Table 4.
Source | Microorganism (Phylum) | Metal Tolerance | Precipitate | Immobilization Efficacy | Reference |
---|---|---|---|---|---|
Bacteria | |||||
United Kingdom: Culture collection |
Sporosarcina pasteurii (Firmicutes) |
PbCl2, 1.0 mM ZnCl2, 0.5 mM CuCl2, 0.5 mM CdSO4, 0.06 mM |
PbCO3 CaCO3 Biotic/Abiotic ~pH9.0 |
(Mugwar and Harbottle, 2016) | |
USA: Culture collection |
Sporosarcina pasterii (ATCC 6452) | Pb(NO3)2, 10–40 mM | (PbCl)2CO3 PbCl(OH) PbCO3 Pb3(CO3)2(OH)2 CaCO3 PbCl2 (Abiotic) |
(Jiang et al., 2019) | |
South Korea: Culture collection |
Sporosarcina pasterii (KCTC 3558) | Pb(CH3COO2), 0.01–1 mM CuCl2, 0.01–1 mM ZnCl2, 0.01–1 mM Cd(C2H3O2)2, 0.01–1 mM SrCl2, 1–30 mM |
PbCO3 (Cerussite) CaCO3 (Aragonite, Calcite, Vaterite) pH >9.0 ZnCO3 pH >8.5 CdCO3 pH >9.0 (Sr,Ca)CO3 pH>9.0 |
>99% Pb 30% Zn 60% Cu 43.2–60% Cd >99% Sr |
(Kim et al., 2021) |
Germany: Culture collection |
Sporosarcina pasteurii (DSM 33) | Pb, 342 mg kg−1 Zn, 235 mg kg−1 Cd, 6.8 mg kg−1 |
PbCO3 CaCO3 ZnCO3 CdCO3 |
(Liu et al., 2021) | |
USA: Culture collection |
Sporosarcina pasterii (ATCC 11859) | Pb(NO3)2, 25 mg/L CdCl2, 5.6 mg/L |
Pb3(CO3)2(OH)2 (Hydrocerussite) PbCO3 CdCO3 CaCO3 (Calcite) |
(Zeng et al., 2021) | |
China: Culture collection |
Sporosarcina pasterii | PbCl2, 10–50 mM | ~100% Pb | (Xue et al., 2022) | |
China & USA: Culture collection & garden soil |
Sporosarcina pasteurii ATCC 11859 Sporosarcina globispora UR53 Sporosarcina Koreensis UR47 Sporosarcina sp. R-31323 (UR31) Terrabacter tumescens AS.1.2690 (Actinobacteria) Bacillus lentus UR41 (Firmicutes) |
PbCl2, 2 mg ml−1 NiCl2, 2 mg ml−1 CuCl2, 2 mg ml−1 CoCl2, 2 mg ml−1 ZnCl2, 2 mg ml−1 CdCl2, 2 mg ml−1 |
PbCO3 NiCO3 CuCO3 CoCO3 ZnCO3 CdCO3 pH 8–9 |
100% Pb 88% Ni 91% Cu 91% Co 95% Zn 97% Cd |
(Li et al., 2013) |
South Korea: Abandoned mine soil |
(Firmicutes) Sporosarcina soli B-22 Viridibacillus arenosi B-21 Lysinibacillus sphaericus KJ-64 Sporsacina pasteurii WJ-2 (Proteobacteria, Gamma-) Enterobacter cloacae KJ-46 |
PbCl2, 3000 mg L−1 CoCl2, 300–3000 mg L−1 CoSO4, 300–3000 mg L−1 CuSO4, 300–3000 mg L−1 CuCl2, 300–1000 mg L−1 FeCl3, 3000–1000 mg L−1 FeSO4, 300–3000 mg L−1 CdCl2, 300–3000 mg L−1 BaCl2, 2000–3000 mg L−1 SrCl2, 3000 mg L−1 ZnSO4, 300–3000 mg L−1 |
PbCO3 CaCO3 C4CuO4 Zn(OH)2 |
(Kang and So, 2016) | |
Mexico: Mine tailings (mg/kg) As, 1140–11,800 Pb, 10100–43,700 Zn, 780–10,000 Cd, 8–780 Cu, 72–1320 Fe, 6000–12,300 |
Sporosarcina luteola (UB3 & UB5) | AsV, CrVI, Fe3+, Fe2+, Co2+, Rb+ Sb3+; 25–50 mM Mn2+, AsIII, Cu2+, Ni2+, Ba2+; 5–10mM Pb2+, Cd2+, Zn2+, Hg2+, Te4+, Ag+; <1mM |
PbCO3 (Cerussite) CaCO3 (Calcite, Vaterite) MnCO3 (rhodochrosite) Mg5(CO3)4(OH)2 (hydromagnesite) CdCO3 (otavite) SrCO3 (strontianite) BaCO3 (witherite) Zn5(CO3)2(OH)6 (hydrozincite) pH 8.7–9.0 |
(Cuaxinque-Flores et al., 2020) | |
USA: Mine discharge sediment ~102 mg/L As ~101 Cd ~103 Cu ~103 Zn |
Consortium Sporosarcina spp., 95% Acidovorax spp., 3% (Proteobacteria, -Beta) |
Pb2+, ~103-104 mg L−1 | Precipitation (not identified) pH>8.0 |
(Proudfoot et al., 2022) | |
China: Culture collection |
Terrabacter tumescens A12 (Actinobacteria) |
PbCl2, 2 mg ml−1 NiCl2, 2 mg ml−1 CuCl2, 2 mg ml−1 CoCl2, 2 mg ml−1 ZnCl2, 2 mg ml−1 CdCl2, 2 mg ml−1 |
PbCO3 CaCO3 NiCO3 CuCO3 CoCO3 ZnCO3 CdCO3 pH 9.0 |
99% Pb 90% Ni 90% Cu 91% Co 97% Zn 99% Cd 99% Ca |
(Li et al., 2016a) |
China: Electronic waste |
Lysinibacillus sp. (GY-3) | PbCl2, 20–1000 ppm PbCl2, 20–200 ppm CuCl2, 20–100 |
Precipitation (not identified) | 87.5–100% Pb 80.6–98.7% Cu |
(Li et al., 2021) |
China: Mining area soil |
Kocuria flava CR1 (Actinobacteria) | Pb(NO3)2, 50 mM Pb, 100 mg kg−1 |
PbCO3 CaCO3 (Calcite, Vatarite) |
83.4% Pb | (Achal et al., 2012) |
South Korea: Pb contaminated mine tailings soil Pb, 1050 mg/kg Zn, 431 mg/kg Cu, 93 mg/kg As, 65 mg/kg |
Bacillus sp. KK1 | Pb(NO3)2, 300 mg/L ZnCl2, 150 mg/L CuCl2, 650 mg/L As, 150 mg/L (Mine tailing soil) |
PbCO3 PbSiO3 (Alamosite) PbS |
(Govarthanan et al., 2013) | |
China: Lake water |
Exiguobacterium sp. (JBHLT-3; Firmicutes) | PbCl2, 1mM | PbCO3 CaCO3 (Calcite, Vaterite (saltwater) |
89% Pb | (Bai et al., 2021) |
South Korea: Abandoned metal mine soil |
Enterobacter cloacae KJ-47 & KJ-46 | 100 Mm PbCl2 (MIC) | PbCO3 | 60% Pb | (Kang et al., 2015) |
Japan: Soil near beachrock |
Pararhodobacter sp. (Proteobacteria, -Alpha) |
PbCl2, 1036 mg L−1 | PbCO3 CaCO3 (Calcite & Vaterite) Biotic/Abiotic pH 8.8 |
100% PB | (Mwandira et al., 2017) |
Egypt: Soil |
Micrococcus sp. NCTC-1716 or WD-9 (Actinobacteria) |
Pb(NO3)2, 5 mM CdSO4, 2mM ZnCl2, 3 mM FeSO4, 3 mM |
PbCO3 CaCO3 ZnCO3 CdCO3 FeCO3 pH 9 |
61% Cd 97% Pb 75% Zn 88% Fe |
(Gomaa, 2019) |
China: Heavy metal contaminated soil from industrial area |
Staphylococcus epidermis HJ2 (Firmicutes) | PbCl2, 50 mg l−1 K2Cr2O7, 50 mg l−1 |
PbCO3 CaCO3 pH >9.0 |
86% Pb 76.8% Cr |
(He et al., 2019) |
Egypt: Culture collection |
Proteus mirabilis (10B) | Pb, 350 ppm Hg, 350 ppm |
PbCO3 Pb2O CaPbO3 Hg2O (Aerobic/Anaerobic) pH 8.4 |
95.2% Pb 92% Hg 98.4% Ca |
(Eltarahony et al., 2020) |
Bacteria & Eukaryota | |||||
Nigeria: Coal mine drainage |
Proteobacteria (51%) Bacteroidetes (19%) Ascomycota (61%) Ciliophora (13%) |
Pb, 326 mg L−1 Cd, 95.0 As, 307.6 Ni, 28.8 Co, 27.3 acid mine drainage |
Heavy metal carbonate precipitates pH >8.2 |
94.8% Pb 96.3% Cd 88.9% As 90.6% Ni 27.3% Co |
(Oyetibo et al., 2021) |
Egypt: Culture collection |
Metschnikowia pulcherrima (29A) Raoultella planticola (VIP; Proteobacteria, Gamma-) Alcaligenes faecalis (46N) Bacillus aryabhattai (39A) Ochrobactrum sp. (CNE2) Streptomyces cyaneofuscatus (EM3) |
VIP & 29A: Pb(CH3COO)2 & HgCl2, 700 ppm 39A, 46N, EM3, CNE2: inhibited by Pb(CH3COO)2 & HgCl2, 175 ppm |
CaPbO3 PbCO3 (Cerussite) CaHgO2 HgO |
100% Pb 100% Hg >95% Ca |
(Eltarahony et al., 2021) |
Eukaryota | |||||
Australia: Karstic cave |
Aspergillus sp. (UF3) Fusarium oxysporum (UF8) |
PbNO3, 10–100 mM SrCl2, 10–100 mM |
PbCO3 Pb2OCO3 CaCO3 (Aragonite, Vaterite, Calcite) SrCO3 |
(Dhami et al., 2017) | |
China: Contaminated cement sludge Pb, 366 mg/kg Cr, 91.4 mg/kg |
Penicillium chrysogenum (CS1) | Pb(CH3COO)2, 400 mg l−1 K2Cr2O7, 100 mg l−1 |
Pb3(CO3)2(OH)2 (Hydrocerussite) CaCO3 (Calcite & Vaterite) Calcium chromium oxide carbonate pH 9.22 & 8.47 |
98% Pb 39–65% Cr |
(Qian et al., 2017) |