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Abstract
Psychological stress during pregnancy is known to have a range of long-lasting negative consequences
on the development and health of offspring. Here, we tested whether a measure of prenatal early-life
stress was associated with a biomarker of physiological development at birth, namely epigenetic
gestational age, using foetal cord-blood DNA-methylation data.

Longitudinal cohorts from the Netherlands (Generation R Study [Generation R], n = 1,396), the UK (British
Avon Longitudinal Study of Parents and Children [ALSPAC], n = 642), and Norway (Mother, Father and
Child Cohort Study [MoBa], n1 = 1,212 and n2 = 678) provided data on prenatal maternal stress and
genome-wide DNA methylation from cord blood and were meta-analysed (pooled n = 3,928). Measures
of epigenetic age acceleration were calculated using three different gestational epigenetic clocks:
“Bohlin”, “EPIC overlap” and “Knight”.

Prenatal stress exposure, examined as an overall cumulative score, was not signi�cantly associated with
epigenetically-estimated gestational age acceleration or deceleration in any of the clocks, based on the
results of the pooled meta-analysis or those of the individual cohorts. No signi�cant associations were
identi�ed with speci�c domains of prenatal stress exposure, including negative life events, contextual
(socio-economic) stressors, parental risks (e.g., maternal psychopathology) and interpersonal risks (e.g.,
family con�ict). Further, no signi�cant associations were identi�ed when analyses were strati�ed by sex.
Overall, we �nd little support that prenatal psychosocial stress is associated with variation in epigenetic
age at birth within the general paediatric population.

Introduction
Prenatal exposure to maternal stress is associated with increased risk for child emotional and
behavioural symptoms as well as poor mental (e.g., anxiety and depression [1]) and physical (e.g.,
cardiovascular and metabolic disease [2–4]) health outcomes in adulthood. One proposed pathway
through which exposure to stressors and resultant stress hormones could increase risk for this wide
range of health problems is the foetal programming of adult disease [5]. First characterized by Barker [6],
it is thought to occur through exposure of the foetus to a less than-optimal in-utero environment that
may alter the timing and rate of growth and development, resulting in accelerated biological aging; a
concept based on life history theory [7].

Evidence for accelerated biological aging following prenatal stress has been found across a variety of
metrics. For example, prenatal stress is associated with earlier pubertal timing [8] and accelerated
cellular aging re�ected by shorter telomere length [9]. Neonatal neuroimaging studies support a speci�c
contribution of prenatal maternal distress to infant neurodevelopment [10], with studies �nding impacts
on amygdala-PFC functional connectivity [11] and cortical thinning across development [12].

More recently, gestational epigenetic clocks have been developed that measure patterns of DNA
methylation (DNAm) in neonatal tissues to compute measures of gestational age. Calculating the



Page 4/21

difference between epigenetically-estimated gestational age and clinically-estimated gestational age can
give a measure of gestational epigenetic age acceleration or deceleration. This can serve as a surrogate
indicator of the pace of physiological development of a neonate, with higher epigenetic age acceleration
values potentially indicating more developmental maturity in neonates [13]. For example, epigenetic age
acceleration or deceleration in neonates has been associated with numerous prenatal factors such as
maternal pre-pregnancy obesity and cardiometabolic factors [14] maternal smoking [15] and maternal
age [16], as well as infant outcomes, such as birth weight, birth length, and head circumference [17].

Numerous studies have found associations between psychosocial stress and accelerated epigenetic
aging across the lifespan (for a review, see [18]). For example, an accelerated epigenetic age has been
found in blood from adults with an increased lifetime stress exposure [19] and in mothers exposed to
stress a year before pregnancy [20] or mothers who experienced trauma [21]. Studies have also shown
associations between accelerated epigenetic agen and stress during childhood and postnatal early life,
while exposure to adverse childhood experiences were reported to be associated with accelerated
epigenetic age in middle-aged adults [22]. Such accelerated epigenetic aging has been further linked to
negative mental and physical health outcomes [23]. For example, one study found that children
diagnosed with an internalizing disorder who also had experienced maltreatment showed an accelerated
epigenetic age compared to children with no internalizing disorder [24]; however the the association was
moderated by the degree of malnutrition.

Together, these studies consistently point to an association between postnatal stress exposure and
accelerated epigenetic age at various developmental and life stages. However, the picture is less clear
when investigating the effects of prenatal stress exposure on epigenetic age, with both negative and
positive associations reported in the literature. For example, Suarez et al. reported a signi�cant
association between prenatal maternal depression and lower gestational epigenetic age acceleration at
birth, which was in turn associated with developmental problems in boys [25]. Similarly, studies by Koen
et al. [26] in 271 newborns and Katrilini et al. [20] in 89 new-borns both found lower gestational
epigenetic age in those from mothers who displayed symptoms of PTSD during pregnancy, suggesting
possible delayed foetal development [20]. In contrast, a study in Brazil in 83 newborns found an
association between gestational epigenetic age acceleration and maternal negative feelings related to
pregnancy, though this was not associated with any other psychosocial variables. They further found
that gestational epigenetic age acceleration could be predicted by epigenetic scores of low-grade
in�ammation and glucocorticoid exposure [27]. A study in the Democratic Republic of Congo, on 141
newborns, also found that those prenatally exposed to general trauma and war trauma displayed
epigenetic age acceleration at birth. However, they did not use gestational age-speci�c clocks [21].
Finally, prenatal maternal anxiety was found to predict accelerated epigenetic aging across infancy and
mid-childhood in two independent cohorts with increased sensitivity in males [28].

In summary, several studies have reported a link between prenatal stress exposure and epigenetic age at
birth, supporting its potential role as a biomarker and mechanism linking stress exposure with poor
physiological, neurodevelopmental and health outcomes later in life. However, the direction of
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associations and the implications for health outcomes have been largely inconsistent. This could be due
to a number of factors, including differences in the type of exposure examined (e.g., maternal
depression, anxiety, trauma), epigenetic clock used, and sample characteristics (e.g., community-based
vs high-risk samples). Furthermore, studies have been mainly based on single datasets of modest
sample size, limiting statistical power and the ability to identify robust, generalizable �ndings. Overall,
little is known about how different types of prenatal stress exposures cumulatively and independently
associate with differences in offspring gestational epigenetic age at birth in the general population, and
whether associations differ by offspring sex.

To address these questions, we pooled data from 3928 mother-offspring dyads from three independent
European prospective population-based birth cohorts. We created comparable composite scores of
prenatal stress across the cohorts, comprised of multiple stress domains (negative life events,
contextual risks, parental risks, and interpersonal risks), which enabled us to examine both the
cumulative and independent effects of different prenatal stressors on epigenetic gestational age. To
maximize comparability with the existing literature and enable a comprehensive evaluation of stress-
epigenetic age associations, we calculated epigenetic age estimates using three different clocks that
have been developed for use with neonatal cord blood, namely “Knight” [29], “Bohlin” [30] and “EPIC
overlap” [31]. For each of these, we measured both epigenetic estimates of gestational age, as well as
gestational age deceleration or acceleration (i.e., the difference between chronological and epigenetic
age). Cohort-speci�c results were meta-analysed to increase statistical power and identify robust
associations. Finally, we repeated analyses strati�ed by offspring sex, to establish whether prenatal
stress may be associated with epigenetic gestational age estimates differently for boys and girls.

Methods

Study cohorts
The analyses in this study were conducted using data from three prospective population-based cohorts:
the Dutch Generation R Study (Generation R) [32], the British Avon Longitudinal Study of Parents and
Children (ALSPAC) [33, 34], and the Norwegian Mother, Father, and Child Cohort Study (MoBa) [35]. In
total, this study included pooled results from 3,928 children.

Generation R. Pregnant women residing in the study area of Rotterdam, the Netherlands, expected to
deliver between April 2002 and January 2006, were invited to enrol in the Generation R Study [36]. The
study was conducted in accordance with the World Medical Association Declaration of Helsinki and has
been approved by the Medical Ethics Committee of Erasmus MC, University Medical Center Rotterdam
(MEC 198.782/2001/31). Informed consent was obtained from all participants. The Generation R Study
includes data from 9,749 live-born children. DNAm data at birth are available for 1,396 children who also
had at least 50 per cent of items included in the prenatal stress measure.
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MoBa. Participants include mothers and their children, residing in Norway with an expectation to deliver
between 1999 and 2008; the participation rate among the mothers was 41% and from 2003, the fathers
were also included [37, 38]. Ethical approval for the MoBa study was obtained from the Regional
Committees for Medical and Health Research Ethics (REK- 2009/1899-7), and the current sub-study
(REK: 2020/185800). The MoBa cohort includes approximately 114,500 children, 95,200 mothers and
75,200 fathers. The current study is based on version 12 of the quality-assured data �les released for
research in 2020 and comprises different subsamples with DNAm data. In our analysis, we only included
subsamples that (i) comprised randomly selected participants and (ii) have not been previously used to
develop the epigenetic clocks used in this study (i.e., the Bohlin clock has been trained on MoBa 1 data).
Based on this selection, we included the MoBa 1 subsample with DNAm data from 1,212 children and
MoBa 2 with data from 678 children (see Supplementary Methods).

ALSPAC. Pregnant women residing in the study area of the former county Avon in the United Kingdom
with an expected delivery date between April 1991 and December 1992 were invited to enroll in ALSPAC
[39]. Ethical approval for the ALSPAC study was obtained from the ALSPAC Ethics and Law Committee
and the Local Research Ethics Committees. The ALSPAC study includes data from 14,541 live-born
children. DNAm data at birth was available for 642 children who also had at least 50% of stress
measures for the prenatal period. Study data were collected and managed using REDCap electronic data
capture tools hosted at the University of Bristol, UK. REDCap (Research Electronic Data Capture) is a
secure, web-based software platform designed to support data capture for research studies [40]. Please
note that the study website contains details of all the available data through a fully searchable data
dictionary and variable search tool" at the following webpage:
http://www.bristol.ac.uk/alspac/researchers/our-data/

Prenatal psychosocial stress assessment
A cumulative prenatal stress score was created based on our previous work [41]. The score consists of
the following domains: (i) life events (e.g., death of a parent or pregnancy complications), (ii) contextual
risk (e.g., �nancial di�culties or neighbourhood problems), (iii) parental risk (e.g., parental criminal
record or parental psychopathology), and (iv) interpersonal risk (e.g., family con�icts or loss of a friend).
Relevant items were dichotomized into ‘risk’ (1) or ‘no risk’ (0) and the mean averaged to form the scores
for each domain. The cumulative score for prenatal stress was then computed by summing its
respective domain scores. Both the cumulative score and its four individual stress domains have been
harmonized across all three cohorts included in the present study. Further details of included items and
the time points at which they were collected in Generation R and ALSPAC can be found here:
https://github.com/SereDef/cumulative-ELS-score; for MoBa
(https://www.fhi.no/en/ch/studies/moba/for-forskere-artikler/questionnaires-from-moba/), and a
detailed description in see [42].

DNA methylation
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In all cohorts, cord blood was drawn at birth and 500 ng of DNA were bisulphite converted using the EZ-
96 DNA Methylation kit (Zymo Research Corporation, Irvine, USA). The Generation R and ALSPAC
samples were processed with the Illumina In�nium HumanMethylation450 BeadChip, whereas the MoBa
samples were processed with either HumanMethylation450 BeadChip (MoBa 2) or Illumina
MethylationEPIC 850K array (Illumina Inc., San Diego, CA). Detailed control steps and normalization
procedures have been described previously [43–46]. In short, in Generation R, the CPACOR work�ow was
used for quality control and normalization [46]. Arrays with observed technical problems such as failed
bisulphite conversion, hybridization, or extension as well as arrays with a sex mismatch were removed.
Probes that had a detection p-value above background ≥ 1E-16 were set to missing per array. Arrays with
a call rate > 95% per sample were included and quantile normalized (as described previously [43]). In
ALSPAC, the me�l package [47] was used for quality control. Samples with mismatched genotypes,
mismatched sex, incorrect relatedness, low concordance with samples collected at other time points,
extreme dye bias, and poor probe detection were removed and carried forward into normalization. In
MoBa, all duplicates were removed and arrays not ful�lling the 5 % detection p valu were excluded [48].
Within-array normalization of type I and II probes was performed using BMIQ from the R package
watermelon [49]. Detailed pre-processing steps have been published previously [44, 45].

Age estimates
Gestational age at birth was assessed from midwife or obstetric records. Gestational epigenetic clocks
make use of a select number of CpG sites that are strongly correlated with gestational age at birth. The
gestational epigenetic clock developed by Bohlin et al. [30] estimates epigenetic age based on DNAm
levels at 96 CpG sites from the HumanMethylation450 BeadChip that were selected using Lasso
regression and the predictions were tested in an independent sample. The epigenetic clock developed by
Knight et al. [29] estimates epigenetic age at birth based on DNAm levels at 148 CpG sites from the
HumanMethylation450 BeadChip and the HumanMethylation27 BeadChip that were selected using
elastic net regression and the predictions tested in holdout samples. The EPIC overlap clock developed
by Haftorn et al. [31] is based on CpGs that can be found both on HumanMethylation450 BeadChip array
and on the Illumina MethylationEPIC 850K array. It estimates epigenetic gestational age based on 173
CpG sites that were selected using Lasso regression and the predictions tested in holdout samples. The
methylclock package in R 4.1.1 was used to calculate gestational epigenetic age measures and to
impute missing values if less than 20% were missing based on the Bohlin, Knight and EPIC overlap
clocks. We adjusted the package to also calculate the EPIC overlap clock, as this clock had not yet been
implemented in the methylclock package at the time of conducting this study. For each clock, we
computed the epigenetically-estimated age and adjusted for clinically-estimated gestational age at birth
in each model to optimally account for the correlation between (i) epigenetic gestational age estimates
and gestational age and (ii) gestational age and other covariates included in each model.

Covariates
Covariates included in the primary analysis were sex, gestational age at birth, cell-type proportions, and
batch effects. Maternal prenatal smoking, maternal alcohol consumption, maternal pre-pregnancy BMI,
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delivery method, maternal age at delivery, and parity were included in an extended model. The birth
weight of the child was included in a third model in addition to the extended model covariates as it may
be part of the causal pathway. Missing covariates were imputed using the Multivariate Imputations by
Chained Equations “mice” package in R. Self-administered questionnaires completed by the mothers
during pregnancy were used to obtain information on maternal covariates and information on child sex,
and birth weight was obtained from midwife and hospital records. Cell-type proportions were estimated
using a cord blood-speci�c reference set in the “FlowSorted.CordBlood.Combined.450k” Bioconductor
package [50]. This reference set includes CD8 + T cells, CD4 + T cells, natural killer cells, B cells,
monocytes, granulocytes, and nucleated red blood cells.

Statistical analyses
The association of prenatal stress exposure with epigenetic clock estimates at birth was tested within
each cohort using robust linear regression models (rlm package) in R version 4.1.1. We computed the
following models with epigenetic clock estimates as an outcome and (i) total prenatal stress score or (ii)
the separate prenatal stress subdomains modelled together as exposures, to estimate their independent
effect. We also computed the models mentioned above separately for boys and girls to investigate
potential sex-speci�c associations. Analyses were run with a core set of covariates, and with an
extended set of covariates, as described above. Missing data on covariates and the prenatal stress score
were imputed using multiple imputations, with the mice package. Subdomains and the total ELS score
were not imputed directly. Instead, separate items pertaining to each subdomain were imputed
separately �rst, then subdomain scores and �nally the total ELS score was calculated. Model parameters
in each imputed dataset (out of 30 datasets) were �tted and then pooled according to Rubin’s rulesv[51].
Cohort-speci�c results for each epigenetic clock were meta-analysed using the rma.uni function of the
metafor package using a �xed-effects model and inverse-variance weighting.

Results
Subject characteristics 

Table 1 shows maternal and child characteristics based on non-imputed data for each cohort. There was
no substantial difference in sample characteristics in terms of descriptive statistics between the
imputed and non-imputed datasets.

Associations between clinically-estimated and epigenetically-estimated gestational age  

The correlation between clinical and epigenetic measures of gestational age was high across cohorts for
the Bohlin clock (rGenR = 0.70; rMoba = 0.74; rMoBa2 = 0.72; and rALSPAC = 0.61), as well as for the EPIC
overlap clock (rGenR = 0.71; rMoba = 0.74; rMoBa2 = 0.72; and rALSPAC = 0.58), whereas it was moderate for

the Knight clock (rGenR = 0.46; rMoba = 0.57; rMoBa2 = 0.54; and rALSPAC = 0.33). A full overview of the
performance of the Bohlin, EPIC overlap, and Knight gestational age clocks can be found in
Supplementary Table S1 and Supplementary Figures 1 and 2.  
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Associations between prenatal stress and epigenetic age estimates 

Results from the meta-analysis showed that total prenatal stress was not signi�cantly associated with
epigenetic gestational age or measures of epigenetic age acceleration, as estimated by the Bohlin, EPIC
overlap, or the Knight clock, all of which produced non-signi�cant results. When testing for speci�c
prenatal stress domains, namely life events, contextual risk, parental risk, and interpersonal risk, we
again found no signi�cant independent associations with any of the epigenetic age estimates or clocks.
The results of the main model can be found in Table 2 and results of the extended models, which also
indicated no signi�cant associations, can be found in Supplementary Table S1. Cohort-speci�c results of
just the Bohlin clock can be found in Supplementary Table S3. These are representative of the EPIC
overlap clock and the Knight clock which also showed low correlations.

Associations between prenatal stress and epigenetic gestational age estimates strati�ed by offspring
sex

When stratifying analyses by sex, the same patterns were observed, with no associations of total
prenatal stress, or any individual prenatal stress domain, with epigenetic clock estimates of gestational
age in either boys or girls. The results of the main model can be found in Table 3 and results of the
extended models can be found in Supplementary Table S4. Cohort-speci�c results of just the Bohlin
clock strati�ed by sex can be found in Supplementary Table S5. These are again representative of the
EPIC overlap clock and the Knight clock which also showed low correlations.

Discussion
In this study, we pooled data from 3928 mother-offspring dyads from three prospective population-based
cohorts and examined whether in-utero exposure to maternal psychosocial stress was associated with
variation in offspring epigenetic gestational age at birth. We used comprehensive, harmonized measures
of prenatal stress across cohorts, which enabled us to examine both the cumulative and independent
effects of different stress domains. We also derived epigenetic gestational age estimates from three
different clocks based on cord-blood DNAm pro�les. The detailed information collected within the
cohorts also allowed us to control for potential confounders including maternal pre-pregnancy BMI,
prenatal smoking and alcohol consumption, highest education level attained and income, age at delivery,
method of delivery and parity. The results of our meta-analysis indicate no statistically signi�cant
evidence of associations – a pattern that was consistent also within individual cohorts, across measures
of prenatal stress, across different epigenetic clocks (Bohlin, Knight, EPIC-overlap), and when stratifying
analyses based on offspring sex. Overall, our �ndings do not support a link between prenatal stress
exposure and gestational epigenetic age (or age acceleration/deceleration) at birth in the general
paediatric population.

These �ndings differ from previously published studies reporting a link between prenatal stress and
either gestational epigenetic age deceleration 26, 25, 19 or acceleration [27] [21] [52]. Several factors may
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explain these discrepancies. First, unlike previous studies that have focused on single exposures
(primarily maternal psychiatric symptoms), we used a broad measure of prenatal psychosocial stress,
comprising a range of different exposures. Our rationale was that maternal psychiatric symptoms tend
to co-occur with other stressors, which together cumulatively affect offspring health [53] and may partly
exert their in�uence through shared biological pathways, including epigenetic programming. By using a
cumulative score, however, any exposure-speci�c associations with gestational epigenetic clocks may
have been obscured. To address this possibility, we also modelled different stress domains concurrently
as predictors but did not observe any independent associations with epigenetic clock estimates.
Although not statistically signi�cant, it is worth noting that the direction of associations differed
depending on the stress domain examined, with the parental risk domain (containing maternal
psychopathology) showing consistent positive associations with epigenetic gestational age estimates
across the different clocks, and the contextual risk domain (relating to socioeconomic stressors)
showing consistent negative associations. Taken together, these results suggest that while pronounced
stressor-speci�c effects are unlikely, subtle variations in associations with epigenetic gestational age
estimates may exist and warrant further investigation.

A second reason for the observed discrepancies could be due to differences in the study samples. While
we examined general population cohorts, where the prevalence of severe prenatal stress exposure is
relatively low and most offspring are delivered at-term, previous studies have been primarily based on
(single) selected, high-risk samples[54–58]. As such, we may not have been able to capture associations
between prenatal stress and epigenetic clock estimates at birth, if these are evident only in premature
children or at more severe ends of stress exposure. At the same time, our approach, involving - with
stringent covariate adjustment, may have helped to reduce the likelihood of false positives. Furthermore,
while our study included mother-child dyads of European descent, previous studies have been more
varied, including samples from African, Hispanic, and South American populations. Current epigenetic
gestational age clocks have been primarily developed using White individuals from Western Europe, and
it is unclear whether they perform similarly across different ancestries. In the future, larger multi-cohort
meta-analyses will be needed to detect subtle associations with greater power, enable the investigation
of stressor-speci�c effects (while accounting for co-occurring stressors) and establish whether effects
may vary according to sample characteristics, such as exposure severity and ancestry.

The statistically nonsigni�cant results reported herein do not detract from the important role of prenatal
stress on development and health. Furthermore, the lack of associations with epigenetic gestational age
clocks does not preclude the possibility that epigenetic patterns may still be involved as biological
markers (and potentially mediators) of prenatal stress effects on foetal development. First, similar to
�rst-generation epigenetic clocks used in adults, current gestational age clocks have been trained to
predict chronological age and not biological aging per se – which may be more sensitive to prenatal
stress. In the future, researchers may follow in the footsteps of second and third-generation adult clocks,
which are trained to predict age-related phenotypes or the pace of aging (based on longitudinal aging
markers), in order to build new gestational age clocks that are trained using early developmental
phenotypes rather than chronological age. These could be tested whether these may associate more
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clearly to in utero environmental exposures. Second, prenatal stress may be associated with epigenetic
changes at loci that are not included within gestational clocks. Indeed, several studies have reported
associations between prenatal stressors and DNAm patterns in cord blood (for a review, see [59]).
However, these �ndings also lack consistency; for example, a large meta-analysis of 12 independent
studies of the Pregnancy And Childhood Epigenetics (PACE) consortium recently found no robust
associations between prenatal maternal anxiety and DNAm in cord blood [60]. Finally, it is possible that,
rather than relating to DNAm in cord blood, prenatal stress exposure associates with DNAm patterns in
different tissues such as the brain, which is not accessible in vivo. Furthermore, epigenetic mechanisms
other than DNAm, such as microRNAs or histone modi�cations (11,17)), which are also important – but
currently under-researched – are also potential mediators of (prenatal) environmental effects on
offspring health. 51

Our �ndings should be interpreted in the context of several limitations. First, as mentioned previously, the
cohorts included in our study predominantly comprise White individuals from Western Europe and, as
general population samples, they do not include high numbers of participants with psychiatric disorders
or exposure to severe trauma/stress. Most participants also had a high socioeconomic status and
education level. Therefore, these results could have limited generalizability to other populations,
contexts, or more severe exposures – which is particularly relevant as many of the previous studies have
focussed on high-risk groups of non-European descent. Second, while we carefully harmonized our
cumulative measure of prenatal stress, the complexity and breadth of the measure (including a wide
range of items clustered into distinct risk domains) meant that it was not identical between cohorts,
showing slight variations in the tools used and the timing of measurements. Despite this, results were
highly consistent across cohorts and there was little evidence of heterogeneity based on the results of
the meta-analysis, suggesting that this is unlikely to explain null �ndings. Third, and relatedly, we relied
on maternal self-reported measures of stressful exposures, as opposed to objectively assessed markers
of physiological stress. Although our measure of prenatal stress has been previously shown to associate
robustly with neurocognitive, psychiatric and physical health outcomes in offspring[53, 61] we cannot
ascertain the extent to which this measure captures foetal exposure to stress. A third limitation of our
study is related to the speci�c populations on which the epigenetic clocks were trained. For example, the
Knight clock was developed using data from very premature infants, which may affect its accuracy and
predictive capability in our general population samples, of primarily at-term children, as evidenced by the
modest correlations with gestational age observed. However, no associations between prenatal stress
and epigenetic age were identi�ed across three different epigenetic gestational age clocks, suggesting
that our results are not likely to be unduly in�uenced by the speci�c training features of each clock.

In summary, our �ndings indicate that maternal prenatal psychosocial stress exposure is not
signi�cantly associated with epigenetic gestational age or the extent to which it deviates from
chronological gestational age. This suggests that the impact of prenatal maternal stress on
developmental processes, as measured by current epigenetic gestational age clocks, might be less
pronounced than previously thought, particularly within the general population where the prevalence of
severe exposures is relatively low. Alternatively, the existing epigenetic gestational clocks may not be
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sensitive enough to capture subtle changes induced by in utero stress exposure. The study's large-scale
and comprehensive approach strengthens the reliability of these conclusions, advancing our
understanding of the complex relationship between early-life stress and development.
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Tables
Table 1. Participant characteristics per cohort
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Maternal characteristics Generation
R

MoBa 1 MoBa 2 ALSPAC

N = 1,3961 N = 12121 N = 6781 N = 6421

Age, years 32.2 (4.2) 30 (4.0) 30 (4.0) 29.9 (4.3)

Educational level        

No or primary 26 (1.9%) 40 (4.9%) 54 (8.1%) <5 (<5%)3

Secondary 452 (33%) 207 (25%) 223 (33%) 542 (79%)

Higher 898 (65%) 576 (70%) 389 (58%) 146 (21%)

Parity        

Nulliparous 845 (61%) 567 (47%) 276 (41%) 301 (47%)

Multiparous 549 (39%) 645 (53%) 402 (59%) 336 (53%)

Pre-pregnancy body mass index 23.2 (3.8) 24.0 (4.3) 24.2 (4.5) 22.7 (3.4)

Mode of delivery         

Vaginal delivery spontaneous 1,025 (78%) 945 (78%) 521 (77%) 228 (57%)

Vaginal delivery induced 157 (12%) 133 (11%) 64 (9.5%) 5 (1%)

Caesarean section, elective 48 (3.7%) 43 (3.5%) 40 (5.9%) <5 (<5%)3

Caesarean section, urgent 82 (6.2%) 91 (7.5%) 52 (7.7%) <5 (<5%)3

Caesarean section, unspeci�ed 0 (0%) 0 (0%) 0 (0%) 64 (16%)

Other 0 (0%) 0 (0%) 0 (0%) 101 (26%)2

Smoking        

Never smoked during pregnancy 969 (76%) 920 (76%) 500 (75%) 375 (63%)

Smoked until pregnancy was known 127 (9.9%) 182 (15%) 90 (13%) 159 (26%)

Continued smoking during pregnancy 184 (14%) 109 (9.0%) 80 (12%) 65 (11%)

Alcohol        

Never drank alcohol during pregnancy 370 (29%) 786 (66%) 345 (60%) 190 (30%)

Drank alcohol until pregnancy was known 196 (15%) 173 (15%) 77 (13%) 81 (13%)

Continued drinking alcohol during
pregnancy

704 (55%) 227 (19%) 151 (26%) 359 (57%)

Child characteristics        
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Sex        

Boy 708 (51%) 584 (48%) 385 (57%) 323 (50%)

Girl 688 (49%) 628 (52%) 293 (43%) 319 (50%)

Birth weight, gram 3,544 (510) 3,617
(551)

3,661
(535)

3,475
(491)

Clinically-estimated GA at birth, weeks 40.14 (1.5) 39.94 (1.9) 39.90 (1.6) 39.50 (1.6)

DNAm GA estimate, weeks        

   Bohlin clock 39.29 (1.0) 41.02
(1..1)

40.42 (1.2) 39.50 (1.1)

EPIC overlap clock 39.47 (1.1) 40.14 (1.1) 39.71 (1.2) 39.71 (1.2)

Knight clock 36.32 (1.8) 41.23 (1.5) 39.37 (1.8) 38.30 (2.1)

Prenatal stress        

Total prenatal stress 0.3 (0.3) 0.7 (0.4) 0.8 (0.5) <5 (<5%)3

Life events 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) <5 (<5%)3

Contextual risk 0.2 (0.2) 0.3 (0.2) 0.4 (0.3) <5 (<5%)3

Parental risk 0.0 (0.1) 0.2 (0.2) 0.2 (0.2) <5 (<5%)3

Interpersonal risk 0.1 (0.1) 0.1 (0.1) 0.1 (0.1) <5 (<5%)3

1 Mean (SD); n (%); some data will not amount to total N due to missing values

2  In ALSPAC, delivery mode ‘other’ refers to forceps or vacuum extraction and assisted breech.

3 This may include zero. 

Table 2. Meta-analysis results by epigenetic clock adjusted for clinically-assessed gestational age. 



Page 20/21

Epigenetic clock Bohlin EPIC overlap Knight

Prenatal stress Beta (95% CI) P
value

Beta (95% CI) P
value

Beta (95% CI) P
value

Total prenatal
stress

0.01 (-0.04,
0.06)

0.78 -0.01 (-0.07,
0.05)

0.75 -0.01 (-0.11,
0.09)

0.85

Life events 0.15 (-0.06,
0.35)

0.17 0.00 (-0.25,
0.24)

0.97 0.01 (-0.40,
0.42)

0.97

Contextual risk -0.04 (-0.13,
0.04)

0.32 -0.05 (-0.15,
0.04)

0.26 -0.04 (-0.19,
0.11)

0.63

Parental risk 0.08 (-0.06,
0.22)

0.25 0.13 (-0.03,
0.28)

0.12 0.21 (-0.04,
0.46)

0.10

Interpersonal risk -0.05 (-0.29,
0.18)

0.65 0.01 (-0.27,
0.29)

0.94 -0.28 (-0.75,
0.19)

0.24

Covariates included in the main model were child sex, cell-type proportions, and batch effects.

Table 3. Meta-analysis results of prenatal stress associations with epigenetic age estimate adjusted for
clinically-estimated gestational age strati�ed by sex. 
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Epigenetic clock Bohlin EPIC overlap Knight

Prenatal stress Beta (95% CI) P
value

Beta (95% CI) P
value

Beta (95% CI) P
value

Total prenatal
stress

           

  Boys 0.02 (-0.05,
0.09)

0.64 -0.03 (-0.12,
0.05)

0.42 0.02 (-0.11,
0.15)

0.74

  Girls -0.01 (-0.09,
0.06)

0.78 0.01 (-0.07,
0.09)

0.83 -0.04 (-0.18,
0.10)

0.59

Life events            

  Boys 0.06 (-0.24,
0.36)

0.70 -0.14 (-0.49,
0.21)

0.44 0.02 (-0.55,
0.60)

0.94

  Girls 0.15 (-0.15,
0.45)

0.33 0.13 (-0.22,
0.47)

0.47 -0.07 (-0.66,
0.52)

0.81

Contextual risk            

  Boys -0.02 (-0.14,
0.10)

0.76 -0.05 (-0.15,
0.04)

0.26 0.05 (-0.17,
0.26)

0.68

  Girls -0.07 (-0.19,
0.05)

0.24 -0.08 (-0.22,
0.05)

0.23 -0.10 (-0.32,
0.12)

0.39

Parental risk            

  Boys 0.10 (-0.11,
0.31)

0.34 0.11 (-0.12,
0.34)

0.34 0.22 (-0.14,
0.57)

0.24

  Girls 0.08 (-0.12,
0.29)

0.43 0.14 (-0.08,
0.36)

0.21 0.17 (-0.20,
0.53)

0.37

Interpersonal risk            

  Boys -0.12 (-0.46,
0.22)

0.50 0.00 (-0.39,
0.39)

0.99 -0.22 (-0.88,
0.43)

0.51

  Girls -0.02 (-0.36,
0.33)

0.92 -0.09 (-0.51,
0.33)

0.67 -0.26 (-0.98,
0.46)

0.47

Covariates included in the main model were cell-type proportions and batch effects.
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