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Abstract 
We present a genome assembly from a specimen of Spisula 
subtruncata (the cut surfclam; Mollusca; Bivalvia; Venerida; Mactridae). 
The genome sequence is 930.8 megabases in span. Most of the 
assembly is scaffolded into 19 chromosomal pseudomolecules. The 
mitochondrial genome has also been assembled and is 19.64 
kilobases in length.
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Species taxonomy
Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria;  
Protostomia; Spiralia; Lophotrochozoa; Mollusca; Bivalvia; 
Autobranchia; Heteroconchia; Euheterodonta; Imparidentia;  
Neoheterodontei; Venerida; Mactroidea; Mactridae; Spisula;  
Spisula subtruncata (da Costa, 1778) (NCBI:txid31202).

Background
Surf clams (Mactridae) are commonly eaten worldwide and  
are an important fisheries resource (Degraer et al., 2007;  
Fahy et al., 2003; Kuykendall et al., 2017). Spisula subtruncata  
is one of three British Spisula species and is found in silty  
muddy sand from the low intertidal and shallow shelf depths 
around the UK. S. subtruncata is a filter feeder, preferring 
silty or muddy sands and has a northeast Atlantic distribution 
which extends from Norway and south to Spain continuing into  
the Mediterranean (GBIF Secretariat, 2024).

Spisula subtruncata has a thick, solid shell but the outline is  
variable, and two forms exist. One is very fat, squat with large, 
swollen umbones and a sculpture of heavy concentric lines, 
the anterior dorsal margin is shorter than the posterior dorsal 
and the posterior margin is subtruncate. The other form is more  
elongated, has finer concentric lines but also has a subtruncate  
posterior margin. In both forms the pallial sinus is short,  
moderately curved and points towards the anterior margin. The 
shell is white or cream and is covered with a thin, pale brown  
periostracum covering it, which wears off in patches (Degraer  
et al., 2007).

S. subtruncata can be confused with a non-native species that  
has been discovered in the UK – Mulinia lateralis. This American  
species was first discovered in Europe in 2017 and has  
recently been discovered in the UK (Holmes et al., 2023).  
The non-native has a distinct radial ridge on the posterior  
margin, enabling a distinction between the two species.

Here we present a chromosomal-level whole genome sequence 
for Spisula subtruncata, based on a specimen from Plymouth  
Sound, Devon, UK.

Genome sequence report
The genome was sequenced from a specimen of Spisula  
subtruncata (Figure 1) collected from Drakes Island East,  
Plymouth Sound, Devon, UK (50.35, –4.15). A total of 31-fold  
coverage in Pacific Biosciences single-molecule HiFi long 
reads was generated. Primary assembly contigs were scaffolded 
with chromosome conformation Hi-C data. Manual assembly  
curation corrected 98 missing joins or mis-joins and removed  
73 haplotypic duplications, reducing the assembly length by 
3.71% and the scaffold number by 29.63%, and decreasing  
the scaffold N50 by 2.99%.

The final assembly has a total length of 930.8 Mb in  
151 sequence scaffolds with a scaffold N50 of 48.3 Mb  
(Table 1). The snail plot in Figure 2 provides a summary of the 
assembly statistics, while the distribution of assembly scaf-
folds on GC proportion and coverage is shown in Figure 3.  

The cumulative assembly plot in Figure 4 shows curves for  
subsets of scaffolds assigned to different phyla. Most (99.25%) 
of the assembly sequence was assigned to 19 chromosomal-level  
scaffolds. Chromosome-scale scaffolds confirmed by the Hi-C  
data are named in order of size (Figure 5; Table 2). While 
not fully phased, the assembly deposited is of one haplotype.  
Contigs corresponding to the second haplotype have also been 
deposited. The mitochondrial genome was also assembled 
and can be found as a contig within the multifasta file of the  
genome submission.

The estimated Quality Value (QV) of the final assembly is  
67.8 with k-mer completeness of 100.0%, and the assembly  
has a BUSCO v completeness of 80.0% (single = 78.5%,  
duplicated = 1.5%), using the mollusca_odb10 reference set  
(n = 5,295).

Metadata for specimens, BOLD barcode results, spectra  
estimates, sequencing runs, contaminants and pre-curation  
assembly statistics are given at https://links.tol.sanger.ac.uk/ 
species/31202.

Methods
Sample acquisition and nucleic acid extraction
A Spisula subtruncata (specimen ID MBA-211006-016A, 
ToLID xbSpiSubt1) was collected from Drakes Island East,  
Plymouth Sound, Devon, UK (latitude 50.35, longitude –
4.15) on 2021-10-06 using a Van Veen grab (RV Sepia). The  
specimen was collected by Patrick Adkins (Marine Biological  
Association) and Andrew Mackie (Amgueddfa Cymru)  
and identified by Anna Holmes (Amgueddfa Cymru) and  
preserved in liquid nitrogen.

The specimens used for Hi-C sequencing (specimen ID  
MBA-211008-004E, ToLID xbSpiSubt5) and RNA sequenc-
ing (specimen ID MBA-211008-004J, ToLID xbSpiSubt10)  
were collected from Cawsand Bay, Devon, UK (latitude 50.33, 
longitude –4.19) on 2021-10-08 using a Van Veen grab (RV 
Sepia). The specimens were collected by Teresa Darbyshire and  
Anna Holmes (both Amgueddfa Cymru) and identified by  
Anna Holmes and preserved in liquid nitrogen.

Figure 1. Photograph of the Spisula subtruncata (xbSpiSubt1) 
specimen used for genome sequencing.
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Table 1. Genome data for Spisula subtruncata, xbSpiSubt1.1.

Project accession data

Assembly identifier xbSpiSubt1.1

Species Spisula subtruncata

Specimen xbSpiSubt1

NCBI taxonomy ID 31202

BioProject PRJEB61702

BioSample ID SAMEA110450095

Isolate information xbSpiSubt1 (PacBio DNA sequencing) 
xbSpiSubt5 (Illumina Hi-C sequencing) 
xbSpiSubt10 (Illumina RNA sequencing)

Assembly metrics* Benchmark

Consensus quality (QV) 67.8 ≥ 50

k-mer completeness 100.0% ≥ 95%

BUSCO** C:80.0%[S:78.5%,D:1.5%], 
F:4.3%,M:15.7%,n:5,295

C ≥ 95%

Percentage of assembly 
mapped to chromosomes

99.25% ≥ 95%

Sex chromosomes None localised 
homologous pairs

Organelles Mitochondrial genome: 19.64 kb complete single 
alleles

Raw data accessions

PacificBiosciences Sequel 
IIe

ERR11279106

Hi-C Illumina ERR11439628

PolyA RNA-Seq Illumina ERR11439629

Genome assembly

Assembly accession GCA_963678985.1

Accession of alternate 
haplotype

GCA_963678955.1

Span (Mb) 930.8

Number of contigs 590

Contig N50 length (Mb) 4.0

Number of scaffolds 151

Scaffold N50 length (Mb) 48.3

Longest scaffold (Mb) 75.87
* Assembly metric benchmarks are adapted from column VGP-2020 of “Table 1: Proposed 
standards and metrics for defining genome assembly quality” from Rhie et al. (2021).
** BUSCO scores based on the mollusca_odb10 BUSCO set using version v5.4.3. C = complete 
[S = single copy,  D = duplicated], F = fragmented, M = missing, n = number of orthologues in 
comparison. A full set of BUSCO scores is available at https://blobtoolkit.genomehubs.org/view/
Spisula_subtruncata/dataset/GCA_963678985.1/busco.

The workflow for high molecular weight (HMW) DNA  
extraction at the Wellcome Sanger Institute (WSI) Tree of  
Life Core Laboratory includes a sequence of core procedures: 
sample preparation; sample homogenisation, DNA extraction,  
fragmentation, and clean-up. In sample preparation at the  
WSI Tree of Life Core Laboratory, the xbSpiSubt1 sample was 
weighed and dissected on dry ice (Jay et al., 2023). Somatic  

tissue was homogenised using a PowerMasher II tissue disruptor 
(Denton et al., 2023a).

HMW DNA was extracted in the WSI Scientific Operations  
core using the Automated MagAttract v2 protocol (Oatley  
et al., 2023). The DNA was sheared into an average fragment  
size of 12–20 kb in a Megaruptor 3 system with speed  
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Figure 2. Genome assembly of Spisula subtruncata, xbSpiSubt1.1: metrics. The BlobToolKit snail plot shows N50 metrics and BUSCO 
gene completeness. The main plot is divided into 1,000 size-ordered bins around the circumference with each bin representing 0.1% 
of the 930,862,144 bp assembly. The distribution of scaffold lengths is shown in dark grey with the plot radius scaled to the longest 
scaffold present in the assembly (75,865,956 bp, shown in red). Orange and pale-orange arcs show the N50 and N90 scaffold lengths 
(48,288,179 and 34,259,483 bp), respectively. The pale grey spiral shows the cumulative scaffold count on a log scale with white scale lines 
showing successive orders of magnitude. The blue and pale-blue area around the outside of the plot shows the distribution of GC, AT 
and N percentages in the same bins as the inner plot. A summary of complete, fragmented, duplicated and missing BUSCO genes in the 
mollusca_odb10 set is shown in the top right. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/
Spisula_subtruncata/dataset/GCA_963678985.1/snail.

setting 31 (Bates et al., 2023). Sheared DNA was purified by 
solid-phase reversible immobilisation (Strickland et al., 2023):  
in brief, the method employs a 1.8X ratio of AMPure PB  
beads to sample to eliminate shorter fragments and concen-
trate the DNA. The concentration of the sheared and purified 
DNA was assessed using a Nanodrop spectrophotometer and  
Qubit Fluorometer and Qubit dsDNA High Sensitivity  
Assay kit. Fragment size distribution was evaluated by running  
the sample on the FemtoPulse system.

RNA was extracted from tissue of xbSpiSubt10 in the Tree  
of Life Laboratory at the WSI using the RNA Extraction:  
Automated MagMax™ mirVana protocol (do Amaral et al., 
2023). The RNA concentration was assessed using a Nanodrop  
spectrophotometer and a Qubit Fluorometer using the  
Qubit RNA Broad-Range Assay kit. Analysis of the integrity 

of the RNA was done using the Agilent RNA 6000 Pico Kit and  
Eukaryotic Total RNA assay.

Protocols developed by the WSI Tree of Life laboratory are  
publicly available on protocols.io (Denton et al., 2023b).

Sequencing
Pacific Biosciences HiFi circular consensus DNA sequencing  
libraries were constructed according to the manufacturers’ 
instructions. Poly(A) RNA-Seq libraries were constructed using  
the NEB Ultra II RNA Library Prep kit. DNA and RNA  
sequencing was performed by the Scientific Operations core at 
the WSI on Pacific Biosciences Sequel IIe (HiFi) and Illumina  
NovaSeq 6000 (RNA-Seq) instruments. Hi-C data were also 
generated from tissue of xbSpiSubt5 using the Arima2 kit and  
sequenced on the Illumina NovaSeq 6000 instrument.
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Figure 3. Genome assembly of Spisula subtruncata, xbSpiSubt1.1: BlobToolKit GC-coverage plot. Sequences are coloured by phylum. 
Circles are sized in proportion to sequence length. Histograms show the distribution of sequence length sum along each axis. An interactive 
version of this figure is available at https://blobtoolkit.genomehubs.org/view/Spisula_subtruncata/dataset/GCA_963678985.1/blob.

Genome assembly and curation
Assembly was carried out with Hifiasm (Cheng et al., 2021) 
and haplotypic duplication was identified and removed with  
purge_dups (Guan et al., 2020). The assembly was then  
scaffolded with Hi-C data (Rao et al., 2014) using YaHS (Zhou 
et al., 2023). The assembly was checked for contamination 
and corrected using the TreeVal pipeline (Pointon et al., 2023).  
Manual curation was performed using JBrowse2 (Diesh  
et al., 2023), HiGlass (Kerpedjiev et al., 2018) and PretextView 
(Harry, 2022). The mitochondrial genome was assembled using 
MitoHiFi (Uliano-Silva et al., 2023), which runs MitoFinder  
(Allio et al., 2020) or MITOS (Bernt et al., 2013) and uses 

these annotations to select the final mitochondrial contig and to  
ensure the general quality of the sequence.

Final assembly evaluation
The final assembly was post-processed and evaluated 
with the three Nextflow (Di Tommaso et al., 2017) DSL2  
pipelines “sanger-tol/readmapping” (Surana et al., 2023a), 
“sanger-tol/genomenote” (Surana et al., 2023b), and  
“sanger-tol/blobtoolkit” (Muffato et al., 2024). The pipeline 
sanger-tol/readmapping aligns the Hi-C reads with bwa-mem2  
(Vasimuddin et al., 2019) and combines the alignment files  
with SAMtools (Danecek et al., 2021). The sanger-tol/genomenote  
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Figure 4. Genome assembly of Spisula subtruncata, xbSpiSubt1.1: BlobToolKit cumulative sequence plot. The grey line shows 
cumulative length for all sequences. Coloured lines show cumulative lengths of sequences assigned to each phylum using the buscogenes 
taxrule. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/Spisula_subtruncata/dataset/GCA_
963678985.1/cumulative.

pipeline transforms the Hi-C alignments into a contact map  
with BEDTools (Quinlan & Hall, 2010) and the Cooler tool 
suite (Abdennur & Mirny, 2020), which is then visualised  
with HiGlass (Kerpedjiev et al., 2018). It also provides  
statistics about the assembly with the NCBI datasets  
(Sayers et al., 2024) report, computes k-mer completeness and 
QV consensus quality values with FastK and MerquryFK, and  
a completeness assessment with BUSCO (Manni et al., 2021).

The sanger-tol/blobtoolkit pipeline is a Nextflow port of  
the previous Snakemake Blobtoolkit pipeline (Challis et al., 
2020). It aligns the PacBio reads with SAMtools and minimap2  
(Li, 2018) and generates coverage tracks for regions of  
fixed size. In parallel, it queries the GoaT database  
(Challis et al., 2023) to identify all matching BUSCO  
lineages to run BUSCO (Manni et al., 2021). For the three  
domain-level BUSCO lineage, the pipeline aligns the  

BUSCO genes to the Uniprot Reference Proteomes database  
(Bateman et al., 2023) with DIAMOND (Buchfink et al., 2021) 
blastp. The genome is also split into chunks according to the 
density of the BUSCO genes from the closest taxonomically  
lineage, and each chunk is aligned to the Uniprot Reference  
Proteomes database with DIAMOND blastx. Genome  
sequences that have no hit are then chunked with seqtk and 
aligned to the NT database with blastn (Altschul et al., 1990).  
All those outputs are combined with the blobtools suite into  
a blobdir for visualisation.

All three pipelines were developed using the nf-core tooling  
(Ewels et al., 2020), use MultiQC (Ewels et al., 2016), and 
make extensive use of the Conda package manager, the  
Bioconda initiative (Grüning et al., 2018), the Biocontainers 
infrastructure (da Veiga Leprevost et al., 2017), and the Docker  
(Merkel, 2014) and Singularity (Kurtzer et al., 2017)  
containerisation solutions.
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Table 2. Chromosomal pseudomolecules in 
the genome assembly of Spisula subtruncata, 
xbSpiSubt1.

INSDC 
accession

Chromosome Length 
(Mb)

GC%

OY787660.1 1 75.87 35.0

OY787661.1 2 68.49 35.0

OY787662.1 3 61.79 35.0

OY787663.1 4 60.84 35.0

OY787664.1 5 55.44 35.0

OY787665.1 6 50.23 35.0

OY787666.1 7 49.7 35.5

OY787667.1 8 48.29 35.0

OY787668.1 9 48.08 35.0

OY787669.1 10 46.58 35.0

OY787670.1 11 45.83 35.5

OY787671.1 12 45.54 35.0

OY787672.1 13 45.21 35.0

OY787673.1 14 43.61 35.5

OY787674.1 15 42.4 35.0

Figure 5. Genome assembly of Spisula subtruncata, xbSpiSubt1.1: Hi-C contact map of the xbSpiSubt1.1 assembly, visualised 
using HiGlass. Chromosomes are shown in order of size from left to right and top to bottom. An interactive version of this figure may be 
viewed at https://genome-note-higlass.tol.sanger.ac.uk/l/?d=NB6vXH6NQ-m3FVQdho4_Xg.

INSDC 
accession

Chromosome Length 
(Mb)

GC%

OY787675.1 16 38.37 35.0

OY787676.1 17 34.26 35.5

OY787677.1 18 31.85 35.0

OY787678.1 19 31.6 35.0

OY787679.1 MT 0.02 39.5

Table 3 contains a list of relevant software tool versions  
and sources.

Wellcome Sanger Institute – Legal and Governance
The materials that have contributed to this genome note have 
been supplied by a Darwin Tree of Life Partner. The submission  
of materials by a Darwin Tree of Life Partner is subject to the 
‘Darwin Tree of Life Project Sampling Code of Practice’,  
which can be found in full on the Darwin Tree of Life  
website here. By agreeing with and signing up to the  
Sampling Code of Practice, the Darwin Tree of Life Partner 
agrees they will meet the legal and ethical requirements and  
standards set out within this document in respect of all  
samples acquired for, and supplied to, the Darwin Tree of  
Life Project.
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Table 3. Software tools: versions and sources.

Software 
tool

Version Source

BEDTools 2.30.0 https://github.com/arq5x/bedtools2

Blast 2.14.0 ftp://ftp.ncbi.nlm.nih.gov/blast/
executables/blast+/

BlobToolKit 4.3.7 https://github.com/blobtoolkit/blobtoolkit

BUSCO 5.4.3 https://gitlab.com/ezlab/busco

BUSCO 5.4.3 and 5.5.0 https://gitlab.com/ezlab/busco

bwa-mem2 2.2.1 https://github.com/bwa-mem2/bwa-
mem2

Cooler 0.8.11 https://github.com/open2c/cooler

DIAMOND 2.1.8 https://github.com/bbuchfink/diamond

fasta_
windows

0.2.4 https://github.com/tolkit/fasta_windows

FastK 427104ea91c78c3b8b8b49f1a7d6bbeaa869ba1c https://github.com/thegenemyers/FASTK

GoaT CLI 0.2.5 https://github.com/genomehubs/goat-cli

Hifiasm 0.16.1-r375 https://github.com/chhylp123/hifiasm

HiGlass 1.11.6 https://github.com/higlass/higlass

HiGlass 44086069ee7d4d3f6f3f0012569789ec138f42b84
aa44357826c0b6753eb28de

https://github.com/higlass/higlass

MerquryFK d00d98157618f4e8d1a9190026b19b471055b22e https://github.com/thegenemyers/
MERQURY.FK

MitoHiFi 2 https://github.com/marcelauliano/
MitoHiFi

MultiQC 1.14, 1.17, and 1.18 https://github.com/MultiQC/MultiQC

NCBI 
Datasets

15.12.0 https://github.com/ncbi/datasets

Nextflow 23.04.0-5857 https://github.com/nextflow-io/nextflow

PretextView 0.2 https://github.com/wtsi-hpag/PretextView

purge_dups 1.2.3 https://github.com/dfguan/purge_dups

samtools 1.16.1, 1.17, and 1.18 https://github.com/samtools/samtools

sanger-tol/
genomenote

1.1.1 https://github.com/sanger-tol/
genomenote

sanger-tol/
readmapping

1.2.1 https://github.com/sanger-tol/
readmapping

Seqtk 1.3 https://github.com/lh3/seqtk

Singularity 3.9.0 https://github.com/sylabs/singularity

TreeVal 1.0.0 https://github.com/sanger-tol/treeval

YaHS yahs-1.1.91eebc2 https://github.com/c-zhou/yahs
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Further, the Wellcome Sanger Institute employs a process  
whereby due diligence is carried out proportionate to the nature 
of the materials themselves, and the circumstances under  
which they have been/are to be collected and provided for use. 
The purpose of this is to address and mitigate any potential  
legal and/or ethical implications of receipt and use of the 
materials as part of the research project, and to ensure that in  
doing so we align with best practice wherever possible. The  
overarching areas of consideration are:

•     Ethical review of provenance and sourcing of the material

•     �Legality of collection, transfer and use (national and  
international)

Each transfer of samples is further undertaken according to 
a Research Collaboration Agreement or Material Transfer  
Agreement entered into by the Darwin Tree of Life Partner,  
Genome Research Limited (operating as the Wellcome Sanger 
Institute), and in some circumstances other Darwin Tree of Life 
collaborators.

Data availability
European Nucleotide Archive: Spisula subtruncata (cut surf-
clam). Accession number PRJEB61702; https://identifiers.org/ 
ena.embl/PRJEB61702 (Wellcome Sanger Institute, 2023). 
The genome sequence is released openly for reuse. The Spisula  
subtruncata genome sequencing initiative is part of the Dar-
win Tree of Life (DToL) project. All raw sequence data and the  
assembly have been deposited in INSDC databases. The genome 

will be annotated using available RNA-Seq data and presented 
through the Ensembl pipeline at the European Bioinformatics  
Institute. Raw data and assembly accession identifiers are  
reported in Table 1.
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