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Abstract
Cerebral small vessel disease (cSVD) is a leading cause of stroke and dementia with no speci�c
mechanism-based treatment. We used Mendelian randomization to combine a unique cerebrospinal �uid
(CSF) and plasma pQTL resource with the latest European-ancestry GWAS of MRI-markers of cSVD
(white matter hyperintensities, perivascular spaces). We describe a new biological �ngerprint of 49
protein-cSVD associations, predominantly in the CSF. We implemented a multipronged follow-up, across
�uids, platforms, and ancestries (Europeans and East-Asian), including testing associations of direct
plasma protein measurements with MRI-cSVD. We highlight 16 proteins robustly associated in both CSF
and plasma, with 24/4 proteins identi�ed in CSF/plasma only. cSVD-proteins were enriched in
extracellular matrix and immune response pathways, and in genes enriched in microglia and speci�c
microglial states (integration with single-nucleus RNA sequencing). Immune-related proteins were
associated with MRI-cSVD already at age twenty. Half of cSVD-proteins were associated with stroke,
dementia, or both, and seven cSVD-proteins are targets for known drugs (used for other indications in
directions compatible with bene�cial therapeutic effects. This �rst cSVD proteogenomic signature opens
new avenues for biomarker and therapeutic developments.

Introduction
Characterized by changes in the structure and function of small brain vessels, cerebral small vessel
disease (cSVD) is a leading cause of ischemic and hemorrhagic stroke, cognitive decline and dementia.
cSVD is extremely common with increasing age and most often covert, namely detectable on brain
imaging in the absence of clinical symptoms. Covert cSVD portends a considerably increased risk of
stroke and dementia, thus represents a major target to prevent these disabling conditions and promote
healthier brain aging1. The most common and heritable MRI-markers of cSVD (MRI-cSVD) are white

matter hyperintensities of presumed vascular origin (WMH) and perivascular spaces (PVS)2.

Hypertension is the strongest known risk factor for cSVD, representing a major target for prevention1.
However, vascular risk factors explain only a small fraction of MRI-cSVD variability in older age3, and
drugs speci�cally targeting pathological processes underlying cSVD are lacking. Genomics can provide a
strong foundation for mechanistic studies and drug target discovery4. Recent genetic studies have
identi�ed > 70 genetic risk loci associated with cSVD5,6; however, causal genes and underlying molecular
pathways remain poorly understood.

As disease occurrence re�ects the complex interplay of factors beyond DNA sequence, there is growing
interest in identifying circulating biomarkers, such as proteins, capturing these downstream factors, to
enhance our understanding of the underlying biology, accelerate omics-driven drug discovery, and
potentially generate circulating biomarkers for clinical use7. While large-scale proteomic investigations

have recently been conducted for stroke and dementia, with promising �ndings,7–13 studies on
proteomics of cSVD have been conducted on limited sets of proteins, in small studies of European
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ancestry (N < 5,000), and in plasma only14–18. We hypothesize that, while plasma may enable easy-
access biomarker measurements, CSF, the �uid circulating in perivascular spaces, could reveal a more
accurate biological �ngerprint of cSVD.

Here we used two-sample Mendelian randomization (2SMR), leveraging large proteomic and genomic
resources, to investigate the relation of circulating protein levels in CSF and plasma with WMH and PVS
burden and to explore its causal relation and directionality. We further used a multipronged approach for
the follow-up of identi�ed associations in independent samples, across �uids, proteomics platforms,
ancestries and the lifespan, using both 2SMR and individual-level data. We also explored the ability of
proteogenomics to predict extensive cSVD and tested the relation of cSVD-associated proteins with risk
of stroke and Alzheimer’s disease (AD). Using single-cell sequencing resources we deciphered cell-types
and pathways involved. Finally, we combined our results with pharmacological databases for
proteomics-driven drug discovery.

Results
The study design is summarized in Fig. 1.

Discovery of protein-cSVD associations
We used 2SMR to test associations of circulating CSF and plasma protein levels with MRI-cSVD. We
leveraged summary statistics of large protein quantitative trait loci (pQTL) resources in European-
ancestry participants from CSF12 (N = 3,107; aptamer-based Somascan 7k assay) and plasma19 (N = 
35,559; Somascan 5K), as well as the largest published GWAS of WMH volume (N = 48,454, mean age
66.0 years)20 and PVS burden (N up to 40,095, mean age 66.3 years)5. PVS were studied in three
sublocations, white matter (WM), basal ganglia (BG) and hippocampus (HIP), for which risk factors,
including genetic, were shown to differ5. Cis- and trans-genetic instruments could be derived for 1,121
CSF and 1,731 plasma proteins. (Methods)

Focusing our primary analyses on cis-pQTLs (Supplementary Table 1), we identi�ed 46 of 1,121 CSF
proteins associated with at least one MRI-cSVD (pFDR<0.05): 24 with WMH, and 25 with PVS (18 WM-
PVS, 4 BG-PVS, and 3 HIP-PVS, Fig. 2A-B, Supplementary Table 2–3). In parallel we identi�ed 9 of 1,731
plasma proteins associated with MRI-cSVD (pFDR<0.05): 6 with WMH and 3 with PVS (2 WM-PVS, 1 HIP-
PVS). Of these, 4 were also signi�cantly associated with MRI-cSVD in CSF (AMD, EPO [WMH], PILRA-M14
and PILRA-deltaTM [WM-PVS], Fig. 2C-D, Supplementary Tables 4–5). For pQTL with multiple
instruments (42 proteins), associations were robust to sensitivity analyses (MR-Egger, weighted median
and MR-PRESSO); for single-instrument pQTL (14 proteins), there was no evidence of colocalization for
two proteins, ACOX1 and WBP2 with PP4 < 0.7 & PP3 > 0.7, which were removed from subsequent
analyses (Supplementary Tables 3 and 5). None of the single variant pQTL were non-synonymous
variants, which could have resulted in structural changes at the aptamer protein binding site and thus
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biased its measurement (Supplementary Table 6). Bidirectional MR ruled out reverse causation, except
for an association of genetically determined larger WM-PVS burden with higher PCSK9 CSF levels
(pFDR=0.011, Supplementary Table 3). In total, 49 proteins were associated robustly with MRI-cSVD in
CSF (41), plasma (4), or both (4), including three associated with both WMH and PVS: CTSB (Cathepsin
B), a lysosomal protease involved in extracellular matrix (ECM) degradation, and two soluble isoforms
deltaTM and M14 of PILRA (Paired Immunoglobin Like Type 2 Receptor Alpha), a microglial
immunoreceptor.

In secondary analyses including both cis- and trans-pQTLs, we found 340 proteins associated with at
least one MRI-cSVD in CSF or plasma (pFDR<0.05), of which 176 were driven by two trans-hotspots at
APOE (147 proteins) and chr16q24 (29 proteins). Although most protein-cSVD associations revealed
novel pathways not previously identi�ed, some relate to previous cSVD GWAS �ndings. Two cis-pQTL
were associated with WMH volume at genome-wide signi�cance, for FBLN3 (encoded by EFEMP1) at
chr2p16 and NMT1 (NMT1) at chr17q21. Additionally, HTRA1, of which lower genetically determined
plasma levels were associated with extensive HIP-PVS, is encoded by a gene harboring both rare
mutations causing monogenic cSVD21 and common variants associated with small vessel stroke and

suggestively WMH20,22. From secondary analyses, eight trans-pQTL for 29 proteins at the chr16q24
hotspot were associated at genome-wide signi�cance with WMH. The APOE hotspot included four
proteins encoded by genes in genome-wide or gene-wide signi�cant risk loci for WMH20 and extreme-
cSVD23 (APOE, MRPL38, SULT1B1, and MSRA; Supplementary Tables 6–9, Extended Data Fig. 1).

To assess the independence of observed associations, we used LD-score regression (LDSC)24 to
quantify the genetic correlation between protein levels. Only one genetic correlation was signi�cant after
multiple testing correction (EPHB4 with PILRA-M14 in plasma at p < 5x10− 5, Methods, Extended Data
Fig. 2). Several protein-protein interactions were identi�ed using the STRING database (Fig. 2F).

Follow-up of signi�cant protein-cSVD associations
We used a multi-pronged approach to follow-up protein-cSVD associations based on cis-pQTL with
signi�cant MR results and colocalization evidence, across �uids, platforms, and ancestries (Figs. 1 and
3).

First, using 2SMR, we tested whether cSVD-proteins associations observed in CSF showed some
indication of association in plasma, and vice-versa, with a less stringent multiple testing correction than
in the discovery analysis, considering signi�cant associations in the original �uid only. Thirty-seven
cSVD-associated CSF proteins had plasma pQTL available. Nine of these (24%) were associated with the
same MRI-cSVD phenotype in plasma at pFDR<0.05 (APOE, ARSB, EPO, AMD, CTSS, PSMP with WMH,
PILRA-M14, PILRA-deltaTM, KTEL1 with WM-PVS, Methods, Fig. 3A and 6, Supplementary Table 10). Six
cSVD-associated plasma proteins had CSF cis-pQTL available. Four of these (67%) were associated with
the same MRI-cSVD phenotype in CSF at pFDR<0.05 (AMD, EPO with WMH and PILRA-M14, PILRA-
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deltaTM with WM-PVS, Fig. 3B and 6, Supplementary Table 11). Directions of association were mostly
concordant except for EPO, APOE and PSMP, which showed opposite direction of association in CSF and
plasma, in line with previous observations12 and highlighting the importance of studying multiple tissues
to capture the complexity of underlying biology.

Second, a cross-platform follow-up was performed by testing the association with MRI-cSVD of plasma
protein levels measured on the Olink Explore-3072 platform in two independent population-based
studies, 3C-Dijon (N = 1,056; mean age 72.5 years) and UK Biobank (N = 5,494; mean age 63.5 years,
Supplementary Table 12). Twenty-nine of the 49 cSVD-associated proteins (59%) were available; 26 were
used after quality control and their plasma level was tested against WMH volume and PVS burden using
linear regression followed by inverse variance weighted meta-analysis (N = 6,550). Of these, 7 proteins
(27%, all identi�ed in CSF 2SMR), showed association with the same MRI-cSVD marker at pFDR<0.05

(ARSB, PRSS8, CTSS, CTSB, TFPI and BT3A2 with WMH, IL-6 with HIP-PVS, Figs. 3 and 6, Supplementary
Tables 13–14). Directionality of association with MRI-cSVD was inconsistent between CSF pQTL and
plasma protein levels for PRSS8, TFPI, IL-6, and CTSS. Inter-platform correlations for these proteins
between Somascan and Olink were moderate to good in plasma and CSF respectively (Supplementary
Table 1525); however correlations were not available between plasma and CSF.

Third, we conducted a cross-ancestry exploratory follow-up, testing associations of MRI-cSVD with
plasma protein levels measured on the Somascan 4K platform in the Japanese population-based
Nagahama study (N = 785; mean age 68 years). Thirty-eight of the 49 cSVD-associated proteins (77%)
were available and their plasma level was tested against WMH volume and extensive PVS burden. Two
proteins (both identi�ed in CSF 2SMR in Europeans) were associated at pFDR<0.05 with the same MRI-
marker (WM-PVS), with consistent directionality (ERO1B and PCSK9); given the small sample size we
also considered nominally signi�cant associations, observed for four additional proteins, with WMH
(BT2A1, CTSB, TNC, PSMP, Figs. 3 and 6, Supplementary Table 16).

Fourth, we took an exploratory lifespan approach by testing the relation of cSVD-associated proteins
with MRI-cSVD in young adults (i-Share study, N = 1,748; mean age 22.1 years). Here we used 2SMR with
the same cis-pQTL as for discovery analyses. Consistent with �ndings in older adults, higher genetically
determined CSF levels of PILRA-M14, PILRA-deltaTM were associated with larger WMH volume at
pFDR<0.05. In addition, higher genetically determined CSF protein levels of GPNMB:CD and GPNMB:ECD
(cellular and extracellular domain of a transmembrane glycoprotein upregulated upon tissue damage
and in�ammation) and TLR1:ECD (extracellular domain of toll-like receptor 1, which plays a fundamental
role in activation of innate immunity) were associated with BG-PVS and WMH volume respectively at p < 
0.05, in a direction consistent with older adults (Fig. 3, Supplementary Table 17).

Overall, of 49 cSVD-associated proteins (Supplementary Table 18, Fig. 6), (i) 16 CSF proteins showed
associations with the same MRI-cSVD marker in plasma in at least one analysis (pQTL or direct protein
measurement) at pFDR<0.05, with consistent directionality in 63%; (ii) 24 CSF proteins were not
associated with the same MRI-marker in plasma (p ≥ 0.05) and may be considered as CSF-speci�c; (iii) 4



Page 10/47

proteins were identi�ed in plasma pQTL analyses only, with non-signi�cant follow-up in association with
direct plasma protein measurements; (iv) 5 proteins had no follow-up available apart from the lifespan
exploration; (iii) and 6 proteins had evidence for lifespan effects at p < 0.05 (2 at pFDR<0.05).

Predictive performance of protein genetic risk scores (GRS)
We assessed the ability of selected cis-based protein-GRS to predict a composite extreme-cSVD
phenotype (extensive WMH volume ± lacunes vs. minimal WMH volume without lacunes) in the 3C-Dijon
cohort, benchmarking it against a previously validated WMH-GRS20 (Methods). Using the WMH-GRS only,
we achieved an AUC of 0.568 (95% Bootstrap CI 0.501–0.634). Adding any of the four selected protein
GRS slightly improved the AUC, while adding them all achieved a maximum improvement of + 0.04 (AUC 
= 0.608; 95% CI [0.544–0.672], Extended Data Fig. 4 Supplementary Table 19).

Clinical signi�cance
We explored the relation of the 49 cSVD-associated proteins with stroke (any, ischemic, and small vessel
stroke; intracerebral hemorrhage) and AD (Methods). We leveraged the aforementioned CSF and plasma
pQTL, as well as European-ancestry summary statistics of GWAS for stroke and its subtypes (N ≤ 73,652
cases) and AD (N = 71,880 cases). Twenty-four proteins (49%) showed associations with at least one
clinical outcome at p < 0.05 (Figs. 4 and 6). At pFDR<0.05, eight CSF proteins (APOE, PILRA-M14, PILRA-

deltaTM, FcRIIIa, BGAT, PLA2R, TIMD3 and TPSNR) and four plasma proteins (EphB4, HTRA1, PILRA-
M14, PILRA-deltaTM) were signi�cantly associated with AD, while one CSF protein (BGAT, measuring
histo-blood group ABO system glycosyltransferase activity) and one plasma protein (FBLN3) were
associated with any stroke and ischemic stroke (Supplementary Tables 20–21). Nineteen of 49 proteins
were available for partial follow-up in plasma using 2SMR in East-Asian participants in relation with
ischemic and small vessel stroke, leveraging plasma pQTL from Biobank Japan (N = 2,886) and an East-
Asian stroke GWAS meta-analysis (N ≤ 17,493). Overall, despite substantially smaller sample size for
exposure and outcome in East-Asians, correlation of effect sizes was moderate to high (Extended Data
Fig. 5). Higher plasma levels of NovH (encoded by CCN3), an ECM associated protein involved in
cardiovascular development, were associated with increased risk of small vessel stroke at pFDR<0.05
(Supplementary Table 22).

Biological interpretation
Using FUMA pathway enrichment analyses, cSVD-associated proteins overall were signi�cantly enriched
in proteins involved in proteoglycan binding and extracellular matrix (organization and collagen
containing: CTSS, EFEMP1, HAPLN1, CTSB, HTRA1, NTN4, COL6A1, TNC, COCH, APOE, pFDR<0.05,

Supplementary Table 23A). Among CSF proteins associated with cSVD, proteins involved in regulation of
immune response signaling and activation of immune response were overrepresented (BT2A1, BT3A2,
BT3A3, CTSB, CTSS, LTF, TLR1, HAVCR2, pFDR<0.05, Supplementary Table 23B).
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To explore enrichment of observed protein-cSVD associations in particular cell-types we �rst conducted
single-cell enrichment analyses using STEAP, leveraging multiple publicly available single-cell
sequencing resources (Methods, Supplementary Table 24). Genes encoding several cSVD-associated
proteins showed signi�cant enrichment in microglia for several CSF proteins (BT2A1, BT3A2, BT3A3,
CTSS, HIBCH) and in immune cells for plasma protein (EPO, Supplementary Table 25, Extended data
Fig. 6). Next, we used unique resources of single nucleus RNA sequencing (snRNAseq) derived from up
to 443 post-mortem brain samples (dorsolateral prefrontal cortex) from the ROSMAP older population-
based cohort26–29. In silico sorting of human cortical tissue samples was used to derive vascular brain
cells27,28. From these snRNAseq resources we could derive cell-type speci�c brain eQTLs for 19 and 10
genes encoding cSVD-associated proteins, in non-vascular and vascular cells respectively (Methods).
Using MR, we found lower genetically determined expression levels of TLR1 in oligodendrocytes
(pFDR=2.24x10− 4) and CTSS in smooth muscle cells (pFDR=2.3x10− 3) to be associated with larger WMH
volume, both consistent with directionality of associations in CSF (Supplementary Table 26–27). Higher
genetically determined expression of ABO (encoding BGAT) in pericytes was protective for extensive
WM-PVS (pFDR=2.3x10− 3, opposite direction compared to CSF). All three associations showed evidence

for colocalization (PP.H4 > 0.7). Genes encoding cSVD-associated proteins showed distinct
cerebrovascular cell-speci�c gene expression patterns (e.g. with EFEMP1 expression dominating in a
new subtype of perivascular �broblasts) and we observed a non-signi�cant trend towards an overall
enrichment in pericytes (Extended data Fig. 7). We also tested enrichment of our genes of interest in
different microglial states (Methods, Extended data Fig. 7), given the aforementioned results observed
with STEAP, and observed signi�cant enrichment in a microglial state type previously found to be itself
enriched in processes such as ribosome biogenesis, amyloid �bril formation, and positive regulation of T-
cell mediated immunity29.

Proteomics-driven drug discovery
We used MR estimates from the 49 CSF and plasma proteins with MRI-cSVD to support drug discovery.
Using public drug databases (Methods), we curated drugs (commercialized for other indications or
under investigation in clinical trials) targeting these proteins in a direction compatible with bene�cial
therapeutic effects against cSVD based on MR estimates. We identi�ed such drugs for EPO, LTF, TFPI,
and EPHB4 for WMH; COL6A1, GPNMB, PCSK9 for PVS, most of which were associated with MRI-cSVD
in the CSF only, except EPHB4 (plasma), EPO and TFPI (CSF and plasma, Fig. 5, Supplementary
Table 28). Some of these proteins have predicted or experimentally proven interactions with each other
(Fig. 2E-F), suggesting that identi�ed drugs may impact related pathways. Of note, drugs targeting EPO
and LTF as agonists and EPHB4 as inhibitors cross the blood-brain barrier (Supplementary Table 28).

Results of protein-cSVD associations along with clinical signi�cance, pathway or cell-type enrichment
and drug target identi�cation are summarized in Supplementary Table 18 and Fig. 6.

Discussion
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By combining a unique CSF and plasma pQTL resource with the latest GWAS of MRI-cSVD in a
Mendelian randomization framework, we describe a new biological �ngerprint of cSVD comprising 49
protein-cSVD associations with a putative causal relation, predominantly in the CSF. To assess
robustness and speci�city of our �ndings we implemented a multipronged follow-up approach, across
�uids, proteomic platforms, and ancestries, which included testing associations of direct plasma protein
measurements with MRI-cSVD. We highlight 16 proteins robustly associated in both CSF and plasma, of
which 12 are in the same direction, while 24 and four proteins were identi�ed in CSF or plasma only, with
no evidence for association in the other �uid. Strikingly, several cSVD-associated proteins already
showed associations with WMH and PVS burden at age 20 with consistent directionality. The fact that
half of cSVD-associated proteins show at least nominally signi�cant associations with stroke, AD, or
both highlights their clinical relevance. Pathway and cell-type enrichment analyses suggest an important
role of extracellular matrix and immune response pathways, with single-cell RNA-sequencing analyses
pointing predominantly to microglia, but also oligodendrocytes, vascular smooth muscle cells and
pericytes. Finally, besides revealing potential novel biomarkers and drug targets to be investigated, our
�ndings also provide genetic support for repositioning of seven drugs for cSVD.

Previous explorations of cSVD proteomics were mainly conducted on focused protein panels30,31, mostly
in plasma14–17,32 (except a recent study on 16 CSF proteins)33 and in relatively small cohorts (usually N 

< 1,000)34. Here we analyzed over 2,500 plasma and CSF proteins in relation with WMH and PVS burden
in over 40,000 participants. In recent years, CSF biomarkers have emerged as pivotal for unraveling the
intricate mechanisms underlying neurodegenerative and neuroin�ammatory diseases, given their
proximity to the central nervous system35–37. Our �ndings suggest that this also holds true for cSVD.
Indeed, CSF-based MR analyses revealed �ve times more protein-cSVD associations than plasma-based
MR, despite ten times smaller sample size to derive pQTL. Among proteins with pQTL available in both
plasma and CSF resources, 67% of cSVD-associated plasma proteins also showed associations with the
same MRI-cSVD markers in CSF, whereas only 24% of cSVD-associated CSF proteins showed
associations in plasma. Even when accounting for follow-up with direct protein measurements, only 43%
of cSVD-associated CSF proteins were associated with MRI-cSVD in plasma, suggesting that some
protein-cSVD associations are speci�c to CSF, as described for other neurological disorders12,13.

Some proteins associated with MRI-cSVD were particularly robust, with consistent directionalities of
their association across �uids and platforms, using both pQTL-based and direct measurements,
especially, PILRA-deltaTM, PILRA-M14, ARSB and CTSB.

PILRA (paired immunoglobin like type 2 receptor alpha) is a microglial immunoreceptor involved in β-
amyloid uptake and herpes simplex virus 1 infection38. Somascan measures soluble PILRA isoforms
lacking the transmembrane domain39 (PILRA-deltaTM and PILRA-M14) while Olink detects the full
protein. Higher genetically determined CSF levels of PILRA-M14 and PILRA-deltaTM were associated
with larger WMH volume across the lifespan, notably already in young adults in their twenties. In
contrast, higher genetically determined CSF and plasma levels of PILRA isoforms were associated with
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smaller WM-PVS burden and lower risk of AD (p < 10− 23 for high CSF levels). Higher plasma levels of
PILRA (Olink direct measurements) were also protective for WM-PVS. This could potentially indirectly
point to a protective effect of PILRA on cSVD caused by cerebral amyloid angiopathy (CAA), as WM-PVS
was recently proposed as a novel CAA biomarker40, and CAA is associated with a strongly increased risk

of AD41. Interestingly, previous experimental work has supported PILRA as the likely causal gene at the
chr7q21 AD risk locus,42 suggesting that a common missense variant in this gene (rs1859788, r2 = 0.3
with PILRA pQTL) may protect against AD via reduced inhibitory signaling in microglia and reduced
microglial infection during HSV-1 recurrence. The opposite effect we observed on WMH is intriguing,
requiring further explorations, such as an examination of differential associations with WMH spatial
patterns.

ARSB (arylsulfatase B) plays an important role in ECM degradation, regulation of neurite outgrowth and
neuronal adaptability in the central nervous system43, where it is expressed predominantly in the

microglia44,45. ARSB de�ciency causes a lysosomal storage disorder (mucopolysacharidosisc)46. Here
higher ARSB levels in CSF and plasma were associated with greater WMH volume based on both
Somascan pQTL and direct Olink protein measurements, making ARSB a compelling candidate to
explore as a circulating cSVD biomarker. CTSB (cathepsin B) is a cerebrovascular matrisome-associated
protein identi�ed in brain microvessels31. This lysosomal cysteine protease is involved in proteolysis of
ECM components and enhanced vessel wall permeability47, as well as in proteolysis of amyloid

precursor protein, implicated in AD48. Genetically determined higher CTSB levels in CSF were associated
with smaller WMH and BG-PVS burden, replicating in plasma, across platforms (pQTL and direct
measurements) and ancestries, and with lower AD risk at nominal signi�cance. Similar associations
were observed between higher genetically determined CSF and plasma levels of CTSS (cathepsin S,
another cysteine protease) and smaller WMH volume, but higher direct plasma CTSS measurements
were associated with larger WMH volume. A potential explanation for such discrepancies could be that
pQTL and direct measurements capture different isoforms (Olink assays have been developed for the
canonical CTSS isoform 1). Noteworthy, rare mutations in CTSA (encoding cathepsin A, a serine
protease like HTRA1) cause a rare monogenic autosomal recessive cSVD known as CARASAL49. Our
�ndings thus expand the involvement of cathepsins to complex cSVD, and to cysteine in addition to
serine proteases.

We also show for the �rst time an association of lower plasma levels of HTRA1 (High-Temperature
Requirement A serine peptidase 1), another cerebrovascular matrisome protein, with extensive HIP-PVS,
consistent with loss-of-function mechanisms underlying monogenic cSVD caused by rare mutations in
HTRA1 (CARASIL, autosomal dominant HTRA1 mutations)50. Rare and common variants at HTRA1 have

been associated with larger WMH volume and increased stroke risk in the general population51,52, with
recent �ndings suggesting loss-of-function mechanisms through both reduced HTRA1 expression and
lower serine protease enzyme activity. The association of lower genetically determined plasma levels of
HTRA1 with extensive HIP-PVS provides additional evidence for an impact of HTRA1 loss-of-function on
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brain health. Interestingly, lower genetically determined HTRA1 plasma protein levels were also
associated with higher risk of stroke (any, ischemic) and AD at p < 0.05.

Overall, our proteogenomic analyses lend support to a prominent role of the cerebrovascular matrisome
(extracellular matrix and associated proteins) in both monogenic and multifactorial cSVD, corroborating
and expanding �ndings from large genomic studies5,6 and preclinical work on monogenic cSVD
models31. In parallel, our �ndings also reveal prominent associations of immune response pathways with
MRI-cSVD. Intriguingly, associations with proteins involved in immunity and in�ammation (with PILRA,
TLR1, GPNMB, all three expressed predominantly in microglia) were already detectable in young adults in
their twenties. We also found expression of genes encoding CSF cSVD-associated proteins to be
signi�cantly enriched in microglial cells, the brain’s primary resident immune cells. The interplay between
cSVD and in�ammation has gained recent interest, with emerging evidence from focused biomarker
studies and experimental models, suggesting that activation of immune cells and in particular microglial
cells could play an important role53–57. Co-registration of MRI images with (immuno‐)histopathological
data has shown that WMH volume was associated with higher microglial activation, supporting that the
latter could be involved in cSVD etiology58. Our results lend further support to this, suggesting that this
could be one of the earliest processes involved, as demonstrated for AD59. Given growing evidence that
changes in microglial transcriptional pro�les play a crucial role in brain aging and AD and that blood
proteins can mediate neurotoxic microglial functions60, the proteogenomic signature we describe might
contribute to revealing biological underpinnings of the intricate relation between cSVD and AD29,61,62.

Some cSVD-associated proteins are encoded by genes in cSVD GWAS loci, strengthening evidence for
their involvement in disease pathogenesis. At chr17q21, lower plasma levels of NMT1 (N-
Myristoyltransferase1), a protein involved in vascular instability and endothelial cell damage63–65, were
associated with larger WMH volume, aligning with prior associations of lower arterial NMT1 expression
with larger WMH burden66. At chr2p16, lower plasma levels of FBLN3 (Fibulin-3, encoded by EFEMP1), a
glycoprotein essential for maintaining ECM and vessel integrity and involved in cell proliferation and
migration, were associated with larger WMH volume23,67. Furthermore, beyond genetic risk scores
derived from cSVD GWAS, genetic risk scores for cSVD-associated proteins may have added predictive
value for identifying those with extensive cSVD burden, highlighting the potential of multiomics
approaches for enhancing risk prediction and strati�cation.

This work further unveiled new prospects for therapeutic repositioning and development, with the
identi�cation of seven drugs (targeting EPO, LTF, TFPI, EphB4, COL6A1, GPNMB, and PCSK9) with cSVD
MR results compatible with potential bene�cial therapeutic effects, warranting further investigation. Of
these, agonists for EPO and LTF and inhibitors of EphB4, which are either approved or studied in phase II
clinical trials for other indications (Supplementary Table 28) present evidence of successfully crossing
the blood brain barrier (BBB), although it is unclear whether this is required to treat cSVD. EPO is a
neuroprotective protein safeguarding the BBB against VEGF-induced permeability68, acting through the

Keap1/Nrf2 pathway in ischemia reperfusion injury69. LTF has anti-in�ammatory and neuroprotective
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properties and can upregulate EPO69 and downregulate IL-670,71, both associated with MRI-cSVD in our
study. EPO and LTF were reported to show strong protein-protein interaction with collaborative anti-
in�ammatory properties69 and modi�ed, optimized versions of both these proteins have been tested
experimentally as neuroprotective agents in ischemic stroke and intracerebral hemorrhage, and, for
some, patented (WO2006120030A1)72–74. Erythropoietin-producing hepatocellular receptor B4 (EphB4),
a tyrosine kinase receptor expressed in vascular endothelial cells, plays a crucial role in vascular
development and adult vascular biology, in�uencing blood vessel permeability, in�ammation, and
angiogenesis through interaction with the Notch pathway75. Drugs inhibiting PCSK9, COL6A1, or GPNMB
and enhancing TFPI may hold promise for cSVD as well (Supplementary Table 28). PCSK9 is a
convertase strongly linked to lipid homeostasis but also involved in neuronal apoptosis, neurogenesis,
and brain in�ammation76. Elevated PCSK9 levels have been associated with ischemic stroke (plasma)

and AD (CSF)76. A protective effect of PCSK9 inhibitors on ischemic stroke has been demonstrated77.
More recently, PCSK9 was shown to regulate amyloid beta clearance from the brain and peripheral
PCSK9 inhibition reduced Aβ pathology in prefrontal cortex and hippocampus in mice78. Here, the robust
association of high PCSK9 levels with larger WM-PVS burden, both in Europeans (CSF, Somascan pQTL)
and East-Asians (plasma Somascan direct measurements), could suggest an association with the CAA
subtype of cSVD40, characterized by Aβ deposition in the brain vasculature. The bi-directional MR result
suggesting not only a putative causal association of higher PCSK9 levels with WM-PVS, but also an
association of larger genetically determined WM-PVS burden with higher CSF PSCK9 levels is intriguing.
Extensive WM-PVS burden is believed to re�ect underlying glymphatic dysfunction, involved in impaired
clearance of amyloid beta, but also other substances from the brain79.

Strengths of our study include the large-scale proteogenomics approach in plasma and CSF, using a
Mendelian randomization framework that provides evidence for potential causality. The multipronged
follow-up strategy across �uids and platforms strongly enhances the robustness of our �ndings.
Although limited by smaller sample size, the extension across the lifespan and to East-Asian ancestry
groups is unique and provides crucial insights on early life mechanisms underlying cSVD, while enabling
transportability of �ndings to East-Asian populations where cSVD is particularly prevalent80. We
acknowledge limitations. pQTL were derived from a population enriched in neurologically impaired
individuals (especially AD patients), however we previously showed that pQTL are only marginally
in�uenced by disease status12; moreover, follow-up samples were not enriched in AD patients. Although
we have used the largest available commercial panel, discovery was limited to proteins quanti�ed by
Somascan, for which valid pQTL instruments could be derived, representing less than 10% of known
proteins (without accounting for isoforms). We had no available sample for following up associations in
the CSF, given the scarcity of CSF proteomics resources, and the fact that lumbar puncture is typically
not done in the context of cSVD. Non-signi�cant follow-up of associations discovered using Somascan
pQTL with Olink direct plasma protein measurements may re�ect spurious �ndings but also lack of
power or modest correlation across platforms due to distinct technology. Inconsistent directionality of
some signi�cant associations between pQTL analyses and direct measurements or between both
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platforms requires further exploration but could re�ect that distinct isoforms are being captured. Overall,
these complexities highlight the importance of multiple follow-up and validation steps when interpreting
association results from high-throughput proteomics assays.

Conclusion
Our work provides an extensive, �rst in vivo biological �ngerprint of cSVD derived from large-scale
proteogenomics studies in CSF and blood. The results highlight important biological processes
underlying cSVD at the molecular and cellular levels, pointing to shared pathways between cSVD and AD
of potential therapeutic relevance and early life mechanisms involving immunity and in�ammation. This
proteogenomic signature paves the way for deriving circulating biomarkers and exploring drug
development and repositioning opportunities.
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Methods
Discovery of protein-cSVD associations

We applied two-sample Mendelian randomization (MR) analyses to explore the relation of genetically
predicted cerebrospinal �uid (CSF) and plasma protein levels with MRI-markers of cerebral small vessel
disease (MRI-cSVD).

Deriving genetic instruments for circulating protein levels (instrumental variables for the exposure) using
protein quantitative trait loci (pQTL)

pQTL were generated from genome-wide association studies (GWAS) of circulating protein levels. CSF
pQTL summary statistics were obtained from 7,028 proteins measured on the aptamer-based Somascan
7k platform in 3,107 research participants of European ancestry. Of these, 1,076 participants were
cognitively normal, 1,001 had clinically determined late-onset Alzheimer’s disease (AD), 118 had early-
onset AD, 281 non-AD dementia, and 631 Parkinson’s disease.12 Plasma pQTL summary statistics were
obtained from 4,907 proteins measured on the Somascan 5k platform in 35,559 cognitively normal
individuals of European ancestry19 participating in either the Icelandic cancer project (52%) or deCODE
genetics (48%). Cis-pQTL were de�ned as genetic variants within 1 Mb of the corresponding protein
coding gene. Genetic variants were selected based on genome-wide signi�cant associations (p<5x10-8)

with protein abundance after clumping using PLINK281 for linkage disequilibrium at r2<0.01, within 1 Mb.
Genetic variants included in the MHC region (chr6:26Mb-34Mb) were removed considering the complex
LD structure of the region. The strength of the instrumental variables (IV) was measured using the F-
statistic (instruments with an F-statistic > 10 were considered strong). Following these steps, we
selected up to 1,121 CSF and 1,732 plasma proteins with cis-acting pQTLs; as well as 2,805 CSF and
4,614 plasma proteins with cis- and trans-acting pQTLs for MR analyses. 

Genetic associations with MRI-cSVD (outcome)

We used summary statistics from the latest, largest GWAS meta-analyses of white matter hyperintensity
(WMH) volume, in 48,454 participants (mean age 66.0 years), and of extensive perivascular space
burden (PVS) in white matter (WM), basal ganglia (BG) and hippocampus (HIP), in 38,525 participants
(mean age 68.3 years), from the general population, of European ancestry, and free of stroke (described
in detail elsewhere5,20). Importantly, the cohorts from which the pQTL were derived were not included in
these WMH and PVS GWAS meta-analyses. 

Analytical steps for Mendelian randomization analyses

MR analysis was performed using R version 4.1.0, the “TwoSampleMR” package version 0.5.682. We
applied two-sample MR analyses to assess the causal association between genetically predicted CSF
and plasma protein levels and MRI-cSVD. pQTL obtained after instrument selection for each protein were
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used as instrumental variables (IVs). We extracted the association estimates between the variants and
the exposures or the outcomes and aligned the effect alleles using the TwoSampleMR R package. 

For proteins with multiple IVs we computed MR estimates with random-effect Inverse Variance Weighted
(IVW) analysis83 that rely on distinct assumptions for validity: (i) Heterogeneity across the MR estimates
was assessed for each instrument using Cochran’s Q statistic (p<0.05 was considered signi�cant)83; (ii)
Horizontal pleiotropy was assessed using MR-Egger intercept as a measure of directional pleiotropy
(p<0.05 was considered signi�cant)84. We further conducted various sensitivity analyses85:

1. The identi�cation of outlier IVs and their removal from analyses was conducted using MR Pleiotropy
residual Sum and Outlier (MR-PRESSO)86 (p<0.05 was considered signi�cant)

2. Reverse MR was run by reversing the direction of inference, using the MRI-cSVD markers as the
exposure and proteins as the outcome, to formally rule out reverse causation. 

3. MR-Egger regression87 and Weighted median that are more robust to the use of pleiotropic
instruments were used as sensitivity analyses. When pleiotropy was observed, we retained results
when at least 2 of the 3 sensitivity methods (MR-Egger, Weighted median, MR-PRESSO) were
concordant with each other and p<0.05. 

For proteins with a single IV we computed MR estimates using the Wald ratio. MR analyses were
followed by colocalization analyses using coloc88 including variants ±1Mb surrounding the pQTL of
interest. Associations were considered signi�cant when the posterior probability H4 (PPH4; shared
association with single causal variant) was >0.70 and suggestive for PPH4<0.70 when posterior
probability H3 (PPH3; shared association with different causal variant)<0.7089. Associations with
PPH4<0.70 and PPH3 >0.70 were removed from further analyses. 

Discovery MR results were considered signi�cant when passing the FDR Benjamini-Hochberg corrected
signi�cance threshold (PFDR<0.05). In sensitivity analyses we additionally corrected for the number of
independent phenotypes tested, estimated using correlations between traits in the 3C study applying the
Matrix Spectral Decomposition (matSpDlite90) method for WMH volume and each PVS location,

(pFDR<1.2x10-2; 0.05/4). 

Genetic correlation of identi�ed protein-cSVD

Genetic correlations were performed using LDSC to identify proteins that may have a shared genetic
basis leveraging pQTL summary statistics of the 45 proteins identi�ed in CSF and 9 proteins identi�ed in
plasma. Only proteins with heritability greater than 20% could be used (NCSF=24, Nplasma=9). (p<5x10-5

was used correcting for the mean of proteins tested and 3 situations: CSF-CSF, CSF-plasma and plasma-
plasma; 0.05/18*18*3)

Follow-up of signi�cant protein-cSVD associations
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We used a multi-pronged approach to follow-up signi�cant protein-cSVD associations, across �uids,
platforms, and ancestries. 

Cross-�uid follow-up (pQTL, Somascan, plasma and CSF)

Proteins identi�ed in one �uid were followed up for association with MRI-cSVD in the other �uid. Out of
CSF or plasma cSVD-associated proteins, we selected proteins for which genetic instruments were
available in both datasets12,19 (N=43). Signi�cant associations were de�ned by pFDR<0.05. In addition,

results of sensitivity analyses at pFDR<1.2x10-2 are displayed, accounting for the 4 phenotypes tested.

Cross-platform follow-up (direct protein measurements, Olink, plasma) 

Two large population-based cohort studies were used to follow-up protein-cSVD associations in
participants with both MRI-cSVD phenotypes and plasma proteomic measurements, using paired
nucleotide-labeled antibody probes (Olink Explore 3072): 3C-Dijon (WMH, BG-PVS, WM-PVS and HIP-
PVS) and UK Biobank (WMH, BG-PVS and WM-PVS).

The 3C-Dijon study is a population-based cohort study comprising 4,931 participants aged 65 years and
older at inclusion recruited between 1999 and 200191,92. A subset of 1,924 participants aged <80 years
took part in an ancillary brain imaging study (1.5T Siemens Magneton scanner). Olink proteomic
pro�ling, based on blood samples obtained at inclusion, was conducted in 1,056 participants selected
based on availability of brain MRI and amounts of plasma tubes left (Supplementary Table 12). Protein
measurements were conducted on the Olink Explore 3072 panel using Proximity Extension Assay (PEA)
technology, following the manufacturer’s protocol93, at McGill Genome Center (Montreal, Canada). This
panel measures 2,941 protein analytes and captures 2,923 unique proteins across 8 protein panels
(cardiometabolic, cardiometabolic II, in�ammation, in�ammation II, neurology, neurology II, oncology and
oncology II)94. Data pre-processing including plate-based normalization and QC checks were conducted
according to standardized Olink protocols. WMH volume was estimated using a multimodal (T1, T2, DP)
image processing algorithm92. PVS burden in basal ganglia and white matter was estimated with the
previously described machine-learning based SHIVA-PVS algorithm1,2 using T1-weighted images; while
PVS burden in hippocampus was  estimated using a previously described visual semi-quantitative rating
scale95. 

The UK Biobank (UKB) study is a British cohort following 502,620 participants recruited between 2006
and 2010. Proteomic pro�ling was performed on plasma samples collected at baseline from 54,219 UKB
participants using Olink Explore 3072 (�eld ID: 1839), with QC conducted following the protocol
implemented by UKB (resource 4658). Of these, 5,494 also underwent a brain MRI (3T Siemens Prisma
scanner), with WMH volume measurements (�eld ID: 25008), and were used for analysis. PVS burden (in
basal ganglia and white matter) was estimated with the previously described machine-learning based
SHIVA-PVS algorithm96,97 using T1-weighted images from the subset of 5,523 participants with
proteomics data (Supplementary Methods). 
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We conducted multivariable linear and logistic regression of individual proteins with WMH volume and
PVS burden adjusted for the delay between age at blood draw and age at the time of MRI, sex, batch
effect, total intracranial volume (or mask volume for WMH in 3C-Dijon). WMH volume and PVS burden in
basal ganglia and white matter were inverse normal transformed and PVS in hippocampus values were
dichotomized, comparing participants in the top quartile of PVS burden distribution to the rest, as
previously described5. An inverse variance weighted meta-analysis was performed using  metafor R
package98 to combine 3C-Dijon and UKB association analyses. The heterogeneity of associations across
studies was assessed using the Cochran-Mantel-Haenszel statistical test, only associations with
p>1.9x10-3 (0.05/26, correcting for 26 proteins available for follow-up) were considered. Signi�cant
associations were de�ned by pFDR<0.05. In addition, results of sensitivity analyses at pFDR<1.2x10-2 are

displayed, accounting for the 4 phenotypes tested.

Correlation analyses between protein levels were conducted in UKB (the largest of the two samples)
using the corrplot99 R package. Correlations were de�ned as signi�cant at the Bonferroni corrected p-
value threshold of p<7.7x10-5 (0.05/(26*26)-26). 

Cross-ancestry follow-up (direct protein measurements, Somascan, plasma)

Brain imaging and plasma proteomic data from the Nagahama study, a prospective population-based
cohort study initiated in 2007 in Nagahama, Japan (N=10,082 at baseline) were used100. Healthy
participants (without serious physical impairment and heath issue) aged 30 to 74 years were recruited
between 2008 and 2010 from the general population of Nagahama (Japan) and followed-up 5 years after
baseline between 2013 and 2015. Plasma proteomic measurements have been conducted on a subset
of 2,000 individuals using Somascan 4.0. Of those, 858 had brain MRI measurements. WMH in
Nagahama was generated using UBO detector101, a publicly available automated tool which extracts
features from T1w and FLAIR input images, such as relative intensity levels, tissue probability, and
anatomical location, to classify FLAIR hyperintensities as WMH using k-Nearest Neighbor algorithm. A
trained rater reviewed visual quality control report generated by the tool to reject gross failures in tissue
probability estimates and WMH classi�cation. PVS burden was estimated using the aforementioned
machine-learning based SHIVA-PVS algorithm5,96. QC checks and proteomic measurements
transformation (log2) were conducted according to standardized Somascan protocols. After excluding
participants for whom the estimation of the MRI-marker was not possible, without proteomics
measurements passing QC, with prevalent stroke, missing covariates, or who had withdrawn their
consent, a total of 785 participants were available for association analyses. We conducted linear
regression for WMH, WM-PVS and BG-PVS as continuous variables inverse normal transformed adjusted
for age, sex, batch, total intracranial volume and the �rst 4 principal components. Signi�cant
associations at pFDR<0.05 were reported. Given the exploratory nature of these cross-ancestry analyses
on a much small sample size, associations at p<0.05 were also reported. 

Follow-up across the lifespan (pQTL, Somascan, plasma and CSF)
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We conducted two-sample MR analyses using the aforementioned pQTL in plasma and CSF
(instruments) and GWAS for WMH and PVS (outcomes). WMH and PVS GWAS were conducted in the
Internet-based Students HeAlth Research Enterprise (i-Share) study, an ongoing prospective population-
based cohort study of French-speaking students102. We speci�cally leveraged the bio-Share ancillary
study, a biological platform comprising a collection of blood samples from a subset of the i-Share
cohort, and MRi-Share, an ancillary study comprising a brain MRI (3 Tesla Siemens Prisma scanner) and
a battery of cognitive tests103–105. Here we used the sub-sample of 1,748 MRi-Share and bio-Share
participants aged 18-35 years, recruited in Bordeaux, France, for whom both brain MRI and genome-wide
genotype data were available (mean age ± standard deviation (SD): 22.1±2.3 years; 72.2% women)105.
MRI protocol, genetic data quality control and imputation procedures are detailed elsewhere5,103–105. For
i-Share PVS GWAS summary statistics, we used previously described data5. For i-Share WMH GWAS
summary statistics, we performed GWAS using the genome-wide linear mixed model implemented in
REGENIE on WMH volume quanti�ed using a recently developed algorithm106 (after excluding 8
participants with multiple sclerosis or radiologically isolated syndrome)107. WMH volume was
transformed using an indirect inverse normal transformation (applying inverse normal transformation to
residuals from linear regression of WMH adjusted for covariates [age at MRI, sex, total intracranial
volume, and the �rst four principal components of population strati�cation]). These analyses were
restricted to SNPs with an imputation score >0.5 and a MAF>0.01 and were adjusted for age at MRI, sex,
intracranial volume and the �rst four principal components of population strati�cation. 

Following the steps of instrument selection and MR previously described, we performed two-sample MR
between each of the 49 proteins associated with MRI-cSVD using the large meta-analyses in older adults
and MRI-cSVD measured in young adults. Associations were de�ned as nominally signi�cant if p<0.05,
and signi�cant when pFDR<0.05.

Signi�cant associations at pFDR<0.05 were reported. Given the exploratory nature of these lifespan

analyses on a much small sample size, associations at p<0.05 were also reported.

Protein genetic risk scores (protein-GRS)

Quality control of genotypes and summary statistics are detailed in the Supplementary Methods. 

Construction of GRS

We constructed GRS for each of the 49 cSVD-associated proteins that passed sensitivity analyses using
a standard clumping and thresholding approach100,108. We used PRSice-2 software to clump SNPs with
r2<0.1 using the 1000G European subset as a reference panel, and select SNPs from cis-pQTLs reaching
genome-wide signi�cance (p<5x10-8)109. A GRS for each protein was derived using the standard
weighting method:
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Association analysis with extreme-cSVD

We investigated the ability of protein-GRS to predict extremes of cSVD severity (extreme-cSVD) in the 3C-
Dijon cohort92. Brie�y, after removing individuals with prevalent stroke, dementia, or brain tumor, we
de�ned a binary phenotype for extreme-cSVD in 1,497 participants with MRI and genome-wide genotype
data (N=58 extensive, with WMH burden in the top quartile of the cohort distribution ± presence of
lacunes; 253 minimal-cSVD, with WMH burden in the bottom quartile of the cohort distribution and no
lacunes or other types of brain infarcts, Supplementary methods). 

We performed logistic regression of each of the standardized protein-GRS with extreme-cSVD as the
dependent variable, adjusting for the �rst 5 principal components for population strati�cation110.  We
also used a previously derived WMH GRS (weighted sum of independent genome-wide signi�cant risk
variants for WMH volume), a strong genetic predictor of WMH volume, for comparison20. The number of
SNPs in each GRS is included in Supplementary Table 19. We found �ve genetically determined CSF and
plasma proteins nominally associated with extreme-cSVD, although none remained signi�cant after
Bonferroni-correction for the 49 protein-GRS (p<0.001). 

Prediction Performance

We assessed the performance of these 5 protein-GRS to predict extreme-cSVD, individually and
combined, in models adjusted for the �rst 5 principal components and WMH-GRS: CSF.Cystatin-M,
PLASMA.PILRA-M14, CSF.PPAC, PLASMA.PILRA-deltaTM, and CSF.TLR1-ECD. As PILRA isoforms were
extremely correlated (r=0.99), we selected the isoform displaying the strongest association with extreme
cSVD (PILRA-M14) for the combined model. Prediction performance was evaluated in 3C-Dijon through
internally validated AUC using the optimism bootstrap estimator in the caret  R package (2,000 bootstrap
replications)111.

Clinical signi�cance 

To explore the relation of genetically determined protein levels with clinical complications of cSVD, we
used summary statistics of the largest available GWAS (European ancestry subset) for stroke and
dementia. Summary statistics for any stroke, ischemic stroke, and small vessel stroke were derived from
the GIGASTROKE study (comprising 73,652 patients with any stroke, 62,100 with ischemic stroke, and
6,811 with small vessel stroke112) and the largest publicly available GWAS for intracerebral hemorrhage

(ICH, 1,545 patients113). For dementia we used summary statistics of the largest GWAS for Alzheimer’s
disease comprising 71,880 AD cases114.
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Following the steps of instrument selection and MR described above, we performed two-sample MR to
test the relation of each genetically determined levels (in plasma and CSF) of the 49 cSVD associated
proteins with stroke (subtypes) and dementia. To capture trends towards clinical signi�cance we
considered associations at p<0.05 and reported signi�cant �ndings after multiple testing correction at
pFDR<0.05. 

Cross-ancestry

To assess the causal association between serum protein levels of cSVD-associated proteins and stroke,
in individuals of East-Asian ancestry, we conducted two-sample MR analyses in BioBank Japan (BBJ,
�rst cohort study115), which recruited around 200,000 participants with at least one of 47 target diseases
across 66 hospitals in Japan between 2003 and 2007.. Proteomic pro�ling was conducted for a total of
2,886 individuals of East-Asian ancestry from two previous studies116,117 with whole genome sequencing
datasets, using the Olink Explore 3072 panel following the manufacturer’s protocol. Data pre-processing,
including intensity normalization, bridge normalization across batches, and QC, was conducted
according to standardized Olink protocols. Rank-based inverse normal transformation was applied to
protein level measurements before association tests. pQTL summary statistics of serum protein levels
were obtained for 19 available proteins (out of the 49 cSVD-associated proteins from the discovery
analysis) by meta-analyzing summary statistics generated in individuals from each study separately
using REGENIE v3.2.9107 (adjusted for age, sex, age2,age*sex, age2*sex, batch, and the �rst 10 genotype
principal components) and METAL118 (inverse variance weighted method; �xed effect model). Summary
statistics of GWAS for ischemic stroke (N=17,493), large-artery atherosclerotic stroke (N=1,322),
cardioembolic stroke (N=747), and small vessel stroke (N=4,876) were obtained in the BBJ �rst cohort
using REGENIE v3.2.9 (adjusted for age, sex, and the �rst 10 genotype principal components), excluding
the samples used for proteomic pro�ling. Genotyping, quality control, and imputation for BBJ samples
used in the stroke GWASs were conducted as previously described119, except that the imputation was
performed using a reference panel combining the 1000 Genome Project phase 3 v5 reference panel and
3256 Japanese samples (JEWEL3k)   samples120.  Individuals without any type of stroke or cerebral
aneurysm were used as controls. Instrument selection and MR were conducted following the methods
previously described (p-threshold for clumping: 1x10-6, Supplementary methods)

Biological interpretation 

Protein-protein interactions

Protein-protein interactions were analyzed using the STRING database with the initial set of 1,121
proteins for CSF and 2,805 for plasma as background. 

Pathway enrichment analysis
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The GENE2FUNC analysis tool in FUMA (v1.5.4) was employed to conduct gene set enrichment analyses
and detect signi�cantly associated GO biological processes121. GENE2FUNC employs a hypergeometric
test to assess the over-representation of genes within prede�ned gene sets, including GO biological
processes. The gene IDs used correspond to coding-genes of identi�ed proteins. We tested enrichment
of the entire set of genes encoding cSVD-associated proteins identi�ed in CSF and plasma, using the
background set of genes encoding proteins tested for MR in each tissue respectively (Supplementary
Table 1). Benjamini-Hochberg multiple testing correction was applied to these results (p<0.05).

STEAP enrichment analysis

We performed a cell type enrichment analysis using the Single cell Type Enrichment Analysis for
Phenotypes (STEAP) tool (https://github.com/erwinerdem/STEAP/). This tool serves as an extension to
CELLECT and integrates strati�ed LD-score regression (S-LDSC), MAGMA, and H-MAGMA for enrichment
analysis. pQTLs summary statistics from the CSF and plasma datasets were preprocessed.
Subsequently, expression speci�city pro�les were computed using single-cell RNA sequencing data from
human and mouse databases, including PsychENCODE DER-22, GSE67835, GSE101601, DroNc Human
Hippocampus, Allen Brain Atlas MTG and LNG, Mousebrain, Tabula Muris, Descartes Human Cerebrum,
and Cerebellum. Cell type enrichment analysis was conducted employing MAGMA, H-MAGMA (which
incorporates chromatin interaction pro�les from human brain tissues in MAGMA), and S-LDSC. P-values
were Bonferroni corrected for the number of independent cell types in each database.

Brain single cell expression quantitative trait loci (eQTL)

Mapping of brain single cell eQTL was described elsewhere26. Brie�y, single-nucleus RNA-seq libraries
were prepared from dorsolateral prefrontal cortex (dPFC) of 424 participants from the ROSMAP cohort
using 10x Genomics Single Cell 3’ kit. Sequencing reads were processed and UMI count matrix was
generated using Cell Ranger software (ver.6.0.0, 10x Genomics). Classi�cation of cell types were
performed by clustering cells by gene expression using the R package Seurat (ver. 4). “Pseudobulk” gene
expression matrix was constructed by aggregating UMI counts of the same cell type of the same donor
and normalizing them to the log2 counts per million reads mapped (CPM) values. Genotyping was
performed by whole genome sequencing and GATK. Mapping of cis-eQTL was performed using Matrix-
eQTL (ver. 2.3) for SNP within 1 Mb from transcription start sites. 

Due to the sparsity of vascular cells in brain tissue, a speci�c dataset from ROSMAP using in silico
vasculature enrichment was used for eQTL and expression analysis. Single-nucleus RNA-seq libraries
were prepared from brain samples of 409 ROSMAP participants using the 10x Genomics Single Cell 3′
Kit. Read counts were estimated using Cellranger 3.0.1 (10x Genomics) and the UMI count matrix was
analysed using the Seurat R package v.3.2.0. Vascular enrichment was conducted in silico using cell
sorting from post mortem human samples across seven different brain regions (prefrontal cortex, mid-
temporal cortex, angular gyrus, entorhinal cortex, thalamus, hippocampus and mammillary body). Cell-
type annotation was performed through clustering, annotating cell-type using a combination of canonical
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vasculature markers and whole-transcriptome cellular signatures. Detailed methods regarding sRNAseq
and in silico vascular enrichment is described elsewhere27,28. Microglia states were de�ned from
152,459 microglial transcriptomes across 443 individuals (217 AD and 226 controls) identifying 12
transcriptional states. Microglial nuclei were obtained from post-mortem brain samples from the
ROSMAP study across 6 brain regions (hippocampus, dPFC, mid-temporal cortex, angular gyrus,
entorhinal cortex and thalamus). Using in silico sorting, 174,420 immune cells were collected from
snRNA-seq datasets using STAR method forming 12 clusters of microglia. Those clusters were then
de�ned as microglia states based on their molecular signature and function: MG0: hemostatic, MG1:
neuronal surveillance, MG2: In�ammatory I, MG3: Ribosome biogenesis, MG4: Lipid Processing, MG5:
Phagocytic, MG6: Stress signature, MG7: Glycolytic; MG8: In�ammatory II, MG10: In�ammatory III, MG11:
Antiviral, MG12: Cycling. Detailed methods regarding microglial states de�nition are described
elsewhere29.

Proteomics driven drug discovery

Using signi�cant MR results from CSF and plasma, we restricted our analysis to drug-targeting proteins
using 4 drug-gene databases (ChEMBL, pharmGKB, DrugBank and TTD). Following this methodology,
eight drug-targeting proteins were identi�ed for WMH (EPO, LTF, TFPI, APOE, ARSB, CTSS, CTSB and
EPHB4) and seven for PVS (COL6A1, CTSB, GPNMB, PCSK9, FcRIIIA, Heparin co-factor II, IL6). Using
public drug databases, we then curated drugs targeting those proteins in a direction compatible with a
bene�cial therapeutic effect against the corresponding cSVD phenotype based on MR estimates. The
desired mode of action (MoA) was de�ned as the opposite direction of the MR estimate. Once the drugs
were identi�ed, we searched the literature for a potential action of the drug. 
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Figure 1

Summary of the analysis plan. pQTL: protein quantitative trait loci, CSF: Cerebrospinal �uid, WMH: White
matter hyperintensities, PVS: Perivascular Spaces burden, BG: basal ganglia, HIP: hippocampus, WM:
white matter. # Cross-platform follow-up analyses have been conducted using a meta-analysis of 3C and
UK Biobank
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Figure 2

Discovery protein-cSVD associations in CSF and plasma using cis-pQTL mendelian randomization. A.
Volcano plots of proteins associated with white matter hyperintensities (WMH) using cis-pQTL MR in
CSF. B. Volcano plots of proteins associated with perivascular spaces burden (PVS) using cis-pQTL MR
in CSF. C. Volcano plots of proteins associated with WMH using cis-pQTL MR in plasma. D. Volcano plots
of proteins associated with PVS using cis-pQTL MR in plasma. Each dot represents the MR results for
proteins. Each dot represents the MR results for proteins. FDR-corrected p-values are represented in this
graph. Represented proteins are signi�cantly associated with MRI-marker at pFDR (Benjamini-Hochberg
false discovery rate threshold) < 0.05. The dotted line in each volcano plot represents the corrected
threshold after additionally correcting for the number of phenotypes tested (p<0.0125).  E. Venn diagram
of identi�ed causal proteins associated with MRI-cSVD. * proteins identi�ed in plasma; † proteins
associated in both plasma and CSF; other proteins are associated in CSF. F. String plot of proteins
associated with WMH. G. String plot of proteins associated with PVS (WM, BG and HIP). Network nodes
represent proteins: colored nodes query proteins and �rst shell of interactors. Edges represent protein-
protein associations. Cyan and pink edges are known interactions, cyan: from curated databases, and
pink: experimentally determined. Green and blue edges correspond to predicted interactions. Green:
gene neighborhood, and blue: gene co-occurrence. Purple corresponds to protein homology, yellow to
text mining and black to co-expression.
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Figure 3

Summary of proteomics follow-up (discovery, cross-�uid, cross-platform, cross-ancestry and lifespan) A.
Heatmap of proteomic �ndings using CSF discovery analysis. B. Heatmap of proteomic �ndings using
plasma discovery analysis. 1. Discovery Mendelian randomization using cis-pQTL from CSF (A) and
plasma (B). 2. Cross-�uid follow-up Mendelian randomization using cis-pQTL from plasma (A) and CSF
(B). 3. Cross-platform follow-up using plasma individual-level data measured with Olink in independent
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samples (3C, UKB). 4. Cross-ancestry follow-up using plasma individual-level data measured with
Somascan in an independent sample (Nagahama). 5. Lifespan follow-up Mendelian randomization using
cis-pQTL from CSF (A) and plasma (B). Dark squares correspond to signi�cant results after FDR
correction (pFDR<0.05). * corresponds to signi�cant associations after correction for the 4 phenotypes
tested (pFDR<0.0125). Hatched squares correspond to p<0.05 results. Red squares correspond to a
positive association and blue to negative association. Proteins missing for one of the follow-up analyses
are represented with a white square. # results of the analysis of 3C only. Proteins in bold are those
showing at least one nominally signi�cant association (p<0.05) in follow-up analyses, with the same
MRI-cSVD marker as in the discovery.
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Figure 4

Clinical signi�cance of protein-cSVD �ndings in CSF and plasma. A. Forest plot of protein-cSVD
associations with stroke and its subtypes (ischemic stroke, small vessel stroke and intracerebral
hemorrhage). B. Forest plot of protein-cSVD association with Alzheimer’s disease. All proteins
associated with MRI-cSVD identi�ed in the discovery analysis in CSF and plasma were used for this
analysis. Full lines represent proteins measured in CSF. Dotted lines represent proteins measured in
plasma. Proteins signi�cant at least at p<0.05 for at least one of the outcomes tested are represented
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(for stroke, associations with all (sub)types are represented when one or more was signi�cant). * Results
signi�cant after multiple testing correction (pFDR<0.05)

 

Figure 5
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Proteomics-driven drug discovery. A. Drug-discovery analysis conducted using CSF protein-cSVD
Mendelian randomization estimates for WMH and PVS �ndings. B. Drug-discovery analysis conducted
using plasma protein-cSVD Mendelian randomization estimates for WMH. Proteins in yellow correspond
to proteins associated with the MRI-cSVD marker in CSF and in red in plasma, in discovery analyses. *
proteins with signi�cant associations in at least one of the follow-up modalities (at p<0.05). Red arrows
correspond to a protective effect of a protein on MRI-cSVD (reducing cSVD burden) or an inhibitor effect
of a drug on the cSVD-associated protein; blue arrows correspond to a of deleterious effects of a protein
on MRI-cSVD (promoting cSVD burden) or an analog effect of a drug on the cSVD-associated protein.
Drugs in orange cross the blood brain barrier. CSF: cerebrospinal �uid, BBB: blood brain barrier.
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Figure 6

Integrated summary of our �ndings. Proteins associations with WMH, PVS, or both are represented in
the middle. For each MRI-marker, the left side corresponds to CSF �ndings and the right side to plasma
�ndings. * proteins with cross-ancestry association. # proteins with lifespan association. Associations
with stroke Alzheimer’s disease (AD), or both are represented on the left of the �gure. Subtypes of stroke
are as follows: AS: Any stroke, IS: Ischemic stroke, SVS: Small vessel stroke, ICH: Intracerebral
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hemorrhage. – and + signs correspond to the direction of association referring to higher level of the
protein. Drug repositioning is represented on the right of the �gure.
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