.81 vs. 0.78) and
identically on Kendall’s Tau (0.581 vs. 0.581). 3Cnet retained its advantage on AUC at 0.94 vs. 0.9
for Evolutionary Action. The significant improvement in Evolutionary Action’s performance on the
removal of p.K84del was observed because it predicted the indel as having the lowest R-WT activity
in the evaluation set, whereas it retains enough activity to be deemed WT-like as per both assays.
The ROC curves of Evolutionary Action and Protein language model depicted improved behavior
upon the removal of p.K84del since they no longer demonstrate a false positive error at 0 true positive
rate; see Figure 3.

(a) ROC curve on Evaluation set
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(b) ROC curve on Evaluation set without p.K84del
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Fig. 3: The receiver operating characteristic (ROC) curves for the best-performing model for each
team and the best baseline model REVEL. AUC values are shown along with 1.96×standard deviation
from their bootstrap estimates.
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6.2 Comparison with publicly available tools

We also evaluated the performance of publicly available tools, REVEL, AlphaMissense, MutPred2,
PolyPhen-2, and EVE on the Evaluation set as a baseline; see Figures 2(a) and 3(a), and Table 2.
REVEL was the top performing tool on all three performance metrics when compared to other pub-
licly available tools and the submitted predictors: Pearson’s correlation = 0.82, Kendall’s Tau = 0.66
and AUC = 0.95. Its improvement over the best-performing participant model 3Cnet was significant
on all three metrics with 720 (Pearson’s correlation), 801 (Kendall’s Tau) and 527 (AUC) wins, and
p-values < 10−45, < 10−86 and = 0.041, respectively. AlphaMissense was the second-best-performing
tool. The top performing submitted predictor, 3Cnet, performed better than AlphaMissesnse on
Pearson’s correlation and AUC, but not on Kendall’s Tau; see Figure 2(a) and Table 2.

The performance of most publicly available tools appeared more or less similar with and with-
out p.K84del (except correlations measured for PolyPhen-2 and EVE); see Figures 2(b) and 3(b).
However, this could be an artifact of our imputation approach. Most publicly available tools (except
PolyPhen-21) did not make predictions on p.K84del. For a fair comparison with participant mod-
els on the same set of variants, a prediction score for p.K84del was imputed using the average over
other variants without missing predictions. Since p.K84del’s R-WT activity was in the intermediate
range, the average-based imputation approach worked in favor of the tools and p.K84del’s inclusion
in the evaluation set did not affect their performance adversely, unlike Evolutionary Action, Protein
language model, and Bologna Biocomputing. The lower performance of EVE could be attributed to
missing predictions for three other variants (p.A397S, p.R409W, p.A417S), in addition to p.K84del,
which were also imputed by the average prediction.

6.3 Comparison with Experimental-Max

The consistency of the assay was quantified by evaluating the Experimental-Max predictor. At Pear-
son’s corr. = 0.83 and Kendall’s Tau = 0.68, the assay demonstrated medium level of consistency in
measuring the R-WT activity; see Figure 2(a). The consistency was high in separating LoFs from
WT-like variants at AUC = 0.96. In addition to quantifying assay consistency, Experimental-Max
performance on the three metrics gave upper limits to a predictor’s performance, since a predictor
can not be expected to better predict the assay output than the assay replicates. REVEL comes very
close to Experimental-Max in its performance; with a gap of ∼0.01 on AUC, and ∼0.02 on Pearson’s
correlation and Kendall’s Tau. The trend holds true even after the removal of the imputed variant
p.K84del with a slightly worse gap of ∼0.04 on Kendall’s Tau. The gap between the performances
of 3Cnet, AlphaMissense, and MutPred2 with Experimental-Max is not too large either in terms of
AUC (∼0.03). Overall, the comparison between the top performing models and Experimental-Max
reveals that these predictors are comparable to the assay in terms of correlation with STK11 vari-
ants’ R-WT activity and separating LoFs from WT-like variants. However, an evaluation on a larger
set of variants might be necessary to confidently assert this claim.

6.4 Difficult-to-predict variants

In Figure 4, we quantify the difficulty in predicting each variant over a set of competitive predictors
having an AUC greater than 0.8. For a LoF (or WT-like) variant the difficulty is quantified as the FPR
(or FNR) of each selected predictor at that variant; see Sec. 4.6. Some LoF variants (e.g., p.R297S,
p.G242V, p.G56W, p.D194Y) are easy to predict by most methods. All LoFs, except p.H202R, had at
least one method predicting lower activity than all WT-like variants, i.e., FPR=0. Variant p.H202R
was significantly difficult to predict as LoF by all predictors. Some WT-like variants (e.g., p.Q112E,
p.A417, p.A397S) were easy to predict for most predictors. All WT-like variants, except p.S31F and
p.P275L, had at least one method predicting higher activity than all LoF variants, i.e., FNR=0.
The difficulty in predicting p.S31F and p.P275L can be explained by the observation that they have
the lowest experimental R-WT activity values among all WT-like variants. Furthermore, in case of
p.P275L multiple predictors have FNR as low as 0.07.

The LoF variant p.H202R has an average FPR of 0.537 across the selected predictors, indicating
that over half of the benign variants were predicted to have a lower R-WT activity on average. Thus
it is an outlier LoF variant that is not predicted well by any competitive predictors. Donnelly et al
(2021) also made a similar observation based on the predictive tools considered in their assessment.
Compared to other LoF variants, p.H202R has a higher R-WT activity of 0.32; only five (p.R297M,

1A prediction for p.K84A was used by the tool as substitute for p.K84del.
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p.W308R, p.G242V, p.R297S, p.G251C) out of the fifteen LoF variants have a higher R-WT activity.
However, despite their higher activity, the five variants are well predicted by multiple predictors,
suggesting that the activity level of p.H202R does not explain the challenging nature of the variant.
Interestingly, p.H202R is the only variant where the two assays differ in their classification. It is
annotated LoF based on the luciferase assay and WT-like based on the gel-shift assay (Donnelly et al,
2021); see Table 1. p.H202R is located in functional regions VIB-VIII (amino acids 172-225), a part
of the kinase domain specifically related to substrate recognition (Hearle et al, 2006), which affects
its binding affinity to p53, but not its kinase activity. Since the luciferase assay measures an STK11
variant’s effect on the transcriptional activity of p53, it shows a reduced activity due to p.H202R. It
is likely that the predictors perform well concerning the kinase activity prediction, but fail to capture
p.H202R’s effect on binding p53.
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(b) False negative rate for WT-like variants
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Fig. 4: Difficult-to-predict variants and differences among competitive methods. All methods with
an AUC above 0.8 were considered for this analysis. (a) The heatmap of the false positive rate of a
method at each LoF variant; see Sec. 6.4. (b) The heatmap of the false negative rate of a method
at each WT-like variant. The variants with an asterisk are known pathogenic or benign variants in
ClinVar and/or HGMD without any conflicting information.
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(b) Pairwise Kendall’s Tau
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Fig. 5: Correlation between predictors. (a) Pearson’s corr., (b) Kendall’s Tau. Each off-diagonal
element gives the pairwise correlation between a pair of predictors. The diagonal elements give
correlation between the predictor and the experimental R-WT activity for comparison. p.K84del was
excluded while computing the correlations in this figure, since most publicly available tools do not
make prediction on indels.
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6.5 Correlation between predictors

Computing the pairwise correlation between the predictors, we observed that the top-performing
predictors were more correlated with each other, compared to the correlation with the experimentally
measured R-WT activity; see Figure 5. This trend has been observed previously in many CAGI
challenges (The Critical Assessment of Genome Interpretation Consortium, 2024; Clark et al, 2019)
and can be attributed to the predictors using similar features and training data.

6.6 Clinical variant classification

Table 3: Clinical variant classification based on population data, functional assay results, compu-
tational predictions and other co-located pathogenic variants; see Sec. 4.7 for details. Variants with
an asterisk were already classified as pathogenic or benign in ClinVar (2024-01-27) (Landrum et al,
2016).

Variant ClinVar HGMD
Population data

evidence
Functional assay

evidence
Computational

evidence
Evidence from co-located

pathogenic variants
Total
points

Final
category

gnomAD
AF

Code
(points)

Assay
result

Code
(points)

REVEL
score

Code
(points)

Variant-P/LP
(REVEL score)

Code
(points)

G56W PM2 (1) LoF-LoF PS3 (2) 0.932 PP3 (4) 7 LP
P179R DM PM2 (1) LoF-LoF PS3 (2) 0.939 PP3 (4) P179Q-LP (0.94) PM5

(1)
8 LP

S193Y PM2 (1) LoF-LoF PS3 (2) 0.871 PP3 (2) 5 VUS - high
S216F VUS PM2 (1) LoF-LoF PS3 (2) 0.954 PP3 (4) 7 LP
P221R PM2 (1) LoF-LoF PS3 (2) 0.892 PP3 (2) 5 VUS - high
F148S PM2 (1) LoF-LoF PS3 (2) 0.728 PP3 (1) 4 VUS - high
A241P DM PM2 (1) LoF-LoF PS3 (2) 0.782 PP3 (2) 5 VUS - high
R297M PM2 (1) LoF-LoF PS3 (2) 0.936 PP3 (4) R297S-P (0.94) PM5

(2)
9 LP

H202R VUS 3.16E-06 LoF-WT 0.424 0 VUS - low

W308R VUS . PM2 (1) LoF-LoF PS3 (2) 0.881 PP3 (2)
W308C-LP (0.73)

PM5 (2) 7 LP
W308L-LP (0.84)

G242V DM? PM2 (1) LoF-LoF PS3 (2) 0.97 PP3 (4) G242R-P(0.97) PM5
(2)

9 LP

G251C PM2 (1) LoF-LoF PS3 (2) 0.833 PP3 (2) 5 VUS - high
S31F PM2 (1) WT-WT BS3 (-2) 0.8 PP3 (2) 1 VUS - low
P275L VUS PM2 (1) WT-WT BS3 (-2) 0.663 PP3 (1) 0 VUS - low
K84del VUS 4.34E-06 WT-WT BS3 (-2) -2 LB
R211Q VUS/LB 1.81E-05 WT-WT BS3 (-2) 0.215 BP4 (-1) -3 LB
Q112E VUS 1.24E-06 WT-WT BS3 (-2) 0.393 -2 LB
G155R VUS 1.90E-06 WT-WT BS3 (-2) 0.382 -2 LB
R104G VUS 3.72E-06 WT-WT BS3 (-2) 0.582 -2 LB
R409W VUS/LB DM? 4.28E-05 WT-WT BS3 (-2) 0.238 BP4 (-1) -3 LB
A417S VUS 1.02E-05 WT-WT BS3 (-2) 0.102 BP4 (-2) -4 LB
A397S VUS/LB DM? 1.87E-05 WT-WT BS3 (-2) 0.03 BP4 (-2) -4 LB
P280A VUS PM2 (1) WT-WT BS3 (-2) 0.097 BP4 (-2) -3 LB
K311N PM2 (1) WT-WT BS3 (-2) 0.461 -1 LB

D194Y* P/LP DM . PM2 (1) LoF-LoF PS3 (2) 0.929 PP3 (2)
D194H-P (0.94)

PM5 (4) 9 LPD194V-P (0.94)
D194E-P (0.84)

G163R* LP DM PM2 (1) LoF-LoF PS3 (2) 0.933 PP3 (4) G163D-P (0.95) 7 LP
R297S* P PM2 (1) LoF-LoF PS3 (2) 0.936 PP3 (4) 7 LP
F354L* B/LB DM? 5.10E-03 BS1 (-4) WT-WT BS3 (-2) 0.156 BP4 (-2) -8 B

Performing variant classification by combining the newly available functional evidence from the assays
with computational evidence from REVEL, population data evidence from gnomAD and evidence
from co-located pathogenic variants (see Sec. 4.7) revealed that 16 new variants could attain a
clinically actionable LP (6 variants) or LB (10 variants) classification for the diagnosis of Peutz-
Jeghers syndrome (PJS); see Table 3. The variants that received a definitive classification included
1) 15 variants from the Evaluation set whose clinical significance was unknown since they were
either not observed in ClinVar and HGMD or were observed as DM? in HGMD or were observed in
ClinVar as VUS or with conflicting annotations, 2) 1 variant observed in HGMD as disease-causing
mutation (DM), but were absent from ClinVar and 3) 4 variants already observed in ClinVar with a
definitive classification of either P/LP or B/LB. Although there were 8 variants that failed to receive
a definitive classification, 5 (3) of them attained a VUS-high (VUS-low) status, moving them closer
to LP (LB) classification, thereby reducing the uncertainty in their pathogenicity/benignity status.
The 4 variants, already having definitive classification in ClinVar, received consistent classifications
based on the four evidence types. However, 3 out of the 4 variants were deposited with stronger total

13



evidence in ClinVar as they had P (p.R297S) or P/LP (p.D194Y) classification instead LP or B/LB
(p.F354L) classification instead of LB. Such differences in the classification are expected since we
do not consider all types of evidence (e.g., case data) allowed by the clinical guidelines. Thus the
total points and the clinical classifications (Final category) for other variants given in Table 3 might
change slightly if other types of evidence are also considered.

7 Discussion

The performance levels of the top methods in the STK11 challenge were on the higher end com-
pared to the previous biochemical effect challenges in CAGI (The Critical Assessment of Genome
Interpretation Consortium, 2024). However, since the evaluation was performed on a small set of
22 variants, it is possible that the performance may not generalize to the same extent on other
STK11 variants. Evaluation of a larger set of variants would be necessary to confidently character-
ize the performance of computational predictors on kinase activity prediction. Assuming that the
results would indeed generalize, the high level of performance on STK11 variants is partly because
of advancements in machine learning and partly because the enzymatic activity of STK11 might be
easier to predict computationally compared to other biochemical effects/genes. The latter can be
justified by the observation that the improvement in the performance for STK11 is also observed for
well-characterized tools such as MutPred2, Evolutionary Action, and PolyPhen-2; see NAGLU and
PTEN challenge results in The Critical Assessment of Genome Interpretation Consortium (2024).

The top-ranking submitted method, 3Cnet, performed competitively with REVEL, the best-
performing method overall. Interestingly, 3Cnet, based on modern deep learning approaches and
LSTM architecture, with innovative use of simulated variants, is a simpler predictor compared to
REVEL, a meta predictor that combines 13 other predictors in an ensemble.

The predictors were consistent on some LoF variants while differed on other LoF variants. All
predictors fail to predict the effect of p.H202R (LoF) on p53’s transcriptional activity, as measured
by the luciferase assay. There is evidence suggesting that p.H202R might only affect STK11’s ability
to bind with p53 and not its ability to function as a kinase; see Sec. 6.4. It is likely that the
tools are well correlated with STK11’s kinase activity overall but fail to capture the p.H202R’s role
in binding p53. Our variant classification analysis remained inconclusive towards establishing the
pathogenicity/benignity of p.H202R.

A unique feature of the STK11 challenge was the presence of multiple biological and technical
replicates in the data generation process, compared to similar CAGI challenges where only technical
replicates were available (The Critical Assessment of Genome Interpretation Consortium, 2024). We
incorporated the replicates in an Experimental-Max predictor to quantify assay consistency and
derive an upper bound to the predictive performance. The assay demonstrated medium consistency
on the correlation metrics and high consistency on AUC. Multiple models reached AUC levels close to
the maximum achievable AUC from Experimental-Max. REVEL also reached close to the maximum
performance on Pearson’s corr. and Kendall’s Tau. The STK11 challenge is the first instance in CAGI
to demonstrate that the computational tools could separate LoFs from WT-like variants and predict
enzyme activity at a precision comparable to the assay, although a larger set of variants and more
replicates are necessary to investigate this hypothesis thoroughly.

Our variant classification analysis justified clinical actionability on 16 variants (6 LP and 10 LB)
that were previously had uncertain significance. This further highlights the importance functional
studies and computational tools for improved variant classification when other types of evidence such
as segregation data and prevalence in patients are not available or give inconclusive results.
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Table 4: Table listing each predictor, its main reference if available, types of features utilized, and
sources of training data.

Method

name

Reference PolyPhen,

SIFT,

Provean

Based

Features

Structure

Based

Features

PSSM,

MSA

Based

Features

ML Method Training

Database

3Cnet Won et al
(2021)

No Yes Yes Neural Network,
Random Forests

ClinVar,
gnomAD,
UniRef

Evolutionary
Action

Katsonis and
Lichtarge
(2014)

No No Yes NA NA

Protein
language
model

Sun and
Shen (2023)

No No No BERT-based
masked language
modeling

Pfam-rp15,
UniProt

Bologna
Biocom-
puting

Savojardo
et al (2016),
Manfredi
et al (2021)

No INPS3D:
Yes;
DeepREx:
No

Yes INPS3D:
Support Vector
Regression;
DeepREx: Stack
of LSTM layers

INPS3D:
S2648;
DeepREx:
PDB,
UniProt

Table 5: Table showing each predictor and individuals involved in developing or submitting to the
STK11 CAGI Challenge.

Team Members

3Cnet

Kyoungyeul Lee
Junwoo Woo
Dong-wook Kim
Changwon Keum

Evolutionary Action
Panagiotis Katsonis
Olivier Lichtarge

Protein language model
Yang Shen
Yuanfei Sun

Bologna biocomputing

Giulia Babbi
Rita Casadio
Pier Luigi Martelli
Castrense Savojardo
Matteo Manfredi
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Supplementary information

File S1. AUC of the participant models and baseline predictors on the gel shift assay.
File S2. A zip file containing spreadsheets for 1) raw assay output with replicates, 2) all participant
teams’ model predictions, 3) baseline models from publicly available tools. Additional documents
provided by the participant teams, describing their models, are also included.
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