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Abstract.—Analysis of phylogenetic trees has become an essential tool in epidemiology. Likelihood‑based methods fit mod‑
els to phylogenies to draw inferences about the phylodynamics and history of viral transmission. However, these methods
are often computationally expensive, which limits the complexity and realism of phylodynamic models and makes them
ill‑suited for informing policy decisions in real‑time during rapidly developing outbreaks. Likelihood‑free methods using
deep learning are pushing the boundaries of inference beyond these constraints. In this paper, we extend, compare, and
contrast a recently developed deep learning method for likelihood‑free inference from trees. We trained multiple deep
neural networks using phylogenies from simulated outbreaks that spread among 5 locations and found they achieve close
to the same levels of accuracy as Bayesian inference under the true simulation model. We compared robustness to model
misspecification of a trained neural network to that of a Bayesian method. We found that both models had comparable
performance, converging on similar biases. We also implemented a method of uncertainty quantification called confor‑
malized quantile regression that we demonstrate has similar patterns of sensitivity to model misspecification as Bayesian
highest posterior density (HPD) and greatly overlap with HPDs, but have lower precision (more conservative). Finally,
we trained and tested a neural network against phylogeographic data from a recent study of the SARS‑Cov‑2 pandemic
in Europe and obtained similar estimates of region‑specific epidemiological parameters and the location of the common
ancestor in Europe. Along with being as accurate and robust as likelihood‑based methods, our trained neural networks
are on average over 3 orders of magnitude faster after training. Our results support the notion that neural networks can
be trained with simulated data to accurately mimic the good and bad statistical properties of the likelihood functions of
generative phylogenetic models. [Deep learning; epidemiology; machine learning; phylogeography; phylodynamics.]

Viral phylodynamic models use genomes sampled from
infected individuals to infer the evolutionary history
of a pathogen and its spread through a population
(Holmes and Garnett 1994; Volz et al. 2013). By link‑
ing genetic information to epidemiological data, such
as the location and time of sampling, these generative
models can provide valuable insights into the transmis‑
sion dynamics of infectious diseases, especially in the
early stages of cryptic disease spread when it is more
difficult to detect and track (Holmes et al. 1995; Ram‑
baut et al. 2008; Lemey et al. 2009; Pybus et al. 2012;
Worobey et al. 2016, 2020; Lemey et al. 2021; Washing‑
ton et al. 2021; Pekar et al. 2022). This information can
be used to inform public health interventions and im‑
prove our understanding of the evolution and spread of
pathogens.

Viral phylodynamic processes have long been stud‑
ied through a variety of modeling frameworks. For
instance, coalescent‑based models (Drummond et al.
2005; Minin et al. 2008; Lemey et al. 2009; Volz
2012; Müller et al. 2017; Volz and Siveroni 2018) are
backward‑time population genetic processes that can

estimate important population‑level parameters, such
as effective population sizes and interpopulation mi‑
gration rates, for pathogens of concern. Birth–death‑
based models (Maddison et al. 2007; FitzJohn 2012;
Kühnert et al. 2014; Beaulieu and O’Meara 2016) are
forward‑time branching processes that can model how
lineages multiply, go extinct, change states, and are
sampled. When applied to viral phylodynamics and
beyond, coalescent and birth–death models both face
their own theoretical and computational challenges. We
note that coalescent and birth–death models are often
used interchangeably to study the same evolutionary
phenomenon (Morlon et al. 2010; Stadler 2010; Stadler
et al. 2012, 2013; Seidel et al. 2020). In this study, we
focus upon state‑dependent birth–death processes to
model viral phylodynamics because of their additional
uses in modeling macroevolution (Maddison et al. 2007;
MacPherson et al. 2022).

Birth–death models inherently correspond to the
well‑known Susceptible‑Infectious‑Recovered (SIR)
model during an exponential growth phase, when
nearly all individuals in the population are susceptible
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to infection (Anderson and May 1979). The simplest
SIR models only track the number of susceptible, in‑
fected, and recovered individuals across populations
over time, with more advanced models also allowing
the movement of individuals among localized popula‑
tions. The phylodynamic models we are interested in
track the incomplete transmission tree (phylogeny) of
sampled, infected individuals that emerges from host‑
to‑host pathogen spread among populations over space
and time. Within this broader context, we will refer
to the state as location and the models as location‑
dependent birth–death (LDBDS) models that include
serial sampling of taxa (Kühnert et al. 2016).

Analysts typically fit these birth–death models to
data using likelihood‑based inference methods, such
as maximum likelihood (Maddison et al. 2007; Richter
et al. 2020) or Bayesian inference (Kühnert et al.
2016; Scire et al. 2020). Likelihood‑based inference re‑
lies upon a likelihood function to evaluate the rel‑
ative probability (likelihood) that a given phyloge‑
netic pattern (i.e. topology, branch lengths, and tip
locations) was generated by a phylodynamic process
with particular model parameter values. In this sense,
the likelihood of any possible phylodynamic data set
is mathematically encoded into the likelihood as a
function of (unknown) data‑generating model param‑
eters.

Computing the likelihood requires high‑dimensional
integration over a large and complex space of evo‑
lutionary histories. Analytically integrated likelihood
functions, however, are not known for LDBDS models.
Methods developers instead use ordinary differential
equation (ODE) solvers (Maddison et al. 2007; Kühnert
et al. 2016) to numerically approximate the integrated
likelihood. These clever approximations perform well
statistically, but are too computationally expensive to
use with large epidemic‑scale data sets. Thus, while
Nextstrain (Hadfield et al. 2018) and similar efforts have
provided useful visualizations to policy makers during
the COVID response, most phylogeographical methods
are used forensically, providing insight on the past, and
are not used to provide parameter estimates in response
to emerging events to inform policy decisions in real‑
time due to the complexity and long run‑times of these
models.

As phylodynamic models become more biologically
realistic, they will necessarily grow more mathemati‑
cally complex, and, therefore, less able to yield likeli‑
hood functions that can be approximated using ODE
methods. Because of this, phylodynamic model de‑
velopers tend to explore only models for which a
likelihood‑based inference strategy is readily available.
As a consequence, the lack of scalable inference meth‑
ods impedes the design, study, and application of
richer phylodynamic models of disease transmission, in
particular, and richer phylogenetic models of lineage
diversification, in general.

To avoid the computational limitations associated
with likelihood‑based methods, deep learning inference

methods that are likelihood‑free have emerged as a
complementary framework for fitting a wide variety
of evolutionary models (Bokma 2006). Deep learning
methods rely on training many‑layered neural networks
to extract information from data patterns. These neu‑
ral networks can be trained with simulated data as
another way to approximate the latent likelihood func‑
tion (Cranmer et al. 2020). Once trained, neural net‑
works have the benefit of being fast, easy to use, and
scalable. Recently, likelihood‑free deep learning neu‑
ral network methods have successfully been applied to
phylogenetics (da Fonseca et al. 2020; Suvorov et al.
2020; Nesterenko et al. 2022; Solis‑Lemus et al. 2022; Su‑
vorov and Schrider 2022) and phylodynamic inference
(Lambert et al. 2023; Voznica et al. 2022).

Here, we extend new methods of deep learning
from phylogenetic trees (Lambert et al. 2023; Voznica
et al. 2022) to explore their potential when applied to
phylogeographic problems in geospatial epidemiology.
Phylodynamics of birth–death‑sampling processes that
include migration among locations have been under de‑
velopment for more than a decade (Stadler 2010; Stadler
et al. 2012; Kühnert et al. 2014, 2016; Scire et al. 2020;
Gao et al. 2022, 2023). Given the added complexity of
location‑specific dynamics (e.g. location‑specific infec‑
tion rates) and recent successes in deep learning with
phylogenetic time trees (Voznica et al. 2022) under state‑
dependent diversification models (Lambert et al. 2023),
we sought to evaluate this approach when applied to
viral phylodynamics and phylogeography by including
location data when training deep neural networks with
phylogenetic trees.

A current limitation of likelihood‑free approaches is
that it remains unknown how brittle the inference ma‑
chinery is when the assumptions used for simulation
and training are violated (Schmitt et al. 2022). For exam‑
ple, a brittle deep learning method would be more eas‑
ily misled by model misspecification when compared
to a likelihood‑based method. Likelihood approaches
may have some advantages because the simplifying as‑
sumptions are explicit in the likelihood function, while
for trained neural networks, it is difficult to know how
those same assumptions implemented in the simula‑
tion are encoded in data patterns in the training data
and learned network weights. However, with complex
likelihood models, there may be unexpected interac‑
tions among simplifying assumptions that can result
in large biases when applied to real‑world data (Gao
et al. 2023). Characterizing the relative robustness and
brittleness of these two inference paradigms is essential
for those who wish to confidently develop and deploy
likelihood‑free methods of inference from real world
data.

To explore relative robustness to model misspecifica‑
tion, we trained multiple deep convolutional neural net‑
works (CNNs) with transmission trees generated from
epidemic simulations. We were able to achieve accuracy
very close to that of a likelihood‑based approach and
through several model misspecification experiments



2024 THOMPSON ET AL. ‑ DEEP LEARNING AND PHYLOGEOGRAPHY 185

show that our CNNs are no more sensitive to model
violations than the likelihood approach. Significantly,
both methods consistently show similar biases induced
by model violations in test data sets. We find that for
the models tested here, the migration rate estimates are
highly sensitive to misspecification of infection rate and
sampling rates, but that estimates of the infection and
sampling rates are fairly robust to misspecification of
the migration models. We also show that the rate pa‑
rameter estimates are fairly robust to misspecification
of both the number of locations in the model and phy‑
logenetic error. We also estimated prediction intervals
for the rate parameters and compared and contrasted
their performance to the Bayesian highest posterior den‑
sity intervals. We show that they produce intervals that
greatly overlap with highest posterior densities in all
experiments, but have, on average, wider intervals mak‑
ing them relatively conservative. Finally, we compared
a simulation‑trained neural network to a recent phylo‑
dynamic study of the first wave of the COVID pandemic
in Europe (Nadeau et al. 2021) and obtain similar infer‑
ences about the dynamics and history of SARS‑CoV‑2 in
the European clade.

METHODS
First, we define the SIR model which we assume

here is approximately equivalent to the LDBDS model
(Kühnert et al. 2016). Following that is a description
of the simulation method to generate the training, val‑
idation, and test data sets of phylogenies under the
model. The simulation and data processing pipeline
is shown in Fig. 1. We next describe our implemen‑
tation of simulation‑trained deep learning inference
with convolutional neural networks (CNN) as well as a
likelihood‑based method using Bayesian inference. We
then describe our methods for measuring and compar‑
ing their performance when tested against data sets gen‑
erated by simulations under the inference model as well
as several data sets simulated under models that vi‑
olate assumptions of the inference model. Finally, we
describe how we tested our simulation‑trained CNN
against a real‑world data set.

Model Definition
We first define a general location‑dependent SIR

stochastic process used for simulations and likelihood

FIGURE 1. Simulation and tree encoding pipeline for generating training data. 1) Specify a model, for example, an SIR model with serial sam‑
pling and migration among 3 locations (colored circles). 2) Run simulations of outbreaks under the model to generate population trajectories
and phylogenetic trees. 3) Encode trees and location data into the Compact Bijective Ladderized Vector + States (CBLV+S) format. 4) Train the
neural network with CBLV+S training data.The reader is referred to the online version for the color version of the images.
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function derivation in the format of reaction equations
we specified in MASTER (Vaughan and Drummond
2013). MASTER allows users to simulate phylodynamic
data sets under user‑specified epidemiological scenar‑
ios, for which MASTER simultaneously simulates the
evolution of compartment (population type) sizes and
tracks the branching lineages (transmission trees in the
case of viruses) from which it samples over time. Re‑
action equations 1 through 4 specify the SIR compart‑
ment model with migration and serial sampling where
𝑆, 𝐼, and 𝑅 denote the number of individuals in each
compartment. The 𝑆 and 𝐼 compartments are indexed by
geographic location using 𝑖 and 𝑗. 𝑁𝑖 is the total popula‑
tion size in location 𝑖 and 𝑁𝑖 = 𝑆𝑖 + 𝐼𝑖 + 𝑅𝑖. We consider
all local recoveries to lead to the same global compart‑
ment and absorbing state, 𝑅. The symbols for each rate
parameter is placed above each reaction arrow.

𝑆𝑖 + 𝐼𝑖
𝛽𝑖/𝑁𝑖−−−−→ 2𝐼𝑖 infection (1)

𝐼𝑖
𝑚𝑖𝑗−−−−→ 𝐼𝑗 migration (2)

𝐼𝑖
𝛾−−−−→ 𝑅 recovery (3)

𝐼𝑖
𝛿𝑖−−−−→ 𝑅 sample and recovery. (4)

We parameterize the model with the basic reproduc‑
tion number in location 𝑖, 𝑅0𝑖

, which is related to 𝛽𝑖 and
𝛿𝑖 by Equation (5),

𝑅0𝑖
= 𝛽𝑖

𝛾 + 𝛿𝑖
. (5)

In particular, our study considers a location‑
independent SIR model with sampling that assumes
𝑅0𝑖

was equal among all locations, and a location‑
dependent SIR model with sampling that assumes
𝑅0𝑖

varied among locations. During the exponential
growth phase of an outbreak, the location independent
and dependent SIR models are equivalent to the
location‑independent birth–death‑sampling (LIBDS)
and location‑dependent birth–death‑sampling (LDBDS)
models, respectively, which are often used in viral phy‑
logeography (Kühnert et al. 2014, 2016; Douglas et al.
2021).

Each infectious individual transitions are recovered
at rate 𝛾. We assumed that sampling a virus in an in‑
dividual occurs at rate 𝛿𝑖 in location 𝑖 and immediately
removes that individual from the infectious compart‑
ment and places them in the recovered compartment.
Thus the effective recovery rate in location 𝑖 is 𝛾+𝛿𝑖. The
above reactions correspond to the following coupled
ordinary differential equations.

𝑑𝑆𝑖
𝑑𝑡 = − 𝛽𝑖

𝑁𝑖
𝑆𝑖𝐼𝑖

𝑑𝐼𝑖
𝑑𝑡 = 𝛽𝑖

𝑁𝑖
𝑆𝑖𝐼𝑖 +

𝑛
∑
𝑗≠𝑖

𝑚𝑗𝑖𝐼𝑗 −
𝑛

∑
𝑗≠𝑖

𝑚𝑖𝑗𝐼𝑖 − (𝛾 + 𝛿𝑖)𝐼𝑖

𝑑𝑅
𝑑𝑡 =

𝑛
∑
𝑖=1

(𝛾 + 𝛿𝑖)𝐼𝑖 (6)

When the migration rate is constant among locations
and the model is a location‑independent SIR model,
or equivalently, LIBDS, and we set 𝑆𝑖(𝑡 = 0) ≈ 𝑁𝑖 at
the beginning of the outbreak, the equation set (6)
reduces to

𝑑𝑆𝑖
𝑑𝑡 = −𝛽𝐼𝑖

𝑑𝐼𝑖
𝑑𝑡 = 𝛽𝐼𝑖 + 𝑚 ⎛⎜⎜

⎝

𝑛
∑
𝑗≠𝑖

𝐼𝑗 − (𝑛 − 1)𝐼𝑖
⎞⎟⎟
⎠

− (𝛾 + 𝛿)𝐼𝑖

𝑑𝑅
𝑑𝑡 = (𝛾 + 𝛿)

𝑛
∑
𝑖=1

𝐼𝑖.

The number of infections and the migration of
susceptible individuals is at negligible levels on the
timescales investigated here. The infection rate is,
therefore, approximately constant and the migration
of susceptible individuals can be safely ignored re‑
quiring only migration of infectious individuals to be
simulated.

At the beginning of an outbreak, it is often easier to
know the recovery period from clinical data than the
sampling rate that requires knowing the prevalence of
the disease. Therefore, we treat the average recovery pe‑
riod as a known quantity and use it to make the other 2
parameters (the sampling rate and the basic reproduc‑
tion number 𝑅0) identifiable. This was done by fixing the
corresponding rate parameter in the likelihood function
to the true simulated value for each tree, and by adding
the true simulated value to the training data for training
the neural network.

Simulated Training and Validation Data Sets
Epidemic simulations of the SIR+migration model

that approximates the LIBDS process were performed
using the MASTER package (v. 6.1.2) (Vaughan et al.
2014) in BEAST 2 (v. 2.6.6) (Bouckaert et al. 2019). We
used standard tools (Chollet et al. 2015; Abadi et al.
2016) to train neural networks with these simulated
data to learn about latent populations from the shape
of sampled and subsampled phylogenies. In addition
to the serial sampling process, at the end of the simu‑
lation 1% of infected lineages were sampled. In MAS‑
TER, this was approximated by setting a very high
sampling rate and very short sampling time such that
the expected number sampled was approximately 1%.
This final sampling event was required to make a 1‑
to‑1 comparison of the likelihood function used for
this study (see Likelihood method description below)
that assumes at least one extant individual was sam‑
pled to end the process. Coverage statistics from our
Markov chain Monte Carlo (MCMC) samples closely
match expectations (see Likelihood method description
below; Fig. 2c). Simulation parameters under LIBDS
and LDBDS models for training the neural network
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under the phylogeography model were drawn from the
following distributions:

𝑅0 ∼ Uniform(2, 8)
𝛿 ∼ Uniform(0.0001, 0.005)

𝑚 ∼ Uniform(0.0001, 0.005)
𝛾 ∼ Uniform(0.01, 0.05)

spillover location ∼ Multinomial(k = 1, p𝑖 = 1/5),
for 5 locations (7)

All 5 locations had initial population sizes of 1,000,000
susceptible individuals and 1 infected individual in a
randomly sampled spillover location. Simulations were
run for 100 time units or until 50,000 individuals had
been infected to restrict simulations to the approximate
exponential phase of the outbreak. For the experiments
comparing the CNN to the likelihood‑based method
under the LIBDS model, if this population threshold
was reached, the simulation was rejected. This ensured
the LIBDS model used in the likelihood‑based analyses
are equivalent to more complex density‑dependent SIR
models. This criterion was not enforced for simulations
under the LDBDS model. After simulation, trees with
500 or more tips were uniformly and randomly down‑
sampled to 499 tips and the sampling proportion was
recorded for training the neural networks and to adjust
estimates of 𝛿.

We simulated 410,000 outbreaks under these LIBDS
settings to generate the training, validation, and test
sets for deep learning. Any simulation that generated
a tree with less than 20 tips was discarded, leaving a
total of 111,157 simulated epidemiological data sets. Of
these, 104,157 data sets were used to train and 7000 were
used to validate and test each CNN. A total of 193,110
LDBDS data sets were simulated, with 186,110 used to
train and 7000 used to validate and test the LDBDS
CNNs.

To make phylodynamic inferences about the first
wave of the SARS‑CoV‑2 epidemic in Europe, we used
the LDBDS model on the data set from Nadeau et al.
(2021). Training simulation parameters for the LDBDS
process were drawn from the same distributions as
LIBDS except R0, which was unique for each location.
We assume that the variability of R0 among differ‑
ent pathogens (simulated outbreaks) is greater than the
variability of the same pathogen’s R0 among different
locations within the same simulation. To implement this
assumption, all R0 was drawn from a joint distribution
to narrow the magnitude of differences among locations
within simulations to be within 6 of each other but ex‑
pand the magnitude of differences between simulations
to range from 0.9 to 15:

𝛼 ∼ Uniform(3.9, 12)
𝑅0𝑖

∣ 𝛼 ∼ Uniform(𝛼 ‑ 3, 𝛼 + 3)

For the empirical analysis, population sizes at each lo‑
cation were also set to 500,000 and instead of running

the simulations for 100 time units, time was scaled by the
recovery period, 1/𝛾, and was drawn from a uniform
distribution:

time ∼ Uniform(1, 20)

Simulated Test Data Sets With and Without Model
Misspecification

All simulation models used for training and testing
are listed in Table 1. We first simulated a test set of 138
trees under the training model to compare the accuracy
of the CNN and the likelihood‑based estimates when
the true model is specified. These data sets were sim‑
ulated by random draws of parameter values from the
same distributions described above for generating the
training data set.

Sensitivity to model misspecfication for each of the 3
rate parameters, 𝑅0, 𝛿, and 𝑚, was tested. All sensitivity
experiments used the same LIBDS model for inference
for both the CNN and the Likelihood‑based methods.
Sensitivity experiments were conducted by simulating
a test data set of trees that were generated by an epi‑
demic process that was more complex than or different
from the LIBDS model.

The tree data set for the misspecified R0 experiment
consisted of simulating outbreaks where each location
had a unique R0 drawn from the same distribution as
above. Likewise, the misspecified sampling model test
set was generated by simulating outbreaks where each
location had a unique sampling rate, 𝛿, drawn from the
same distribution used for the global sampling rate de‑
scribed above. For the misspecified migration model,
a random pair of coordinates, each drawn from a uni‑
form(0,5) distribution in a plane, were generated for the
5 locations, and a pairwise migration rate was computed
such that pairwise migration rates were symmetric and
proportional to the inverse of their euclidean distances
and the average pairwise migration rate was equal to

TABLE 1 Models used in this study. All simulations assume an SIR
compartmental epidemic model. N = 5 is the number of locations,
R0 is the basic reproduction number, 𝛿 is the sampling rate, m is the
migration rate, 𝛾 is the recovery rate (treated as data), and Ψ is the
phylogenetic tree + locations (also treated as data)

Description Simulation model parameters
and data

Generate training data {𝑁, 𝑅0, 𝛿, 𝑚, 𝛾, Ψ}
Misspecify 𝑅0 {𝑁, 𝑅01 , 𝑅02 , 𝑅03 , 𝑅04 , 𝑅05 ,

𝛿, 𝑚, 𝛾, Ψ}
Misspecify 𝛿 {𝑁, 𝑅0, 𝛿1, 𝛿2, 𝛿3, 𝛿4, 𝛿5,

𝑚, 𝛾, Ψ}
Misspecify 𝑚 {𝑁, 𝑅0, 𝛿, 𝑚𝑖𝑗∀𝑖 ≠ 𝑗 ∈

{1, … , 𝑁}, 𝛾, Ψ}
Misspecify number of locations {2𝑁, 𝑅0, 𝛿, 𝑚, 𝛾, Ψ}
Tree error {𝑁, 𝑅0, 𝛿, 𝑚, 𝛾, Ψerror}
Analyze Nadeau et al. (2021) dataset {𝑁, 𝑅01 , 𝑅02 , 𝑅03 , 𝑅04 , 𝑅05 ,

𝛿, 𝑚, 𝛾, Ψ}
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a random scalar that was also drawn from a uniform
distribution (see Equation (7) above).

The tree set for the misspecified number of loca‑
tions experiment was generated by simulating out‑
breaks among 10 locations instead of 5. After simula‑
tions, 6 locations were chosen at random and re‑coded
as being sampled from the same location.

To generate a test set where the time tree used for in‑
ference has incorrect topology and branch lengths, we
implemented a basic pipeline of tree inference from sim‑
ulated genetic data to mimic a worst case real‑world
scenario. We simulated trees under the same settings
as before. Phylogenetic error was introduced in 2 ways:
the amount of site data (short sequences) and misspeci‑
fication of the DNA sequence evolution inference model
using seq‑gen (v. 1.3.2) (Rambaut and Grassly 1997). We
simulated the evolution of a 200 base‑pair sequence un‑
der an HKY model with 𝜅 = 2, equal base frequencies
and 4 discretized‑gamma(2, 2) rate categories for among
site rate variation. The simulated alignment as well as
the true tip dates (sampling times) was then used to in‑
fer test trees. Test tree inference was done using IQ‑Tree
(v. 2.0.6) (Minh et al. 2020) assuming a Jukes–Cantor
model of evolution where all transition rates are equal.
The inference model also assumed no among‑site rate
variation. The number of shared branches between the
true transmission tree and the test tree inferred by IQ‑
Tree was measured using gotree (v. 0.4.2) (Lemoine and
Gascuel 2021). Polytomies were resolved using phytools
(Revell 2012) and a small, random number was added
to each resolved branch. These trees were then used for
likelihood inference and CNN prediction.

Deep Learning Inference Method
The resulting trees and location metadata generated

by our pipeline were converted to a modified CBLV
format (Compact Bijective Ladderized Vector; Voznica
et al. (2022)), which we refer to as the CBLV+S (+State
of character, e.g. location) format (Fig. 1). The CBLV
format uses an in‑order tree traversal to translate the
topology and branch lengths of the tree into an 2 × 𝑛
matrix where n is the maximum number of tips allowed
for trees. The matrix is initialized with zeroes. We then
fill the matrix starting with the root then proceed to the
tip with largest root‑to‑tip distance rather than starting
with that tip as in Voznica et al. (2022). We chose this to
separate the the zero value of the root age from the ze‑
roes used to pad matrices where the tree has less than
the maximum number of tips, though we expect this
to make marginal to no difference in performance. The
CBLV representation gives each sampled tip a pair of co‑
ordinates in “tree‑traversal space.” Our CBLV+S format
associates geographic information corresponding with
each sampled taxon by appending each vector column
with a one‑hot encoding vector of length 𝑔 states (e.g.
3 = [0, 0, 1, 0, 0]) to yield a (2 + 𝑔) × 𝑛 CBLV+S ma‑
trix. The CBLV+S format allows for multiple characters
and/or states to be encoded, extending the single binary

character encoding format introduced by Lambert et al.
(2023). Our study uses CBLV+S to encode a single char‑
acter with 𝑔 = 5 location‑states. In addition to the the
CBLV+S data, we also include a few tree summary statis‑
tics and known simulating parameters; the number of
tips, mean branch length, the tree height, and the re‑
covery rate and the subsampling proportion. Trees were
rescaled such that their mean branch length was the de‑
fault for phylodeep (Voznica et al. 2022) before training
and testing of the CNN. The mean pre‑scaling branch
length and tree heights were also fed into the neural net‑
works. Trees were not rescaled for the likelihood‑based
analysis. Recall that tree height did not vary for the
LIBDS CNN training set but did for the LDBDS train‑
ing set (see simulation time settings above). Varying the
time‑scale for the LDBDS model was necessary for an‑
alyzing real‑world data where time‑scales of outbreaks
can vary considerably.

Our CNNs were implemented in Python 3.8.10 us‑
ing keras v. (2.6.0) and tensorflow‑gpu (v. 2.6.0) (Chollet
et al. 2015; Abadi et al. 2016). CNNs consist of one or
more layers specifically intended for structural feature
extraction. CNNs utilize a filter, akin to a sliding win‑
dow, that executes a mathematical operation (convolu‑
tion) on the input data. When dealing with structured
data like the CBLV+S matrix, multiple 1D filters slide
across the matrix’s columns, embedding each scanned
window into an N‑dimensional vector representation.
This architectural design imparts CNNs with transla‑
tion invariance, enabling them to recognize and learn
repeating patterns throughout the input space, regard‑
less of their specific location. Stacking multiple convo‑
lutional layers enables CNNs to decipher hierarchical
structures within the data. See Alzubaidi et al. (2021)
and Khan et al. (2020) for reviews of the subject.

For each model, LIBDS and LDBDS, we designed and
trained 2 CNN architectures, one to predict epidemi‑
ological rate parameters and the other to predict the
outbreak location resulting in 4 total CNNs trained by
2 training data sets (LIBDS and LDBDS). We used the
mean‑squared‑error for the regression neural loss func‑
tion in the network trained to estimate epidemiological
rates, and the categorical cross‑entropy loss function for
the categorical network trained to estimate outbreak lo‑
cation. We assessed the performance of the network by
randomly selecting 5000 samples for validation before
each round of training. We measured the mean absolute
error and accuracy using the validation sets. We used
these measures to compare architectures and determine
early stopping times to avoid overfitting the model to
the training data. We also added more simulations to
the training set until we could no longer detect an im‑
provement in error statistics. After comparing the per‑
formance of several networks, we found that the CNN
described in Supplementary Figure S1 performed the
best. In brief, the networks have 3 parallel sets of se‑
quential convolutional layers for the CBLV+S tensor and
a parallel dense layer for the priors and tree statistics.
The 3 sets of convolution layers differed by dilation rate

http://dx.doi.org/10.25338/B8SH2J


2024 THOMPSON ET AL. ‑ DEEP LEARNING AND PHYLOGEOGRAPHY 189

and stride lengths. These 3 segments and the dense layer
were concatenated and then fed into a segment consist‑
ing of a sequential set of dense layers, each layer gradu‑
ally narrowing to the output size to either 3 or 5 for the
rates and origin location networks, respectively, for the
LIBDS model, and 7 and 5 for the 7 rates and 5 locations,
respectively, for the LDBDS model.

All layers of the CNN used rectified linear unit
(ReLU) activation functions, which is a standard non‑
linear function that evaluates to 0 for values of 𝑥 less
than 0 and is linear for values above 0. We used the
Adam optimizer algorithm for batch stochastic gradient
descent (Kingma and Ba 2017) with batch size of 128.
We selected the number of epochs by monitoring the
mean absolute error and accuracy of the validation data
set. This set was not used in training or testing. These
metrics suggested stopping after 15 epochs for the re‑
gression network and 10 epochs for the root location
network would maximize accuracy/minimize error for
out‑of‑sample test data. The output layer activation for
the network that predicted the R0, 𝛿, and m parameters
was linear with 3 nodes. For the output layer predicting
the outbreak location, the activation function was soft‑
max with 5 nodes for the 5 locations. The input layer and
all intermediate (latent) layers were the same for all 4
networks, namely the CBLV+S tensor and the recovery
rate, mean branch lengths, tree height, and number of
tips in the tree. The LDBDS neural network was trained
with simulated trees where R0𝑖

varied among locations
and had an output layer with 7 nodes; 5 for the each loca‑
tion’s R0𝑖

and a node each for the sampling rate and the
migration rate. We tested networks with max‑pooling
layers between convolution layers as well as dropout at
several rates and found no improvement or a decrease
in performance.

Likelihood‑Based Method of Inference
We compared the performance of our trained phy‑

lodynamic CNN to likelihood‑based Bayesian phylo‑
dynamic inferences. We specified LIBDS and LDBDS
Bayesian models that were identical to the LIBDS and
LDBDS simulation models that we used to train our
CNNs. The most general phylodynamic model in the
birth–death family applied to epidemiological data
is the state‑dependent birth–death‑sampling process
(Kühnert et al. 2016; Scire et al. 2020), where the state
or type on which birth, death, and sampling parameters
are dependent is the location in this context. The basic
model used for experiments here is a phylogeographic
model that is similar to the serially sampled birth–death
process (Stadler 2010) where rates do not depend on
location, which we refer to as the LIBDS model. The
death rate, 𝜇, is equivalent to the recovery rate, 𝛾, in SIR
models. Standard phylogenetic birth–death models as‑
sume the birth and death rates, 𝜆 and 𝜇, are constant
or time‑homogeneous, while the SIR model’s infection
rate is proportional to 𝛽 and 𝑆 and varies with time
as 𝑆 changes. However, when the number of infected

is small relative to susceptible people, as in the initial
stages of an outbreak, the infection rate is approximately
constant and approximately equal to the birth rate 𝜆;

𝜆 = 𝛽𝑆
𝑁 ≈ 𝛽. (8)

The joint prior distribution was set to the same model
parameter distributions that were used to simulate the
training and test sets of phylogenetic trees in the first
section with 𝛾 treated as known and the proportion of
extant lineages sampled, 𝜌, set to 0.01 as in the simula‑
tions. The likelihood was conditioned on the tree having
extant samples (i.e. the simulation ran for the allotted
time without being rejected). All simulated trees in this
study had a stem branch and the outbreak origins were
inferred for the parent node of the stem branch.

We used MCMC to simulate random sampling from
the posterior distribution implemented in the Tensor‑
Phylo plugin (https://bitbucket.org/mrmay/tensorphylo/
src/master/) in RevBayes (Höhna et al. 2016). After a
burnin phase, a single chain was run for 7500 cycles with
4 proposals per cycle and at least 100 effective sample
size (ESS) for all parameters. If the ESS was less than 100,
the MCMC was rerun with a higher number of cycles.
We also analyzed the coverage of the 5%, 10%, 25%, 50%,
75%, 90%, and 95% highest posterior density to verify
that our simulation model and inference model are the
same and that the MCMC simulated draws from the
true posterior distribution. Bayesian phylogeographic
analysis recovered the true simulating parameters at the
expected frequencies (Fig. 2c), thus validating the sim‑
ulations were working as expected and confirming that
the MCMC was accurately simulating draws from the
true posterior distribution.

Quantifying Errors and Error Differences
We measure the absolute percent error (APE) of the

predictions from the CNN and the mean posterior esti‑
mate of the likelihood‑based method. The formula for
APE of a prediction/estimate, 𝑦estimate, of 𝑦truth is

APE = ∣∣∣∣
𝑦estimate − 𝑦truth

𝑦truth
∣∣∣∣
× 100.

The Bayesian alternative to significance testing is to
analyze the posterior distribution of parameter value
differences between groups. In this framework, the
probability that a difference is greater than zero can be
easily interpreted. We, therefore, used Bayesian statis‑
tics to infer the median difference in error between the
CNN and likelihood‑based methods and the increase in
median error of each method when analyzing misspec‑
ified data compared to when analyzing data simulated
under the true inference model.

We used Bayesian inference to quantify population
error by performing three sets of analyses: (i) inferred
the population median APE under the true model (this
will be the reference group for analysis 3), (ii) the

https://bitbucket.org/mrmay/tensorphylo/src/master/
https://bitbucket.org/mrmay/tensorphylo/src/master/
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effect of inference method—CNN or likelihood‑based
(Bayesian)—on error by inferring the median differ‑
ence between the CNN estimate and the likelihood‑
based estimate, (iii) the effect of misspecification on er‑
ror for each parameter by comparing the median er‑
ror of estimates under misspecified experiments and
the reference group defined by analysis 1. See Supple‑
mentary Figures S3–S13 and Supplementary Table S1
for summaries and figures for all analyses for this
section.

To infer these differences between groups we used
the R package BEST (Kruschke 2013). BEST assumes the
data follow a t‑distribution parameterized by a loca‑
tion parameter, 𝜇, a scale parameter, 𝜎 , and a shape
parameter, 𝜈, which they call the “normality param‑
eter” (i.e. if 𝜈 is large the distribution is more Nor‑
mal). Because the posterior distribution does not have
a closed form, BEST uses Gibbs sampling to simulate
draws from the posterior distribution. 20,000 samples
were drawn from the posterior distribution for each
BEST analysis. BEST uses automatic posterior predictive
checks to indicate that a model adequately describes the
data distributions. Posterior predictive checks indicate
the BEST model adequately fits each data set analyzed
below.

Inferring the median APE Before inferring differences be‑
tween groups, we inferred the population median APE
for predictions of R0, 𝛿, and 𝑚 from test data simu‑
lated under the inference model using the CNN and
likelihood‑based methods. Histograms of the sampled
log‑transformed APE appears to be symmetric with
heavy tails so we fit the log APE to the BEST model. This
implies that the sampled APE scores are drawn from a
log‑t distribution. The log‑t distribution has a mean of ∞
and median of 𝑒𝜇, we, therefore, focus our inference on
estimating posterior intervals for the population median
APE from the sampled APE values for each parame‑
ter estimated by the CNN method and likelihood‑based
method that we denote APECNN, and APELike, respec‑
tively. The data analyzed here and likelihood assumed
by BEST is

𝑦 = APECNN or APELike

log 𝑦 ∣ 𝜇, 𝜎, 𝜈 ∼ 𝑡𝜈(𝜇, 𝜎).

The priors were set to the vague priors that BEST pro‑
vides by default,

𝜇 ∼ Normal(mean(y), sd(y) × 1000)
𝜎 ∼ Uniform(sd(y)/1000, sd(y) × 1000)
𝜈 ∼ Exponential(1/29) + 1.

Ninety‑five percent of highest posterior density for
the median APE, �̃�, was estimated by the following
transformation of simulated draws from the posterior
distribution

�̃� = 𝑒𝜇.

In summary, the results we present are 95% highest
posterior density from the posterior distributions of the
median error, �̃�.

Inferring the relative accuracy of the CNN and likelihood‑
based method To quantify the difference in error be‑
tween the CNN and the likelihood‑based method, we fit
the difference in sampled APE scores, ΔAPE, between
the CNN method and the likelihood‑based method to
the BEST model. Histograms of ΔAPE appear symmet‑
ric with weak to strong outliers making the BEST model
a good candidate for inference from this data. The data
and likelihood are

Δ𝑦 = APECNN − APELike

Δ𝑦 ∣ 𝜇, 𝜎, 𝜈 ∼ 𝑡𝜈(𝜇, 𝜎)

We used the same default priors as above.
Because, Δ𝑦 is not log‑transformed, it is drawn from

a t‑distribution and the marginal posterior of the pa‑
rameter 𝜇 is an estimate of the population mean, 𝜇𝑑.
Because the mean and the median are equivalent for a
t‑distribution, we again report the posterior distribution
of the median difference, �̃�𝑑 to simplify the results.

In summary, the results we present are 95% highest
posterior density from the posterior distribution of the
median difference between the 2 methods, �̃�𝑑.

When comparing CNN to the likelihood‑based ap‑
proach, positive values for �̃�𝑑 indicate the CNN is less
accurate, and negative indicate the likelihood‑based es‑
timates less accurate. We emphasize that this quantity
is the median difference in contrast to the difference in
medians, Δ�̃�, reported in the next section.

Inferring sensitivity to model misspecification Finally, to
quantify the overall sensitivity of each rate parameter
to model misspecification under each inference method,
we infer the difference in median APE, �̃� of predictions
under a misspecified model relative to predictions un‑
der the true model. In other words, we are inferring
differences in medians between experiments. For ex‑
ample, to infer the sensitivity of the CNN’s inference
of the sampling rate, 𝛿, to phylogenetic error, we in‑
ferred the difference between the median APE of the
CNN’s predictions for misspecified trees and the me‑
dian APE of CNN predictions for true trees. The data
are concatenated as below.

(𝑦1, 𝑦2) = (APECNN, APECNN Ref) or

(𝑦1, 𝑦2) = (APELike, APELike Ref)

We inferred the difference between group median
APE scores, denoted Δ�̃�, by assuming that the model
parameters conditioned on the observed APE from the
2 groups, 𝑦1 and 𝑦2, follow a posterior distribution that
is proportional to

𝑃(𝑦1 ∣ 𝜇1, 𝜎1, 𝜈)𝑃(𝑦2 ∣ 𝜇2, 𝜎2, 𝜈)𝑃(𝜇1, 𝜇2, 𝜎1, 𝜎2, 𝜈),

http://dx.doi.org/10.25338/B8SH2J
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where log 𝑦1 and log 𝑦2 follow t distributions with
means 𝜇1 and 𝜇2 and standard deviations 𝜎1 and 𝜎2,
respectively, while sharing a common normality param‑
eter, 𝜈.

The posterior sample of Δ�̃� is obtained by transform‑
ing samples from the joint marginal posterior distribu‑
tion of 𝜇1 and 𝜇2 with the following equation,

Δ�̃� = 𝑒𝜇1 − 𝑒𝜇2 .

The 2 components of the likelihood are each t‑dis‑
tributed and share the 𝜈 parameter, which means we
assume both samples are drawn from a similarly shaped
distribution (similarly heavy tails).

log 𝑦1 ∣ 𝜇1, 𝜎1, 𝜈 ∼ 𝑡𝜈(𝜇1, 𝜎1)
log 𝑦2 ∣ 𝜇2, 𝜎2, 𝜈 ∼ 𝑡𝜈(𝜇2, 𝜎2).

The prior distribution for the parameters of the model
were set to the defaults for BEST,

𝜇1 ∼ Normal(mean(log 𝑦1), sd(log 𝑦1) × 1000)
𝜇2 ∼ Normal(mean(log 𝑦2), sd(log 𝑦2) × 1000)
𝜎1 ∼ Uniform(sd(log 𝑦1)/1000, sd(log 𝑦1) × 1000)
𝜎2 ∼ Uniform(sd(log 𝑦2)/1000, sd(log 𝑦2) × 1000)
𝜈 ∼ Exponential(1/29) + 1.

As before, interpretation of the posterior distribution
of the difference in medians is straightforward: the more
positive the difference in median APE from the misspec‑
ified model test set and the median APE from the true
model test set, the more sensitive the parameter is to
model misspecification in the experiment.

CNN Uncertainty Quantification
To estimate support intervals for our parameter es‑

timates, we applied a technique known as Conformal‑
ized Quantile Regression (CQR) as part of our training
procedure (Romano et al. 2019). CQR generates sup‑
port intervals that are predicted to contain the true
data generating parameter value at a desired frequency
(typically 95%), known as the intended coverage level
for the interval. CQR has 2 phases.

The first phase uses quantile regression (Koenker and
Bassett Jr 1978) to predict upper and lower bounds
and construct an uncalibrated support interval for a
specified coverage level. In more detail, the first phase
constructs and trains a quantile CNN (qCNN) using
the same input dataset that was used to train the ini‑
tial CNN to predict true data generating parameters
as point estimates. Whereas the initial CNN learned to
predict point estimates by minimizing a MSE loss func‑
tion, the qCNN instead minimizes the standard mean
pinball loss function used to estimate quantiles (Stein‑
wart and Christmann 2011; Romano et al. 2019). Briefly,
the pinball loss score is an asymmetric linear penalty

function where the errors when the true value, 𝑦, is be‑
low the predicted ̂𝑞 are weighted by 1 − 𝜏 and those
above by 𝜏:

𝐿𝜏(𝑦, ̂𝑞) = {(1 − 𝜏)( ̂𝑞 − 𝑦) if 𝑦 ≤ ̂𝑞
𝜏(𝑦 − ̂𝑞) if 𝑦 > ̂𝑞.

For instance, with 𝜏 = 0.975, the loss is minimized
by predicting higher ̂𝑞𝑢𝑝𝑝𝑒𝑟 values ensuring more of
the labels, 𝑦, fall below ̂𝑞𝑢𝑝𝑝𝑒𝑟 where the loss score of
1 − 𝜏 = 0.025. This behavior is inversely mirrored
for lower 𝜏 values, instead favoring true values of 𝑦 to
be above ̂𝑞𝑙𝑜𝑤𝑒𝑟. Pairing predictions of 𝑞𝑙𝑜𝑤𝑒𝑟 and 𝑞𝑢𝑝𝑝𝑒𝑟
can be used to construct an interval with an expected
coverage rate. In practice, these uncalibrated interval
estimates may not always provide the expected cov‑
erage on test data sets, as shown in Figure 3 (left).
This discrepancy underscores the importance of the next
phase of CQR: calibration (Vovk et al. 2009; Lei et al.
2018; Romano et al. 2019; Sousa et al. 2022; Vovk et al.
2022).

The second phase calibrates the initial, uncalibrated
support interval to produce the desired coverage prop‑
erties. The chief task of this phase is to find adjustment
terms for the lower and upper bounds (quantiles) that
extend, shrink, and/or shift the uncalibrated intervals to
attain the targeted coverage (Romano et al. 2019). We
call these adjusted intervals calibrated probability inter‑
vals (CPI). For example, the 95% CPI estimated for a new
individual dataset will have a 95% chance of containing
the true data generating parameter value. To perform
the calibration, the previously trained qCNN is used to
predict lower and upper bounds from a new calibration
dataset that was not part of the initial qCNN training
dataset. Predictions from the calibration dataset are then
used to separately quantify the degree to which each of
the lower and upper bounds are too small or too large,
and to compute upper and lower adjustment terms that,
when added to all estimated quantiles in the calibra‑
tion set, produce the correct coverage for the calibration
data and future data. CQR is one form of conformal pre‑
diction that is an active and rapidly progressing field
of research on distribution‑free uncertainty quantifica‑
tion in machine learning and statistics. See Angelopou‑
los and Bates (2022) for a general overview of conformal
prediction methods.

To create a calibration data set, we simulated 108,559
more datasets (trees with states) to estimate adjust‑
ment terms for the upper and lower qCNN‑estimated
quantiles. After calibration, we clipped intervals to the
prior boundary for intervals that extended beyond the
prior distribution’s range. To examine the consistency
of quantile regression for neural networks trained on
different quantiles, we trained 7 different quantile net‑
works to predict the same inner quantiles used for val‑
idating our Bayesian analysis and simulation model:
{0.05, 0.25, 0.5, 0.75, 0.9, 0.95}. We checked the coverage
of these adjusted CPIs on another simulated test dataset
of 5000 trees (Fig. 3, right).



192 SYSTEMATIC BIOLOGY VOL. 73

Real Data
We compared the inferences of a LDBDS simula‑

tion trained neural network to that of a phylodynamic
study of the first COVID wave in Europe (Nadeau et al.
2021). These authors analyzed a phylogenetic tree of
viruses sampled in Europe and Hubei, China using
a location‑dependent birth–death‑sampling model in a
Bayesian framework using priors informed by myriad
other sources of information. We simulated a new train‑
ing set of trees under an LDBDS model where R0𝑖

de‑
pends on the geographic location, and the sampling
process only consists of serial sampling and no sam‑
pling of extant infected individuals. We estimated 95%
CPIs for model parameters with a simulated calibration
dataset of 101,219 trees using CQR as above and con‑
firmed accurate coverages with another dataset of 5000
trees.

We then analyzed the whole tree from Figure 1 in
(Nadeau et al. 2021) as well as the European clade,
which Nadeau et al. (2021) labeled as A2 in the same
figure. We note that our simulating model is not identi‑
cal to the inference model used in (Nadeau et al. 2021).
We model migration with a single parameter with sym‑
metrical migration rates among locations and all lo‑
cations having the same sampling rate. Nadeau et al.
parameterize the migration process with asymmetric
pairwise migration rates and assume location‑specific
sampling rates. We also do not include the information
the authors used to inform their priors as that requires
an extra level of simulation and training on top of sim‑
ulations done here, and is thus beyond the scope of this
study.

The time tree from (Nadeau et al. 2021) was down‑
loaded from GitHub (https://github.com/SarahNadeau/
cov‑europe‑bdmm). The recovery rate assumed in
(Nadeau et al. 2021) was 0.1 days−1, which was set to
0.05 to bring the recovery rate to within the range of
simulating values used to train the CNN. Consequently,
the branch lengths of the tree were then scaled by 2. The
number of tips, tree height, and average branch lengths
were measured from the rescaled trees and fed into the
network. The full tree and A2 clade were then analyzed
using the LDBD CNN and compared to the posterior
distributions from (Nadeau et al. 2021).

Hardware Used
Simulations were run on a 16 core Intel(R) Xeon(R)

Platinum 8175M CPU @ 2.50GHz. For each simulation,
an XML file with random parameter settings was gen‑
erated using custom scripts. These XML files were the
inputs for MASTER which was run in the BEAST2
platform. Neural network training and testing and
predictions were conducted on an 8 core Intel(R)
Core(TM) i7‑7820HQ CPU @ 2.90GHz laptop with a
NVIDIA Quadro M1200 GPU for training.

RESULTS

Comparing Deep Learning to Likelihood
Our first goal in this study was to train a CNN that

produced phylodynamic parameter point estimates that
were as accurate as likelihood‑based Bayesian poste‑
rior mean estimates under the true model. This will
serve as a reference for quantifying level of sensitiv‑
ity in our misspecification experiments. Using viral
phylogenies like those typically estimated from serially
sampled DNA sequences, we focused on estimating im‑
portant epidemiological parameters—the reproduction
number, 𝑅0, the sampling rate, 𝛿, the migration rate, 𝑚,
and the outbreak origin.

Our CNN produced estimates that are as accurate as
the mean posterior estimates under the true simulat‑
ing model. We compared the APE of the network pre‑
dictions to the APE of the mean posterior estimate of
the Bayesian LIBDS model (Fig. 2). The APE is straight‑
forward to interpret, for example, an APE of < 10 means
the estimate is within 10 percentage points (ppts) of the
true value. For the 3 epidemiological rate parameters,
𝑅0, 𝛿, and 𝑚, both methods made very similar predic‑
tions for the 138 time tree test set (Fig. 2a). The 2 meth‑
ods appear to produce estimates that are more similar
to each other than to the ground truth labels (compare
bottom row scatter plots in orange to the blue and red
scatter plots in panel a). Fig. 2b shows that the inferred
median difference in APE, �̃�𝑑, between the method’s es‑
timates for the 3 parameters is close to 0 (∣ �̃�𝑑 ∣ 95%
highest posterior density is < 4 ppts; Supplementary
Table S1; Supplementary Fig. S3).

We also compared the performance of uncertainty
quantification using quantile‑CNN‑based CQR (Ro‑
mano et al. 2019) to that of Bayesian highest posterior
densities for each of the experiments. We trained 7 qC‑
NNs to predict inner‑quantiles at 7 different levels to
compare with the Bayesian highest posterior densities;
𝜏 = {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}. We then used an‑
other simulated dataset to calibrate predicted intervals
that we refer to as CPIs which theoretically have correct
coverage properties (Romano et al. 2019) like the highest
posterior densities. For the test dataset of 138 trees, the
CPIs had coverages that matched well with expectations
to a comparable degree to the Bayesian highest poste‑
rior density (Fig. 2c) though more variable. To further
confirm that our CQR procedure was adequately cali‑
brating the qCNN estimates, we confirmed correct cov‑
erages of CPIs for a much larger dataset with 5000 trees
(Fig. 3). On average, the widths of CPIs in the set of 138
trees shown in (Fig. 2) was about 20%–40% wider than
that of the corresponding highest posterior density and
Jaccard similarity index ranging from 0.66 to 0.75 sug‑
gesting a high degree of overlap between the intervals
(Supplementary Fig. S4 and Supplementary Table S2).
These results indicate the probability level of the CPI,

https://github.com/SarahNadeau/cov-europe-bdmm
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FIGURE 2. Inference under the true simulating model. a) Scatterplot of CNN predictions and posterior mean estimates from Bayesian anal‑
yses against the true values (top 2 rows in blue and red, respectively) of the basic reproduction number, R0, the sampling rate, 𝛿, and the
migration rate, m for 138 test trees. In the upper‑left corners of the scatter plots are the correlations of the plotted data. The bottom row in
orange shows scatter plots of the CNN estimates against the posterior mean estimates for the same trees. b) The difference in the APE of esti‑
mates for the 2 inference methods. Boxes show the inner 50% quantile of the data while whiskers extend 1.5 IQR. Dots with black circles were
truncated to 2× the length of whiskers for visualization purposes. c) Coverage plots show the expected frequency of coverage for each of the
categories and the observed frequencies (black steps and colored circle, respectively). Gray boxes are the expected 95% confidence intervals at
each of the expected coverage values that follows a Beta((𝑛 + 1)𝑞, 𝑛 − (𝑛 + 1)𝑞 + 1) distribution. d) Histograms of the probabilities of inferring
the correct outbreak origin location.The reader is referred to the online version for the color version of the images.

that is, 95% can be safely interpreted as the probabil‑
ity a parameter falls within the CPI. The wider inter‑
vals suggest the basic CQR method employed here is
somewhat less precise and thus more conservative than
the Bayesian method.

Our trained CNN provides nearly instantaneous es‑
timates of model parameters. While the run time of
the likelihood approach employed in this study scales
linearly with the size of the tree, the neural network has
virtually constant run times that are more than three
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FIGURE 3. Coverage of uncalibrated qCNN quantile predictions (left) and calibrated qCNN that produce CPI on the right. The observed
coverage of 5000 samples tested at 7 different predicted coverage levels (labeled horizontal). See Figure 2c for more details on coverage plots.The
reader is referred to the online version for the color version of the images.

orders of magnitude faster. Because simulation‑trained
neural networks have a one‑time cost of simulating
the training data set and then training the neural
network, these methods are often called amortized‑
approximators (Bürkner et al. 2022). This means the
time savings are not recouped until a certain number
of trees have been analyzed. For example, here over 524
trees would need to be analyzed to realize the cost sav‑
ings of simulating data and training our neural network
(Fig. 4). This illustrates the importance of simulation op‑
timization and generality for likelihood‑free approaches
to inference.

Comparing Sensitivity to Model Misspecification
To test the relative sensitivity of CNN estimates

and the likelihood‑based mean posterior estimate to
model misspecification, we simulated several test data
sets under different, more complex epidemic scenar‑
ios and compared the decrease in accuracy (increase in
APE).

Our first model misspecification experiment tested
performance when assuming all locations had the same
R0 when, in fact, each location had different R0𝑖

val‑
ues. The median APE for all 3 parameters increased to
varying degrees (Supplementary Fig. S5a) compared to
the median APE measured in Fig. S3. We found that
both methods converged on similar biased estimates for
R0. In both the CNN and Bayesian method, estimates
of 𝛿 were relatively robust to misspecifying R0. In con‑
trast, the migration rate showed much more sensitiv‑
ity to this model violation in both methods with both
methods also converging on similarly biased estimates

(Fig. 5a). The median difference in error between the 2
methods is close to zero for all rate parameters (∣ �̃�𝑑 ∣
95% highest posterior density < 6 ppts; Supplementary
Table S1) (Supplementary Fig. S5b. For both methods
of uncertainty quantification, the coverage declined by
similar amounts for all 3 parameters with 𝛿 showing lit‑
tle to no sensitivity to R0 misspecification (Fig. 5c and
Supplementary Table S2). The patterns of coverage are
also somewhat less regular across the qCNN quantiles
than the highest posterior densities for the migration
rate parameter likely due in part to the fact that each in‑
ner quantile qCNN was trained independently and thus
have independent errors. The relative interval widths
and Jaccard similarity indexes did not change appre‑
ciably from predictions under the true model (Sup‑
plementary Fig. S4 and Supplementary Table S2). Our
CNN appears to be slightly more sensitive than the
Bayesian approach when predicting the outbreak loca‑
tion. Nevertheless, their distributions are quite similar
(Fig. 5d).

Next, we measured method sensitivity when the sam‑
pling process of the test trees violates assumptions in
the inference model. In this set, each location had a
unique and independent sampling rate, 𝛿, rather than
a single 𝛿 shared among locations. The median APE
only increased for 𝛿 and m (Supplementary Fig. S7a).
As expected, estimates of 𝛿 were highly biased for both
methods (Fig. 6a). Panel a also shows that R0 is virtually
insensitive to sampling model misspecification, but that
migration rate, again, is highly sensitive in both the
CNN and likelihood method. The median difference in
error between the 2 methods is close to 0 for all the rate
parameters (∣ �̃�𝑑 ∣ 95% highest posterior density < 5
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ppts; Supplementary Table S1, Supplementary Fig. S7)
(Fig. 6a). For both methods coverage declined for 𝛿 and
m, while R0 showed little to no sensitivity to 𝛿 mis‑
specification (Fig. 6c and Supplementary Table S2). The
relative widths and degree of overlap was again sim‑
ilar to the experiments above (Supplementary Fig. S8,
Supplementary Table S2). We again also see greater ir‑
regularity among CPI levels in coverage, notably 𝛿 at
inner‑quantile level 0.9. The location of outbreak predic‑
tion is also somewhat sensitive in both methods, with
the CNN showing a slightly larger mean difference, but
the overall distribution of accuracy of all the test trees
again is similar (Fig. 6d).

To explore sensitivity to migration model underspec‑
ification, we simulated a test set where the migration
rates between locations is free to vary rather than be‑
ing the same among locations as in the inference model.
This implies 5! unique location‑pairs and thus unique
migration rates in the test data set. Results show that
for both methods, the parameters R0 and 𝛿 are highly
robust to this simplification (Supplementary Fig. S9a).
Though estimates of a single migration rate had a high
degree of error (Fig. 7a), the two methods still had sim‑
ilar estimates with the difference in APE centered near
zero (Fig. 7b). The inferred median difference in APE
was close to zero (∣ �̃�𝑑 ∣ 95% highest posterior den‑
sity < 3 ppts; Supplementary Table S1; Supplemen‑
tary Fig. S9b). For both methods, the coverage only
declined significantly for the migration rate and the
decrease was again similar in magnitude across quan‑
tiles (Fig. 7c and Supplementary Table S2). Again, rel‑
ative widths and degree of overlap of CPI and highest
posterior density were similar to previous experiments

(Supplementary Fig. S10, Supplementary Table S2).
There was a slight but similar decrease in accuracy
in predicting the outbreak location for both methods
(Fig. 7d).

When testing the sensitivity of the 2 methods to arbi‑
trary groupings of locations, we found that both meth‑
ods showed equal sensitivity to the same parameters
(Fig. 8 Panels a and b). In particular, the migration rate
showed a modest increase in median APE and R0 and
sample rate showed virtually no sensitivity to arbitrary
grouping of locations (Supplementary Fig. S11a). The
inferred median difference between method APE’s was
again close to zero (∣ �̃�𝑑 ∣ 95% highest posterior den‑
sity < 4 ppts; Supplementary Table S1; Supplemen‑
tary Fig. S11b). For both methods, the coverage declined
modestly only for the migration rate (Fig. 8c and Sup‑
plementary Table S2). Relative widths and interval over‑
lap showed virtually no change (Supplementary Fig.
S12 and Supplementary Table S1). These results suggest
that, for at least the exponential phase of outbreaks, rate
parameters do not vary among locations, these models
have a fair amount of robustness to the decisions lead‑
ing to geographical division of continuous space into
discrete space. The outbreak location showed higher ac‑
curacy in both methods due to the fact that the test data
were no longer a flat distribution; the 6 combined lo‑
cations should contain 60% of the outbreak locations
(Fig. 8d).

Finally, we explored the relative sensitivity of our
CNN to amounts of phylogenetic error that are present
in typical phylogeographic analyses. Our simulated
phylogenetic error produced trees with average Jaccard
similarity indexes between the inferred tree and the
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FIGURE 5. For 93 test trees where the R0 parameter was misspecified: the simulating model for the test data specified 5 unique R0s among
the 5 locations while the inference methods assumed one R0 shared among locations. Because of this, the estimates for R0 are plotted against
mean of the 5 true R0 values. See Figure 2 for general details about plots.The reader is referred to the online version for the color version of the
images.

true tree of about 0.5 with 95% of simulated trees hav‑
ing distances within 0.36 and 0.72. We again compared
inferences derived from the true tree and the tree with
errors using the CNN and the Bayesian LIBDS meth‑
ods. Results show that migration rate was minimally
affected but R0 and 𝛿 were to some degree sensitive to
phylogenetic error (Fig. 9a; Supplementary Fig. S13a),

with both methods again showing similar degrees of
sensitivity (Fig. 9b). The inferred median difference was,
yet again, small (∣ �̃�𝑑 ∣ 95% highest posterior density
< 6 ppts. Supplementary Table S1, Supplementary Fig.
S13b). Coverages of 𝛿 declined for both methods in a
similar way across quantiles. Again the 90% inner quan‑
tile showed some inconsistency with its neighboring
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FIGURE 6. For 118 test trees where the sampling rate parameter was misspecified: the simulating model for the test data specified 5 unique
sampling rates among the 5 locations while the inference methods assumed one sampling rate shared among locations. The estimates of 𝛿 are
plotted against the mean true values of 𝛿. See Figure 2 for general details about plots.The reader is referred to the online version for the color
version of the images.

quantiles. In this case, its coverage for 𝛿 was slightly
higher than the 95th inner quantile. The CPIs for 𝑅0
appear much less sensitive (Fig. 9c and Supplemen‑
tary Table S2). Although the relative widths of the CPIs
and highest posterior densities were similar to previ‑
ous experiments, the degree of overlap decreased some‑
what by about 5%–10% (Supplementary Fig. S14 and

Supplementary Table S2). One difference between this
experiment and the others is that trees are data instead
of model parameters. It is interesting that the point es‑
timates from the 2 methods show similar biases while
the coverages seem to depart somewhat. Inference of
the origin location was very similar for both methods
(Fig. 9d).
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FIGURE 7. For 90 test trees where the migration rate parameter was misspecified: the simulating model for the test data specified 5! (120)
unique migration rates among the unique pairs of the 5 locations while the inference methods assumed all migration rates were equal. The
infered migration rate is plotted against the mean pairwise migraiton rates of test data set. See Figure 2 for general details about plots.The
reader is referred to the online version for the color version of the images.

Analysis of SARS CoV‑2 Tree
We next compared our likelihood‑free method to a

recent study investigating the phylodynamics of the
first wave of the SARS CoV‑2 pandemic in Europe
(Nadeau et al. 2021). Despite simulating the migration
and the sampling processes differently from Nadeau
et al. (2021), our CNN produces similar estimates for

the location‑specific R0 and the origin of the A2 clade
(Fig. 10). Whether the full tree or just the A2 clade is
fed into the network, the predicted R0 for each location
was not far from the posterior estimates of Nadeau et al.
(2021). For the most part the R0 95% CPI for each loca‑
tion overlaps to a high degree with the 95% highest pos‑
terior density and is roughly 1.5 times wider indicating
that our CNN estimates are relatively conservative. For
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FIGURE 8. For 101 test trees where the number of locations was misspecified: the simulating model for the test data specified an outbreak
among 10 locations with 6 locations subsequently combined into a single location while the inference methods assumed 5 locations with no
arbitrary combining of locations. See Figure 2 for general details about plots.The reader is referred to the online version for the color version of
the images.

Hubei, the interval width of the a2 clade is much wider
than the estimate using the whole tree. This is not sur‑
prising because there are no samples from Hubei in
the a2 clade. We also obtained estimates for the sam‑
pling rate and migration rate from our CNN and CPIs
from our calibrated qCNN. Because Nadeau et al. (2021)
specify location‑specific rates and informative priors for

these rates, making a direct comparison of these results
with the single parameter for each of migration and
sampling rates is more challenging to interpret. Sup‑
plementary Figure S15 shows the CNN’s estimates are
within the range of posterior distributions estimated
in Nadeau et al. (2021), however, overlap could be ex‑
plained in large part by wide posterior distributions.
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FIGURE 9. For 118 test trees where the time tree was misspecified: the true tree from the simulated test set was replaced with an inferred tree
from simulated DNA alignments under the true tree. See Figure 2 for general details about plots.The reader is referred to the online version for
the color version of the images.

The spillover‑location‑prediction‑CNNproducedpro‑
bability estimates of the A2 clade ancestral location that
mostly agreed with that of Nadeau et al. (Fig. 10, right
histograms). The only significant discrepancy in the Eu‑
ropean origin prediction is that Nadeau et al.’s analysis
suggests a much higher probability that the most recent
common ancestor of the A2 clade was in Hubei than our

CNN predicts. This is likely because our CNN only used
the A2 clade to predict A2 origins which has no Hubei
samples to infer the origin of the A2 clade while Nadeau
et al. (2021) used the whole tree. Notwithstanding this
difference, among European locations, both methods
predict Germany is the most likely location of the most
recent common ancestor followed by Italy.
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FIGURE 10. LDBDS CNN comparison to (Nadeau et al. 2021) inference. Left violin plots show the posterior distributions of R0 for each lo‑
cation in Europe as well as Hubei, China (orange). The black dot and line within each violin plot shows the posterior mean and 95% highest
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2021)).The reader is referred to the online version for the color version of the images.

DISCUSSION AND CONCLUSIONS
Inference models are necessarily simplified approxi‑

mations of the real world. Both simulation‑trained neu‑
ral networks and likelihood‑based inference approaches
suffer from model under‑specification and/or misspeci‑
fication. When comparing inference methods, it is im‑
portant to assess the sensitivity of model inference to
simplifying assumptions. In this study, we show that
newer deep learning approaches and standard Bayesian
approaches behave and misbehave in similar ways un‑
der a panel of phylodynamic estimation tasks where
the inference model is correct as well as when it is
misspecified.

By extending new approaches to encode phylogenetic
trees in a compact data structure (Voznica et al. 2022;
Lambert et al. 2023), we have developed the first appli‑
cation of phylodynamic deep learning applied to phylo‑
geography with serial sampling. Our approach is simi‑
lar to that of Lambert et al. (2023) in which they analyzed
a binary state‑dependent birth‑death model with exclu‑
sively extant sampling. By training a neural network on
phylogenetic trees generated by simulated epidemics,
we were able to accurately estimate key epidemiological
parameters, such as the reproduction number and mi‑
gration rate, in a fraction of the time it would take with
likelihood‑based methods. Like Voznica et al. (2022) and
Lambert et al. (2023), we found that CNN estimators
perform as well or nearly as well as likelihood‑based es‑
timators under conditions where the inference model is
correctly specified to match the simulation model. The

success of these separate applications of deep learning
to different phylodynamic problems is a testament to
the versatility of the CBLV encoding of trees.

We compared the sensitivity of deep learning and
likelihood‑based inference to model misspecification.
Because deep‑learning methods of phylogenetic and
phylodynamic inference are new, few studies compare
how simulation‑trained deep learning methods fail in
comparison to likelihood methods in this way (Flagel
et al. 2019). We assume that when the inference model
is correctly specified to match the simulation model,
the trained CNN will, at best, produce noisy approxi‑
mations of likelihood‑based parameter estimates. In re‑
ality, issues related to training data set size, learning
efficiency, and network overfitting may cause our CNN‑
based estimates to contain excess variance or bias when
compared to Bayesian likelihood‑based estimators. Our
results from 5 model misspecification experiments show
that both methods of inference perform similarly when
the simulating model and the inference model assump‑
tions do not perfectly match. These similarities exist
not only in aggregate, when comparing method perfor‑
mance across datasets but also when comparing perfor‑
mance for each individual dataset. This suggests that
the CNN and likelihood methods are truly estimating
parameters using functionally equivalent criteria, de‑
spite the fact that CNN heuristically learns these criteria
through data patterns, while likelihood precisely and
mathematically defines these criteria through the model
definition itself.
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Results of comparative sensitivity experiments like
this are important because if likelihood‑free methods
using deep neural networks can easily be trained to
yield estimates that are as robust to model misspeci‑
fication as likelihood‑based methods, then analysis of
a large space of more complex outbreak scenarios for
which tractable likelihood functions are not available
can be developed and applied to real world data. Ad‑
ditionally, sufficiently realistic, pre‑trained neural net‑
works can yield nearly instantaneous inferences from
data in real time to inform analysts and policy mak‑
ers. For example, modeling how viruses move and are
unevenly sampled among host populations can impact
phylogeographic inferences (Layan et al. 2023). Un‑
fortunately, inference under accurate models currently
requires sophisticated but computationally demand‑
ing likelihood‑based methods that may constrain other
model design choices (Maio et al. 2015; Müller et al.
2018). Deep learning may prove useful for exploring
this important area of model space, particularly in those
areas where likelihood‑based methods development is
most difficult.

We also tested location‑dependent SIR simulation
trained neural networks against results from a pre‑
vious publication fitting a similar model—location‑
dependent birth‑death‑sampling (LDBDS) model—on
real‑world data using a Bayesian method. Our CNN
predicted location‑specific R0 and outbreak origin in
Europe were similar to that inferred in (Nadeau et al.
2021). This result and our model misspecification ex‑
periments suggest that simulation‑trained deep neural
networks trained on phylogenetic trees can find pat‑
terns in the training data that generalize well beyond
the training data set.

Our study extends the results of Voznica et al. (2022)
and Lambert et al. (2023) in several important ways.
Our work showed that the new compact bijective lad‑
derized vector encoding of phylogenetic trees can easily
be extended with one‑hot encoding to include metadata
about viral samples. Using this strategy, we trained a
neural network to not only predict important epidemio‑
logical parameters such as R0 and the sampling rate but
also geographic parameters such as the migration rate
and the location of outbreak origination or spillover.
We anticipate that more diverse and complex metadata
can be incorporated to train neural networks to make
predictions about many important aspects of epidemio‑
logical spread such as the relative roles of different de‑
mographic groups and the overlap of different species’
ranges.

This approach can be readily applied to numerous
compartment models used to describe the spread of
different pathogens among different species, locations,
and demographic groups, for example, SEIR, SIRS, SIS,
etc. (Ponciano and Capistrán 2011; Volz and Siveroni
2018; Bjørnstad et al. 2020; Chang et al. 2020; O’Dea and
Drake 2022) as well as modeling super‑spreader dynam‑
ics as in (Voznica et al. 2022). Here, we focused on one
phase of outbreaks (the exponential phase), but there

are many other scenarios to be investigated, such as
when the stage of an epidemic differs among locations
(e.g. exponential, peaked, declining). With likelihood‑
free methods, the link between the underlying popula‑
tion dynamics from which viral genomes are sampled
and inferred phylogenetic trees can easily be interro‑
gated. More complex models will require larger trees
to infer model parameters. In this study, we explored
trees that contained fewer than 500 tips, but anticipate
that larger trees will demonstrate even greater speed
advantages of neural networks over likelhood‑based
methods either through subsampling regimes (Voznica
et al. 2022) or by including larger trees in training
datasets.

With the fast, likelihood‑free inference afforded by
deep learning, the technical challenges shift from ex‑
ploring models for which tractable likelihood functions
can be derived toward models that produce realistic
empirical data patterns, have parameters that control
variation of those patterns, and are efficient enough to
generate large training data sets. A growing number of
advanced simulators are rapidly expanding the possi‑
bilities for deep learning in phylogenetics. For example,
FAVITES (Moshiri et al. 2019) is a simulator of dis‑
ease spread through large contact networks that tracks
transmission trees and simulates sequence evolution.
Gen3sis, MASTER, SLiM, and VGsim are flexible simu‑
lation engines for generating complex ecological, evolu‑
tionary, and disease transmission simulations (Vaughan
and Drummond 2013; Haller and Messer 2019; Hagen
et al. 2021; Overcast et al. 2021; Shchur et al. 2022). Con‑
tinued advances in epidemic simulation speed and flex‑
ibility will be essential for likelihood‑free methods to
push the boundaries of epidemic modeling sophistica‑
tion and usefulness.

There are several avenues of development still
needed to realize the potential of likelihood‑free infer‑
ence in phylogeography using deep learning. The cur‑
rent setup is ideal for simulation experiments, but it is
more difficult to ensure that the optimal parameter val‑
ues for empirical data sets are within the range of train‑
ing data parameters. Standardizing input tree height,
geographical distance, and other parameters help make
training data more universally applicable. Simulation‑
trained neural networks are often called amortized
methods (Bürkner et al. 2022; Schmitt et al. 2022) be‑
cause the cost of inference is front‑loaded, that is, it
takes time to simulate a training set and train a neu‑
ral network. The total cost in time per phylogenetic tree
amortizes as the number of trees analyzed by the trained
model increases. These methods are, therefore, impor‑
tant when a model is intended to be widely deployed or
be responsive to an emerging outbreak where policy de‑
cisions must be formulated rapidly. Because amortized
approximate methods require multiple analyses to real‑
ize time savings, researchers need to generate training
data sets over a broad parameter and model space so
that trained networks can be applied to new and diverse
data sets.
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Our analysis introduces a simple approach to esti‑
mate the ancestral state corresponding to the root node
or stem node of a phylogeny. More sophisticated super‑
vised learning approaches will be needed to train neural
networks to predict the ancestral locations for internal
nodes other than the root. The topologies and branch
lengths of random phylogenies in the training and test
datasets will vary from tree to tree. Our approach relies
on the fact that all trees contain a root node, meaning all
trees can help predict the root node’s state. However,
few (if any) trees in the training dataset will contain
an arbitrary clade of interest within a test dataset, sug‑
gesting to us that naive approaches to train networks to
estimate ancestral states for all internal nodes will prob‑
ably fail. We are unaware of any existing solutions for
generalized ancestral state estimation using deep learn‑
ing, and expect the problem will gather more attention
as the field matures.

Quantifying uncertainty is crucial to data analysis
and decision making, and Bayesian statistics provide
a framework for doing so in a rigorous way. It is es‑
sential to understand how uncertainty estimation with
likelihood‑free methods compare to likelihood‑based
methods when confronted with the mismatch of mod‑
els and real‑world data‑generating processes. We quan‑
tified uncertainty using CQR (Romano et al. 2019) by
training neural networks to predict quantiles and then
calibrating those quantiles to produce the expected cov‑
erage. We refer to the resulting intervals as CPI and
demonstrate that they predict well the coverage of true
values on a test dataset (Fig. 3) and behave in similar
ways to Bayesian methods when the model is or is not
misspecified (Figs. 2–9). Despite having the same (cor‑
rect) coverage as the Bayesian highest posterior density,
the interval length was 20%–50% wider on average mak‑
ing them a more conservative (less precise) estimation
procedure. Though this can likely be improved with
more training data for qCNNs, there are more funda‑
mental challenges for uncertainty quantification with
quantile regression and conformalization.

Methods for estimating more precise intervals is an
active vein of research among machine learning re‑
searchers and statisticians (Barber et al. 2020; Chung
et al. 2021; Sousa et al. 2022; Gibbs et al. 2023). For ex‑
ample, although intervals estimated by the qCNN are
conditional on each data point, the calibration of quan‑
tiles through CQR involves estimating marginal calibra‑
tion terms that shift all quantiles by the same amount. If
the error in the quantile coverage is not constant across
the prediction range, then a more adaptive procedure
should yield more precise intervals (Sousa et al. 2022;
Gibbs et al. 2023).

We also compared the consistency among CPI esti‑
mates at different inner‑quantiles to that of highest pos‑
terior densities at those same quantiles. We find that in‑
dependently trained neural networks for each coverage
level can potentially lead to inconsistencies where nar‑
rower, nested inner quantiles can have close to or higher
coverage than wider quantiles (e.g. Fig. 9c). Overall,
our results suggest CQR is approximately consistent

with likelihood‑based methods and similarly sensitive
to model misspecification, while there is room for im‑
provement. Methods where all quantiles of interest can
be estimated jointly (Chung et al. 2021) may be a fruitful
avenue of research for such improvements.

Another important challenge of inference with deep
learning is the problem of convergence to a location on
the loss function surface that approximates the max‑
imum likelihood well. There are a number of basic
heuristics that can help such as learning curves but more
rigorous methods of ascertaining convergence is the
subject of active research (Bürkner et al. 2022; Schmitt
et al. 2022).

With recent advances in deep learning in epidemiol‑
ogy, evolution, and ecology (Battey et al. 2020; Schrider
and Kern 2018; Voznica et al. 2022; Radev et al. 2021;
Lambert et al. 2023; Rosenzweig et al. 2022; Suvorov and
Schrider 2022), biologists can now explore the behav‑
ior of entire classes of stochastic branching models that
are biologically interesting but mathematically or sta‑
tistically prohibitive for use with traditional likelihood‑
based inference techniques. Beyond epidemiology, we
anticipate that deep learning approaches will be useful
for a wide range of currently intractable phylogenetic
modeling problems. Many phylogenetic scenarios—
such as the adaptive radiation of anoles (Patton et al.
2021) or the global spread of the grasses (Palazzesi et al.
2022)—involve the evolution of discrete traits, continu‑
ous traits, speciation, and extinction within an ecologi‑
cal or spatial context across a set of co‑evolving species.
Deriving fully mechanistic yet tractable phylogenetic
model likelihoods for such complex scenarios is diffi‑
cult, if not impossible. Careful development and ap‑
plications of likelihood‑free modeling methods might
bring these phylogenetic scenarios into renewed focus
for more detailed study. Although we are cautiously
optimistic about the future of deep learning methods
for phylogenetics, it will become increasingly important
to diagnose the conditions where phylogenetic deep
learning underperforms relative to likelihood‑based ap‑
proaches, and to devise general solutions to benefit the
field.
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