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�
 ABSTRACT 

To investigate the cellular and molecular mechanisms associated with tar-
geting CD30-expressing Hodgkin lymphoma (HL) and immune checkpoint 
modulation induced by combination therapies of CTLA4 and PD1, we 
leveraged Phase 1/2 multicenter open-label trial NCT01896999 that enrolled 
patients with refractory or relapsed HL (R/R HL). Using peripheral blood, we 
assessed soluble proteins, cell composition, T-cell clonality, and tumor 
antigen-specific antibodies in 54 patients enrolled in the phase 1 component 
of the trial. NCT01896999 reported high (>75%) overall objective response 
rates with brentuximab vedotin (BV) in combination with ipilimumab (I) 
and/or nivolumab (N) in patients with R/R HL. We observed a durable 
increase in soluble PD1 and plasmacytoid dendritic cells as well as decreases 
in plasma CCL17, ANGPT2, MMP12, IL13, and CXCL13 in N-containing 

regimens (BV + N and BV + I + N) compared with BV + I (P < 0.05). 
Nonresponders and patients with short progression-free survival showed 
elevated CXCL9, CXCL13, CD5, CCL17, adenosine–deaminase, and MUC16 
at baseline or after one treatment cycle and a higher prevalence of NY-ESO- 
1-specific autoantibodies (P < 0.05). The results suggest a circulating tumor- 
immune-derived signature of BV ± I ± N treatment resistance that may be 
useful for patient stratification in combination checkpoint therapy. 

Significance: Identification of multi-omic immune markers from pe-
ripheral blood may help elucidate resistance mechanisms to checkpoint 
inhibitor and antibody–drug conjugate combinations with potential 
implications for treatment decisions in relapsed HL. 

Introduction 
FDA-approved novel therapies have transformed the treatment options 
available for relapsed or refractory (R/R) Hodgkin lymphoma (HL). Bren-
tuximab vedotin (BV), an anti-CD30 antibody–drug conjugate (ADC), was 
FDA approved in 2011 for patients with R/R HL who have undergone au-
tologous stem cell transplant or multiple chemotherapy regimens, based on a 
complete response (CR) rate of 34% and an overall duration of response of 
5.6 months (20.5 months in those with CR; ref. 1). Subsequently, in 2016, the 
PD1-targeting checkpoint inhibitors nivolumab and pembrolizumab were 
also approved for R/R HL. However, single-agent nivolumab has a CR rate of 
14% to 16%, and a progression-free survival (PFS) of 15 months in patients 
with prior exposure to BV (2). In solid tumors, studies have shown that 
combining anti-CTLA4 treatment (ipilimumab) with PD1 blockade (nivo-
lumab or pembrolizumab) can improve response rates in diverse types of 
tumors, at the cost of a higher rate of adverse events (AEs; refs. 3, 4). 

The phase 1/2 study E4412 (NCT01896999) evaluated the safety and efficacy of 
single or dual checkpoint blockade with ipilimumab (I) and/or nivolumab (N) in 
combination with the antibody–drug conjugate BV in R/R HL patients after one or 
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FIGURE 1 Protein dynamics in HL during checkpoint blockade treatment. A, Overview of the clinical trial E4412 experimental design. Three 
treatment arms included: (i) BV + ipilimumab (I), (ii) BV + nivolumab (N), and (iii) BV + I + N, with participant number (n) indicated. B, Regression 
modeling strategy using mixed effect models applied to analyze independently four different assay methodologies. Each assay was modeled 
considering relevant clinical variables and adjusted for multiple testing using FDR correction. C, Summary heatmap showing the log2-fold change 
(log2FC) between time points and treatments. The changes with a positive log2FC over time in color blue are associated with a decrease over time and 
red with an increase over time. The �log10 (P value) is represented by the size of the circles, indicating statistical significance as the circles increase. 
D, Line and boxplot figures showing the changes in expression for markers increased posttreatment such as PDCD1, GMZA, PTN, CAIX, IL18, CD28, 

(Continued on the following page.) and markers decreased posttreatment such as CCL17, ANGPT2, IL13, and CXCL13. 
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more lines of therapy, with adequate performance status and organ function (5). 
This combination was hypothesized to deplete CD30-expressing Hodgkin and 
Reed/Sternberg cells and to activate T effector cells to target Hodgkin and 
Reed/Sternberg cell killing and overcome therapeutic resistance. We reported a CR 
rate of 57% (95% CI, 34%–78%) for BV + I, 61% (36%–83%) for BV + N, and 73% 
(50%–89%) for BV + I + N arms (5). An increased number of grade 3 to 4 AEs was 
associated with treatment arms that included ipilimumab (43%–55%) when 
compared with the BV + N arms (21%). These promising results prompted an 
expansion to the planned phase 2 of this trial with a randomized comparison of BV 
+ N versus BV + I + N, which recently completed adult enrollment. Molecular and 
cellular immune profiling of biomarkers that could explain differential response or 
survival to these ADC and CPI combinations has not been described to date. 

To identify immune mechanisms associated with BV ± I ± N immunotherapy 
and biomarkers of resistance or AEs, which could guide future treatment deci-
sions, we applied longitudinal immune monitoring and analysis of blood spec-
imens collected during phase 1 throughout the course of treatment. Using 
cellular and molecular multi-omics, we examined peripheral markers for asso-
ciations with clinical outcomes. We performed four different assays using pe-
ripheral blood plasma and mononuclear cells on specimens collected from 54 
patients from the phase 1 component of this trial (19 in the BV + I group, 16 in 
the BV + N group, and 19 in the triplet group; ref. 5) including (i) Olink 
proximity extension assay to detect 92 soluble protein plasma analytes, (ii) ELISA 
Grand Serology to measure circulating plasma antibody titers against 20+ known 
tumor antigens, (iii) mass cytometry using time of flight (CyTOF) to assess 
peripheral blood cell composition, and cell surface activation/inhibitory marker 
expression, and (iv) Bulk Vβ TCR-seq to quantify T-cell immune repertoire 
diversity. Data from these assays was correlated to response rate (categorical, 
from imaging data, best achieved) and survival (for predictions at baseline only). 

Materials and Methods 
Clinical trial and biospecimens 
This clinical trial started with phase 1 and is currently completing phase 2 
(ClinicalTrials.gov Identifier: NCT01896999). Patient characteristics, including 

demographics, previous lines of treatment, as well as safety and preliminary 
efficacy are described in ref. 5. During the dose escalation phase, three con-
secutive treatment groups were enrolled consisting of two arms receiving 
brentuximab vedotin 1.8 mg/kg q3w with ipilimumab at either 1 or 3 mg/kg 
q6w (BV + I, n ¼ 6 for Arm A, n ¼ 6 for Arm B); brentuximab vedotin at 
either 1.2 or 1.8 mg/kg q3w with nivolumab 3 mg/kg q3w (BV + N, n ¼ 3 for 
Arm D, n ¼ 6 for Arm E); and brentuximab vedotin at either 1.2 or 1.8 mg/kg 
q3w with nivolumab 3 mg/kg q3w and ipilimumab 1 mg/kg q12w (BV + I + N, 
n ¼ 7 for Arm G, n ¼ 5 for Arm H). Another seven patients per treatment 
group were subsequently enrolled into expansion arms (arms C, F, and I) at 
the highest respective doses to establish safety and preliminary efficacy 
(Fig. 1A). For this correlative study, Arms A-C (BV + I), D-F (BV + N), and 
G-I (BV + N) were respectively combined, as no significant clinical difference 
was observed related to dose escalation. Blood [cryopreserved after separation 
as plasma and peripheral blood mononuclear cells (PBMC)] was collected 
prior to the start of treatment (baseline), on day 1 of cycle 2 (prior to drug 
infusion; C2D1), at the time of first restaging PET/CT (±5 days) prior to cycle 
4 (restaging) when clinical response was assessed, and after completion of 
therapy or off treatment (off-study). The best objective response rate, including 
CR and partial response, at each respective time point, was determined using 
the International Harmonization Project Group 2007 Revised Response Cri-
teria according to Cheson and Deauville criteria as mandated by trial design 
(ref. 5; RRID:SCR_001905, RRID:SCR_015654, RRID:SCR_006442). 

Olink 
Soluble protein analytes from peripheral blood plasma samples were quan-
tified by Olink’s proximity extension immunoassay platform using the 
immuno-oncology panel. This multiplex immunoassay allows the simulta-
neous measurement of 92 proteins, including cytokines, chemokines, and 
immuno-oncology markers, across 96 plasma samples, including internal 
and external reference controls, and was performed following the manu-
facturer’s instructions (https://cimac-network.org). The Olink data were 
normalized into NPX values (Normalized Protein eXpression) on a log2 scale 
(https://www.olink.com/question/what-is-npx/; RRID:SCR_003899). 
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FIGURE 1 (Continued) E, Summary heatmap of differential expression associated with response. The changes with a positive log2FC in color blue 
are associated with a lower expression in nonresponders and red with higher expression in nonresponders. F, Line and boxplot examples of significant 
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Grand serology 
ELISA was used to detect and quantify circulating IgG antibodies to known 
tumor antigens, as previously described (6). Briefly, plasma samples were 
analyzed by low-volume semi-automated ELISA for seroreactivity to a panel 
of recombinant protein antigens (NY-ESO-1, P53, SOX2, HORMAD1, ERG, 
DHFR, PRAME, WT1, MELAN-A, SURVIVIN, UBTD2, CT47, MAGE-A4, 
SSX4, CT10, SSX2, XAGE, GAGE7, and MAGE-A10). Low-volume 96-well 
plates were coated overnight at 4°C with 0.5–1 μg/mL antigen and blocked 
for 2 hours at room temperature with PBS containing 5% nonfat milk and 
0.1% Tween 20. Plasma was titrated from 1/100 to 1/6,400 in 4-fold dilutions 
and added to blocked and washed 96-well plates. For assay validation and 
titer calculation, each plate contained positive and negative controls (pool of 
healthy donor sera). After overnight incubation, plates were extensively 
washed with PBS 0.2% Tween 20 and rinsed with PBS. Plasma antigen- 
specific IgG was detected after incubation with alkaline-phosphatase– 
conjugated goat anti-human IgG (SouthernBiotech 2040-4, diluted 1/ 
4,500), revelation using AttoPhos substrate and buffer, and measurement 
using a fluorescence reader (BioTek Synergy). By linear regression, a 
reciprocal titer was calculated for each sample and for each antigen as the 
predicted or interpolated dilution value at which the titration curve 
meets a cutoff value (7). A positive significant result was defined as 
reciprocal titers >100 (RRID:SCR_019873). 

CyTOF 
Mass CyTOF analyses were performed on PBMCs using a harmonized protocol 
as described previously (8). Briefly, 1–5 � 106 thawed PBMCs were barcoded 
using palladium-based mass tags. Cells were then stained with a metal- 
conjugated antibody panel designed to characterize major immune subsets and 
surface activation markers, along with bead controls spiked in for data nor-
malization. FCS files underwent bead-based normalization, followed by the 
exclusion of Ce140+ beads and bead-cell doublets, Gaussian ion cloud multiplet 
fusion events, and Rh103+ dead cells. Major immune cell subsets were identified 
using a hierarchical clustering approach (Astrolabe Diagnostics, Inc) and fur-
ther confirmed using manual gating. The resulting tables contain cell number, 
cell frequency, and marker expression quantiles. Data were transferred to R for 
differential abundance and surface marker expression analysis using orloj, lme4, 
dream, and survival packages (RRID:SCR_021055, RRID:SCR_019916, RRID: 
SCR_019917, and RRID:SCR_021669). The panel of antibodies and reagents 
used for CyTOF are included in Supplementary Table S1. 

TCRseq 
We used the immunoSEQ Kit from the Adaptive Biotechnologies Cor-
poration that targets T-cell receptor beta chain (TCRβ) genes to enu-
merate rearranged TCRβ sequences in DNA isolated from PBMCs. The 
assay specifically targets the Complementarity Determining Region 3 
(CDR3) of human TCRβ gene sequences, formed by rearrangement of the 
Variable (V), Diversity (D), and Joining (J) gene segments and including 
nontemplate Nucleotide (N) insertions and deletions at the gene segment 
junctions. Application of the immunoSEQ Kit was analytically validated 
and performed by the MD Anderson Cancer Center CIMAC. The mini-
mum DNA input for the assay was 200 ng per sample. Specifically, the 

DNA was processed with immunoSEQ hsTCRB kit (cat # ISK10050) and 
Illumina MiSeq Reagent Kit v3 to generate libraries and sequenced by 
Illumina MiSeq Sequencing system (150 cycles). The resulting FASTQ 
files were processed with the Immunarch pipeline to obtain individual 
clonal quantifications. The resulting data was analyzed using R, lme4, 
dream, and survival packages (RRID:SCR_014709). 

Statistical analysis 

Quality controls 

The analysis for all datasets (Olink, Serology, CyTOF, and TCRseq) was 
performed in R software using a mixed linear model strategy to adjust for 
relevant clinical variables and demographics. The data distributions for 
markers and cell populations for all assays were investigated as part of 
routine quality control to identify biases and corrected as follows: (i) samples 
with more than 50% missing values in any analyte were excluded, (ii) Olink 
analytes that were less than the limit of detection in more than 50% of 
samples were excluded, and (iii) CyTOF cell populations unassigned by 
Astrolabe were ignored. QC analyses were used to identify biases such as low 
detection and poor-quality samples. 

Variance analysis 

Sample variance profiles were performed to assess the effect of covariates 
with assay data (Olink, Serology, CyTOF, and TCRseq) using the package 
variancePartition/Dream on R (9). Covariates with <5% effect on the model 
were excluded from modeling (RRID:SCR_001905, RRID:SCR_015654, and 
RRID:SCR_006442). 

Survival and Cox proportional hazard models 

Univariable and multivariable regression models were used to estimate the 
HRs and corresponding 95% confidence intervals for OS (overall survival) 
and PFS. Log-rank and Gehan–Breslow tests were used to assess the sig-
nificance of the difference between endpoints for OS and PFS. The uni-
variable models were used to determine which covariates should be kept in 
the multivariable models. Significance was defined as adjusted P values or 
FDR < 0.05. 

Adjust P values for multiple comparisons 

For multi-omic assays (Olink, Serology, and CyTOF), we applied moderate 
t test statistics. We adjusted P values using the Benjamini and Hochberg 
method (1995). This helps to control the FDR, the expected proportion of 
false discoveries among the rejected hypotheses. Nonetheless, throughout the 
manuscript, we show nominally significant results as P < 0.05 and adjusted 
P values represented as FDR < 0.05. 

Differential expression 

Differential protein expression analysis was performed in R using the 
packages dream and lme4 from bioconductor. The mixed effect models were 
built using the covariates shown in Fig. 1B. For Olink the independent 
variables were individual protein levels (NPX). For CyTOF, the independent 
variables were the surface markers with 95 quantile values. The results were 
visualized using pheatmap and ggplot2 packages. 

(Continued) reflected on the AUC values. H, Univariate PFS Cox modeling of Olink analytes. I, Univariate OS Cox modeling of Olink analytes. Both I 
and H, show on the x-axis the HR and the y-axis shows the �log10 (P values) based on the log-rank test. 
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Differential abundance 

We used the limma-dream-lme4 pipeline (9) in R to assess differential 
abundance between populations while modeling the covariates previously 
indicated in Fig. 1B. This approach was used for CyTOF and TCRseq. The 
clonal expansion populations were defined by Immunarch (10). T-cell clones 
were classified into four groups: clones that had little evidence of expansion 
(unique/small clones/nonexpanded, 1e�5 < x ≤ 1e�4% of total clones), 
clones with some or medium expansion (1e�4 < x ≤ 0.001% of total clones), 
clones with large expansion (0.001 < x ≤ 0.01% of total clones), and 
hyperexpanded clones (0.01 < x ≤ 1% of total clones). 

Correlation analyses 

We used cor, corrplot, pvclust, and hmisc packages in R-Stats to perform 
Pearson (linear) and Spearman (nonlinear) correlations between analytes 
and endpoints. 

Prediction of PFS using logistic regression 

We used the package RMS and ROCR available on R to build classifiers of 
PFS status using the Olink analytes as predictors and clinical variables as 
covariates. The internal validation was done using cross-fold five validation. 

Data availability 
All data is available upon request at the CIDC-CIMAC portal: https:// 
cidc.nci.nih.gov/ upon request. All code used for analysis is available upon 
request at https://github.com/eegk. Data used to generate figures shown in 
this article are attached as Supplementary Table S2, including data for Olink, 
CyTOF populations, Serology, and TCR beta chain frequency. 

Results 
Three consecutive treatment groups (BV + I, BV + N, or BV + I + N) were 
enrolled, representing 54 patients with available biospecimens evaluable for 
correlative markers (Fig. 1A). Blood samples were collected before treatment 
(baseline), during cycle 2 (C2D1), during patient re-evaluation (restaging), and 
after completion (off-study) to assess molecular and cellular baseline mea-
surements and changes over time on all available PBMC and plasma samples 
(Supplementary Table S1). We performed assay-specific quality control and 
variance profiling followed by a linear mixed effect model to identify differ-
ential markers across time, treatments, and responses (Fig. 1B). This approach 
allows to minimize the effects of stage and tumor size (bulky disease; ref. 11). 
Statistical significance was defined as FDR adjusted or unadjusted P values. 

Dynamic changes in peripheral blood plasma soluble 
analytes associated with treatment benefit 
Soluble protein analyte profiles were measured using a standardized panel of 
92 inflammation and immuno-oncology-related proteins (Olink) in all 54 
patients with available longitudinal plasma samples (Supplementary Table 
S1). First, we assessed significant changes from baseline related to treatment 
arms. Treatment with BV + I + N or BV + N led primarily to a durable 
increase in soluble PDCD1∗/PD1∗ levels, whereas BV + I induced increases 
from baseline for an array of T-cell effector and cytotoxicity-associated 
markers such as IFNγ, GZMA∗, GZMH, CD27, CD28, and IL12RB1 (∗FDR 
< 0.05 or P < 0.05; Fig. 1C and D; Supplementary Fig. S1). Treatments with 
BV + I also increased decoy and apoptotic markers CAIX∗, PTN, MICA/B, 

Gal9, and TRAIL (Fig. 1C; Supplementary Fig. S1), which was not observed 
after N-containing treatment. Conversely, levels of several circulating pro-
teins associated with inflammation, including CCL17∗, ANGPT2∗, MMP12∗, 
IL13∗, CXCL13∗, and CCL23, were high at baseline and showed a decrease 
over time associated with N-containing treatments but less so with BV + I 
(Fig. 1C). In addition, T-cell survival- and exhaustion-related cytokines 
(LAG3, TNFRSF4/OX40, CD8A, IL7, IL15, and PDL1) were decreased after 
nivolumab use but not in BV + I (Fig. 1C). Overall, the largest change from 
baseline was observed for soluble PCDC1/PD1 levels in N-containing ther-
apy groups, attributed in part to drug interaction in which nivolumab-bound 
PD1 may be stabilized in circulation (Fig. 1C and D). Still, even in the 
absence of nivolumab (BV + I group), soluble PD1 levels also increased from 
baseline to C2D1, suggesting immune activation. 

Next, we asked whether soluble analytes differed per timepoint between 
responders and nonresponders, using the best overall response achieved. Out 
of 54 patients, 49 had evaluable clinical response data. Responders were 
defined as those experiencing CR or partial response (n ¼ 43), whereas 
nonresponders had SD or PD (n ¼ 6). Analysis of clinical outcomes asso-
ciated with Olink data was assessed regardless of treatment group (BV + I, 
BV + N, BV + I + N) due to the low number of events per group. The levels 
of plasma CXCL13, CCL17, and VEGFA showed gradual decreases from 
baseline in responders, whereas they significantly increased in nonre-
sponders over time (Fig. 1E and F). Additionally, responders had lower ADA 
(adenosine–deaminase) and CD5 levels at baseline and stayed low 
throughout treatment, whereas nonresponders had spikes in ADA and CD5 
levels early on which normalized toward the end of the study (Fig. 1E and F). 

To analyze the impact of soluble plasma analytes on clinical benefit, we 
performed univariate and multivariate Cox regression (adjusted for age, sex, 
tumor stage, and treatment group) and Kaplan–Meier analyses of PFS, using 
baseline Olink measurements. PFS benefit was associated individually with 
above median levels of VEGFR2 (Fig. 2A). Conversely, higher than median 
levels of CXCL9 and MUC16 were associated with worse PFS (Fig. 2C–E). 
Multivariate Cox regression confirmed MUC16 association with worse HRs, 
independently from age or sex or stage (Fig. 2F). However, CXCL9 and 
VEGFR2 only showed trends in multivariate Cox regression (Fig. 2B and D), 
potentially due to the effect of Ann Arbor Stage (Fig. 2B, D, and F). 

To understand better the prognostic capabilities of these markers, we built a 
PFS classifier using clinical variables alone and combined with VEGFR2, 
MUC16, or CXCL9 (Fig. 2G). The results showed that indeed adding any of 
these three markers could predict progression better than clinical variables 
alone. Also, they showed that the area under the curve was the highest for 
VEGFR2 (0.75) followed by MUC16 (0.74), CXCL9 (0.73), PDL1 (0.70; 
selected as control), and clinical variables (0.68). 

Next, we compared the log-rank test with Cox modeling in PFS (Fig. 2H), 
orthogonally verifying the results for VEGFR2, MUC16, and CXCL9. This 
approach was applied to overall survival revealing an association of IL10, 
CCL19, VEGFR2, and TIE2 with better OS outcomes and CXCL10 and IFN- 
gamma with worst OS outcomes (Fig. 2I). However, these findings were not 
reproduced in multivariate analysis (Supplementary Table S3). 

In summary, we found potentially prognostic three markers associated 
with PFS outcomes, but we did not find a significant association with 
treatment, making it difficult to distinguish their predictive versus 
prognostic role. 
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Dynamic changes in peripheral blood immune cell 
subsets associated with treatment benefit 
PMBC-derived subpopulations were quantified using CyTOF from 51 pa-
tients with available cryopreserved biospecimens (Supplementary Table S1). 
Differences in 30 immune cell subsets and eight compartments (including a 
category for unidentified cells) were quantified simultaneously by semi- 
automated analysis using the Astrolabe and R platforms. The predominant 
immune compartments in blood were T cells, followed by neutrophils, 
monocytes, and B Cells (Fig. 3A). Treatments with nivolumab led to an 
increase in plasmacytoid dendritic cells (pDC) in the bloodstream (FDR < 
0.05; Fig. 3B–E). Plasmablast B cells also showed a transient increase from 
baseline across all three therapy groups, with the most significant increase 
observed in BV + I after the initial treatment cycle (Fig. 3B and C). Addi-
tionally, neutrophils and näıve CD4+ T cells showed significant treatment- 
dependent but divergent changes from baseline, occurring in BV + N versus 
other combinations (Fig. 3D–F). Specifically, näıve CD4+ T cells decreased 
after one cycle of BV + I but increased at the end of BV + N, whereas 
neutrophils decreased after one cycle of BV + N but increased at the end of 
BV + I + N (Fig. 3D–F). When comparing treatment groups per timepoint, 
differences in cellular abundance were found at baseline in CD14+ CD16+ 

monocytes, neutrophils, CD4+ TEMRA cells, and CD56+ CD16+ NK cells 
(Fig. 3G), pointing to potential imbalances prior to treatment in these 
nonrandomized patients. Posttreatment memory B cells were significantly 
more abundant in BV + N versus others, whereas neutrophils were more 
frequent in BV + I + N versus others (Fig. 3H). Overall, nivolumab- 
containing regimens seemed to significantly raise levels of antigen- 
presenting cells (pDCs, Fig. 3E–H), whereas the triplet combination resul-
ted in higher inflammatory cell subsets (neutrophils, Fig. 3F–H). 

Differential expressions of peripheral immune cell 
surface markers associated with treatment benefit 
PBMC subsets were also evaluated by CyTOF for inducible surface markers 
and changes in their expression. Durable decrease in PD1 expression in 
various T-cell subsets (CD8+ & CD4+) was seen after nivolumab treatments 
compared with BV + I (Supplementary Fig. S2A and S2B), attributed to 
known masking of epitope accessibility after nivolumab administration, 
which prevents PD1 detection during the assay, rather than to a biological 
observation. Reduced expression of other cell surface markers was associated 
with nivolumab treatments relative to ipilimumab, including HLA-DR (on 
memory B cells, CD4+ CD8+ T cells), CD45RA (on memory B cells), CD39 
(on memory B cells, CD27� B cells), CD8 (on CD56+ CD16+ NK cells), 
CD57 (on CD56+ CD16� NK cells, type 2 CD1c+ dendritic cells), and CD95 
(on CD14� CD16+ monocytes; Supplementary Fig. S2A and S2B). 

When analyzing surface expression changes by response to treatment, CD56 and 
CD45 levels on NKT cells were found lower in nonresponders at baseline 
(Supplementary Fig. S2C and S2D). Similarly, CD57 expression on CD8+ TEMRA 

started lower and increased in nonresponders over time (Supplementary Fig. S2C 
and S2D). Interestingly, pharmacodynamic changes posttreatment in CXCR3 
expression on pDC showed higher expression in responders compared with 
nonresponders (Supplementary Fig. S2C and S2D). In summary, CXCR3 could 
be useful as an activation marker on pDC in responders, whereas TEMRA ex-
pression of CD95 and CD57 was associated with resistance. 

Circulating antibodies to tumor-associated antigens 
associated with treatment benefit 
Autoantibody (AuAb) profiling of common tumor-associated antigens was 
performed in longitudinal plasma samples from all 54 patients using ELISA 
Grand Serology for IgG titers against a series of 19 full-length recombinant 
proteins (Supplementary Table S1). At multiple time points in each therapy 
group, tumor-associated antibodies were detected in responders and nonre-
sponders (Fig. 4A). NY-ESO-1 AuAbs were detected in more than 40% of 
patients who were nonresponders, from baseline and at all four time points 
(Fig. 4B). In comparison, although prevalent at baseline, NY-ESO-1 AuAbs were 
absent in more than 90% of responder patients after treatment initiation. Anti-
body titers for NY-ESO-1 were more often not detected (negative) and had lower 
average titers in responders than nonresponders at all time points (Fig. 4B). 

T-cell clonal expansion association with treatment 
benefit 
T-cell clones derived from PBMCs TCR Vβ were classified into two groups: 
clones that had little evidence of expansion (unique/small clones/non-
expanded, ≤1e�4% of total clones) and clones with evidence of expansion 
(>1e�4%). We used two standardized metrics (clonal expansion and di-
versity) for investigating the association of clonality with treatment or re-
sponse. There were no significant differences in clonal diversity over time 
except an increase in BV + N at restaging compared with baseline (P < 0.05; 
Fig. 4C). However, clonal overlap increased during treatment regardless of 
treatment type (P < 0.05; Fig. 4D). There was no significant difference be-
tween clonal expansion between BV + I + N, BV + N, and BV + I (Fig. 4E). 
When looking at clinical benefit, the percentage of expanded clones was 
higher in responders versus nonresponders at C2D1 (P < 0.05) but not at 
other time points (Fig. 4F). Finally, clonal diversity was increased in re-
sponders compared with nonresponders at restaging and off-study, which 
approached but did not reach statistical significance (P > 0.05; Fig. 4G). 
Overall, evidence of clonal expansion and clonal overlap following treatment 
was found, with marginal contribution to clinical benefit. 

Biomarkers association with AEs 
Although variations in the number of AEs were reported among BV + I + N, 
BV + N, and BV + I treatments, our analysis did not reveal a significant 
association between AEs and biomarkers in any of the assays. We meticulously 
excluded unlikely related and unrelated AEs, focusing on grades 3 to 5 and dose- 

(Continued) no statistical difference between the treatments due to the observed large variances (patient heterogeneity). D, Boxplots showing an 
increase in clonal overlap over time for all three treatments. P values were estimated using the Wilcoxon rank test. E, Clonal expansion was stratified 
into unique and expanded clones (black and orange, respectively). The stacked barplot shows the average percent of each clonal expansion class over 
time and per treatment arm. There were no statistical differences identified between treatment arms. F, Boxplots showing the percent abundance of 
only expanded clones shown for responders and nonresponders over time. There were no significant differences between these two groups except 
for C2D1 using the Wilcoxon rank test. G, Clonal diversity boxplots comparing responders and nonresponders. Overall, responders had a higher 
diversity, yet it did not reach statistical significance. 
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limiting toxicities with the greatest clinical impact. The complexity of associating 
AEs with biomarkers stems from intricate interactions involving genetic pre-
dispositions, environmental influences, and individual response variations. 

Discussion 
In this study, we examined peripheral molecular and cellular markers for their 
ability to distinguish differential treatment response and PFS in patients with R/R 
HL treated with a combination of single or dual checkpoint inhibitor with ADC 
(Supplementary Fig. S3). Our findings contribute to the understanding of the 
immune landscape of HL using rigorously validated and harmonized multi-omics 
technological platforms for immune monitoring of novel therapies. The over-
arching goal of these research efforts was to identify potential immune signatures 
for risk stratification and therapeutic decision-making for patients with HL treated 
with immunotherapy (12). Soluble plasma or serum proteins have previously been 
reported as capable of distinguishing HL from healthy patients through immune 
response-related markers such as PDL1, CCL17, CCL3, IL13, MMP12, TNFRS4, 
and LAG3 (13). We found proteins that increased in plasma posttreatment, par-
ticularly enriched in cytotoxicity-related markers (IFNγ, GZMA/H, and CD244) 
following treatment with I-containing arms, whereas decreases in stromal-derived 
factors, such as CCL17, ANGPT2, IL13, and CXCL13 were observed in 
N-containing arms. Interestingly, higher levels of CCL17, as well as ADA, 
CXCL13, CD5, and VEGFA, were associated with a lack of treatment response, 
regardless of treatment type. Some of these proteins have been previously associ-
ated with adverse HL outcomes: CCL17 from tumors, also known as TARC (14, 
15); CXCL13 in PD1+ T cells (16); and VEGF in tumors (17, 18). Furthermore, 
elevated levels of these proteins have been linked to HL compared with healthy 
controls (19). Despite constitutive expression of PDL1 in HL and reports of serum 
PDL1 as a potential predictor of response (11, 20, 21), we did not observe soluble 
PDL1 as a clinically relevant marker in plasma. Interestingly, the strongest markers 
of progression were ADA and CD5, which were transiently elevated early post-
treatment (C2D1) in nonresponders. Although these markers had not been pre-
viously shown as prognostic in HL, there is literature showing ADA and its ligand 
CD26 as higher in ALK-positive NHL and HL (22) as well as being associated with 
poor outcomes in other tumor types (23). 

Importantly, despite high CR rates, many patients recur, and therefore, PFS may 
be a better prognostic marker of durable benefit. We identified elevated plasma 
CXCL9 and MUC16 at baseline and reduced VEGFR2 as associated with worse 
PFS. MUC16, also known as CA125, has been extensively described as a marker 
associated with progression in solid tumors (24), but it is underexplored in HL. 
The amount of soluble VEGFR2 may contribute to how much ligand is available 
for tumor growth and vascularization. It is also not clear why CXCL9 levels, 
which increase with immunotherapy, had a negative impact on PFS, but it could 
reflect patients with higher prior lines of treatment, because CXCL9 levels are 
affected by prior immunotherapies, or represent higher baseline inflammation, 
which has been described to be a poor predictor (25). Lymphoma cytogenetic 
features, including tumor mutation burden, could also affect the analytes mea-
sured in blood, but unfortunately, data from tumor tissue was not available for 
our analysis at the current time. Overall, our study validates previous studies and 
suggests novel soluble proteins associated with treatment resistance. 

Although the potential role of CD4+ T cells as inflammatory/immune regulators 
in HL has previously been associated with response (26, 27), we found no changes 
in effector or regulatory CD4+ T cells except CD4+ TEMRA and NK cells differ-
entially prevalent at baseline across treatment groups. Additionally, increased B 

memory cells and neutrophils were associated with treatment (highest in BV + I + 
N), both of which have been associated with refractory disease (27). Interestingly, 
pDCs were generally highly increased with all treatments, and CXCR3 induction 
on pDC was associated with a favorable response to treatment. Although pDCs are 
generally rare, they are usually reliably identified due to their distinct lineage 
markers. Because CXCR3-ligands CXCL9 and CXCL10 were detected in the cir-
culation of patients with poor survival, we speculate that they may reduce CXCR3 
pDC from circulation due to homing to tissues. In contrast, CXCR3 pDC in blood 
would be expected to be more prevalent with low CXCL9/10. The data may 
indicate that pDCs have a pathogenic role in HL, as has been previously observed 
with increased circulating pDCs with favorable response to treatment of HL (28). 

Patients with resistance to treatment also had increased levels of surface 
markers CD56 on NKT, CD57, and CD95 on CD8+ TEMRA, which may 
indicate improper differentiation of effectors. CD57 has been associated with 
terminal differentiation and senescence of NK cells, and our data suggests 
the expansion of this phenotype over time in nonresponders. Although 
provocative, these observations require prospective validation (29–32). T-cell 
clonal expansion is widely reported as a prognostic signature of response in 
patients with HL (33, 34), specifically when associated with the expansion of 
CD4+ T cells or gamma delta T cells (35). Patients with clonally expanded 
T cells at baseline confirmed some of these observations, and we also ob-
served trends of increase in clonal diversity over time, although it did not 
reach statistical significance potentially due to patient heterogeneity. 

Our study also investigated the impact of tumor-specific autoantibody 
(AuAb) profiles on drug mechanisms and outcomes. NY-ESO-1, MAGEA4, 
PRAME, and SSX2 are potential cancer–testis antigens that have been as-
sociated with HL in various studies and tested in clinical trials (36). Evidence 
in solid tumors suggests that patients with NY-ESO-1 preexisting immunity 
fare better than NY-ESO-1 seronegative patients after checkpoint blockade 
(37). Here, we observed the opposite, with nonresponders enriched in 
NY-ESO-1 Ab at baseline (Fig. 4A), although a small fraction (<15%) of 
responders also showed the presence of NY-ESO-1 AuAb (Fig. 4B). Like 
other cancer–testis antigens, NY-ESO-1 expression in cancer is induced by 
DNA hypomethylation and histone acetylation (38). Antibodies could 
therefore be a surrogate for more aggressive tumors, which we could not 
confirm due to the absence of tissues to correlate antigen presence. Although 
past studies have failed to link clinical benefit to the expression of these 
cancer–testis antigens in HL (39), more recent attempts at harnessing T-cell 
response via adoptive transfer have demonstrated safety and preliminary 
efficacy of targeting cancer–testis antigens (40). Therefore, considering the 
role of endogenous immunity using cancer-related plasma circulating AuAb 
could be useful and would be warranted in future studies. 

Important limitations of this study include the absence of available tumor 
tissues to investigate the source or impact of peripheral markers on the 
tumor microenvironment. In addition, it is important to note that patients 
were not randomly assigned to treatment groups and that attrition of 
available samples occurred with time. Nevertheless, the statistical modeling 
strategy used allows minimization of these biases by incorporating fixed and 
random effects. Additionally, the large imbalance in responders versus 
nonresponders precluded treatment-specific analyses of clinical benefit, 
which were only evaluated for the entire cohort. Finally, we could not 
properly quantify neutrophil counts, known to be prognostic in HL, because 
cellular assays were conducted with PBMCs, though qualitative differences 
could still be assessed in neutrophils surviving density gradient purification. 
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In summary, we found that elevated circulating plasma proteins CXCL13, ADA, 
CXCL9, MUC16, and CCL17 as well as NY-ESO-1 autoantibodies were asso-
ciated with poor outcomes to treatment with BV combined with I, N, or both. 
Together, it is possible that elevated baseline levels of plasma CXCL9, the 
presence of tumor-related NY-ESO-1 autoantibodies, and reduced plasma 
VEGFR2 highlight heavily pre-treated tumors that may exhibit primary resis-
tance to treatment despite the presumed presence of immune infiltration and 
recognition. In addition, markers increasing from baseline in patients progress-
ing through treatment include CXCL13, CCL17, and reduced clonal T-cell di-
versity, likely reflecting increasing tumor burden and activation of a Tfh axis 
previously associated with poor prognosis of lymphocyte-rich HL (16). Reduced 
cytotoxicity-related markers on NKT and TEMRA were also seen at the start of 
treatment in patients with poor outcomes, whereas increases in circulating 
CXCR3 pDCs were associated with favorable response, as also observed inde-
pendently (28). These results suggest drug-related mechanistic effects on immune 
cell activity that could contribute to treatment sensitivity or response versus 
resistance, and potentially impact treatment decision-making. If validated these 
findings may also suggest novel therapeutic strategies. The phase 2 component of 
this clinical trial (NCT01896999) has concluded enrollment, and we will pro-
spectively validate the immune markers identified in this study. If validated, these 
may be important tools for a personalized approach to immunotherapy in HL. 
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