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A nomogram for risk stratification of central cervical lymph node 
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Background: Whether to perform prophylactic central lymph node dissection for cN0 papillary thyroid 
carcinoma (PTC) patients is still controversial. This retrospective study aimed to develop and validate a 
nomogram based on ultrasound and dual-energy computed tomography (DECT) for the risk stratification of 
central lymph node metastasis (CLNM) in patients with PTC.
Methods: A total of 525 patients from 2017 to 2019 [Tianjin First Central Hospital (Hospital A)] were 
retrospectively analyzed to form the training cohort and to conduct internal validation. Another group of 204 
patients in 2020 (Hospital A) formed the temporal validation cohort. A total of 107 patients in 2020 [Binzhou 
Medical University Hospital (Hospital B)] formed the geographic validation cohort, which was a retrospective 
cohort study. The area under the curve (AUC), calibration curve, and decision curve were used to evaluate the 
performance of the nomogram. The locally weighted regression curve was used for risk stratification.
Results: Diameter, taller-than-wide, calcification, capsular invasion, and iodine concentration in the arterial 
and venous phases were independent risk predictors of CLNM. The AUC of the nomogram was 0.922 (95% 
confidence interval: 0.895–0.943) in the training cohort. Two external validation cohorts demonstrated the 
good performance of the nomogram in predicting CLNM, with AUCs of 0.912 and 0.861. The significantly 
improved net reclassification index and integrated discriminatory improvement index indicated that DECT 
was a powerful supplement to ultrasound for predicting CLNM. The risk stratification system divided all 
patients into low-risk (0–50 points), intermediate-risk (51–100 points), and high-risk groups (>100 points). 
Conclusions: The nomogram and risk stratification system estimated the utility of CLNM to guide 
individualized treatment of patients with PTC.
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Introduction

Thyroid cancer is the sixth most common cancer among 
women according to the American Cancer Society’s 2023 
American Cancer Data Statistics (1). The incidence of 
central lymph node metastasis (CLNM, level VI) ranges 
from 12% to 64% (2,3) when first diagnosed with thyroid 
cancer. Whether to perform prophylactic central lymph 
node dissection (CLND) for cN0 thyroid cancer is still 
controversial (4-6), which might lead to overtreatment.

Ultrasound is still the primary method for imaging 
evaluation of thyroid cancer (7,8). However, due to the 
influence of gas in the trachea and esophagus (9,10), 
ultrasound is significantly limited in the evaluation of the 
central cervical lymph node (11,12). Moreover, several 
recent studies (13-19) have indicated that the potential 
complementary role of computed tomography (CT) in 
assessing lymph node metastasis. Compared to CT, dual-
energy CT (DECT) has many advantages, such as low 
radiation dose, high image quality, multiparameter imaging, 
quantitative measurement, and so on (20). On the other 
hand, Appendix 1 detailed that the use of iodine contrast 
agents did not affect postoperative radioactive iodine 
therapy.

In recent years, the use of prediction model has been 
widely recognized by clinicians, which is recommended in 
clinical practice guidelines (21) and have been applied to 
predict lymph node metastasis in patients with colorectal 
cancer (22), endometrial cancer (23), breast cancer (24), 
gastric cancer (25), and lung adenocarcinoma (26).

In the current study, we hypothesized that first, combined 
ultrasound and DECT features of the solitary primary thyroid 
nodule were potentially associated with CLNM. Second, 
the prediction model would achieve improved performance 
and risk stratification. Third, the nomogram could guide 
the formulation of individual treatment plans. The purpose 
of this study was first to identify independent risk factors 
for CLNM combining ultrasound and DECT. Second, to 
develop and validate the prediction model for CLNM and 

compare it to the model based on ultrasound only. Third, the 
risk stratification was further verified through a retrospective 
cohort study to provide information for the clinical transition 
from prophylactic CLND to therapeutic CLND. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-24-284/rc).

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by institutional ethics boards of Tianjin First 
Central Hospital (No. 2020N220KY) and Binzhou Medical 
University Hospital (No. LW-24), and individual consent 
for this retrospective analysis was waived.

Subjects

A total of 5,773 patients with papillary thyroid carcinoma 
(PTC) who visited Tianjin First Central Hospital (Hospital 
A) between 2017 and 2019 were retrospectively analyzed. 
Patients included in this study met the following criteria: 
first diagnosed with thyroid cancer, met ultrasound-guided 
fine-needle aspiration biopsy criteria, underwent thyroid 
surgery with complete postoperative pathological data, 
complete ultrasound and DECT data and clear images 
to make a definite diagnosis. Exclusion criteria included: 
patients with a history of neck radiotherapy or other 
tumors; patients considered to have multiple lesions on 
ultrasound examination; patients confirmed to be medullary 
thyroid carcinoma, follicular thyroid carcinoma, or 
anaplastic thyroid carcinoma by postoperative pathology. A 
total of 525 consecutive patients were enrolled to develop 
the training cohort and were subjected to internal validation 
(Figure 1).

The patients were treated with near-total thyroidectomy 
or lobectomy accompanied by CLND according to 
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5,773 patients who admitted to Hospital A due to thyroid nodules 
were collected from January 2017 to December 2019 in PACS

Review the US-FNAB results for the remaining 836 patients

229 patients classified as Bethesda I–IV were excluded

Collect the DECT data of 607 patients classified as Bethesda V or VI

36 patients who did not perform DECT were excluded

Review the medical records of 571 patients with complete DECT data

19 patients who refused further surgery were excluded

Review the postoperative pathology reports of 552 patients

Re-evaluate 547 patients’ US and DECT images

525 patients were enrolled

Training Cohort (n=525)

CLNM (−) (n=302) CLNM (+) (n=223)

22 patients whose US or DECT images with obvious 
artifacts were excluded

4 MTC patients and 1 FTC patient were excluded

4,937 patients were excluded, whose ultrasound 
considerations were:

• 1,473 patients with TR1
• 2,059 patients with TR2
• 38 patients with TR3 and diameter <2.5 cm
• 29 patients with TR4 and diameter <1.5 cm
• 17 patients with TR5 and diameter <0.5 cm
• 1,321 patients with multi foci

1,248 patients who admitted to Hospital B due to thyroid nodules
were collected in 2020 in PACS

131 patients underwent US-FNAB

9 patients classified as Bethesda I–IV were excluded

122 patients classified as Bethesda V or VI underwent DECT

7 patients who refused to perform DECT were excluded

Re-evaluate 115 patients’ US and DECT images,
and predict the likelihood of CLNM based on the nomogram

Compare the nomogram prediction results of 107 patients with the 
pathological results

External validation cohort I (n=204) Hospital A in 2020

Hospital B in 2020
A retrospective cohort study

External validation cohort II (n=107)

CLNM (−) (n=53) CLNM (+) (n=54)

1,117 patients were excluded, whose ultrasound 
considerations were:

• 305 patients with TR1
• 574 patients with TR2
• 11 patients with TR3 and diameter <2.5 cm
• 8 patients with TR4 and diameter <1.5 cm
• 5 patients with TR5 and diameter <0.5 cm
• 214 patients with multi foci

Postoperative pathological results were used as the 
gold standard for the validation, and 8 patients were 
excluded:

• 6 patients who refused further sugery
• 2 patients with MTC

Figure 1 Flowchart of inclusion and exclusion in the current study. Hospital A is Tianjin First Central Hospital, School of Medicine, Nankai 
University; Hospital B is Binzhou Medical University Hospital. CLNM, central lymph node metastasis; DECT, dual-energy computed 
tomography; FTC, follicular thyroid carcinoma; MTC, medullary thyroid carcinoma; PACS, picture archiving and communication systems; 
TR, thyroid imaging reporting and data system for ultrasonography; US, ultrasound; US-FNAB, ultrasound-guided fine needle aspiration 
biopsy.
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the American Thyroid Association guidelines (27) (see  
Appendix 2 for the specific principles of operation). The 
postoperative pathological results were used as the gold 
standard. In order to ensure the independence of the 
measured data and the accuracy of the constructed model, 
all patients included in this study were with a single lesion. 
The solitary primary thyroid nodule’s ultrasound and 
DECT parameters were evaluated.

After model development, we used the same criteria 
to retrospectively analyze medical cases of inpatients who 
visited Hospital A in 2020 for temporal validation (external 
validation cohort I). To further validate the prediction 
model, we conducted a retrospective cohort study of  
107 patients admitted to Binzhou Medical University 
Hospital (Hospital B) in 2020, who were included for 
geographic validation (external validation cohort II).

Image acquisition

In Hospital A, all data was first scanned with five different 
Doppler ultrasonic diagnostic apparatuses, then examined 
by a 64 multidetector row CT scanner (SOMATOM 
Definition Flash, Siemens Healthcare) using dual-phase 
contrast-enhanced CT. In Hospital B, the data was scanned 
with other four different Doppler ultrasonic diagnostic 
apparatuses. The CT scanner was the same as Hospital 
A. The specific ultrasound and DECT protocols were 
detailed in Appendix 3. Ultrasound images parameters from 
the primary thyroid lesion included: location, diameter, 
composition, margin, echogenicity, shape, calcification, and 
ratio of capsular abutment over the lesion perimeter (A/P). 
In DECT images, we collected the following quantitative 
parameters from the solitary primary thyroid nodule: iodine 
concentration (IC) and normalized IC (NIC) of thyroid 
nodules in the arterial and venous phases. All quantitative 
parameters were measured independently three times 
and averaged as results. Measurement methods of related 
ultrasound and DECT data were introduced in Appendices 
4,5 and Figure S1.

Development of the prediction model

The candidate variables with P<0.05 in the univariate 
analysis were input into the multivariate binary logistic 
backward stepwise regression analysis to select the 
independent predictors. A nomogram was constructed 
based on the results. The specific category description was 
detailed in Appendix 6.

Additionally, a locally weighted regression (LOESS) 
curve was drawn according to the total score calculated 
from the nomogram among the training cohort. Then, 
based on the inflection point of the LOESS curve to classify 
all patients into low-risk, intermediate-risk, and high-risk 
groups.

Validation of the prediction model

The 1,000 bootstrap technique was used for internal 
validation. Temporal and geographic validation methods 
were applied for external validation. The nomogram score 
of the included patients in the external validation cohort II 
was calculated to predict the probability of CLNM, blinded 
to the pathological results.

Power calculation

A power calculation was performed to ensure that the 
external validation cohort was of sufficient size to evaluate 
the area under the curve (AUC) estimated from the training 
cohort.

Clinical utility of the prediction model

Decision curve analysis (DCA) was conducted to evaluate 
the nomogram net benefits with different threshold 
probabilities in the validation cohorts (28). The predicted 
probability of CLNM in each patient was calculated based 
on the nomogram, and risk stratification was performed to 
assist the clinical decision.

Statistical analysis

All statistical analyses were performed using SPSS 
25.0 and R software 4.0.1. R software, OriginPro 9.1, 
GraphPad Prism 9.0.0, and MedCalc 18.2.1 were used 
to draw the figures. It was considered that P<0.05 was 
statistically significant. Multivariate logistic regression was 
performed to calculate the odds ratio (OR) of the 95% 
confidence interval (CI) to screen out the independent 
risk predictors of CLNM. A nomogram was built based 
on the independent risk predictors. The risk stratification 
system was established according to the inflection point 
of the LOESS curve using R software. The performance 
of the nomogram was estimated using the receiver 
operating characteristic (ROC) curve and the calibration 
curve (“rms” package). The DeLong method was used to 
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compare the AUCs of the two constructed models using 
ultrasound alone and ultrasound combined with DECT. 
The integrated discrimination improvement index (IDII) 
and net reclassification index (NRI) were calculated using 
R software (Predict ABEL package). PASS 15.0 was used to 
perform the power calculation. DCA was performed by the 
“dca. R” (decisioncurveanalysis.org). 

Results

Patient characteristics

A total of 525 consecutive PTC patients from 2017 to 
2019 in Hospital A were included in the training cohort, 
including 122 males and 403 females. A total of 204 
consecutive patients, including 58 males and 146 females 
in Hospital A in 2020, were collected to form external 
validation cohort I. Another 107 independent patients, 
including 38 males and 69 females in Hospital B in 2020, 
were collected to form external validation cohort II. 
Baseline information of the training and two external 
validation cohorts were shown in Table 1 and Tables S1-S3.  
The distribution of continuous variables in the training 
cohort was shown in the form of histogram (Figure S2). 
Heat map of data distribution in the three cohorts was 
shown in Figure S3. The results of the consistency analysis 
were shown in Table S4. The cutoff value of each DECT 
quantitative parameter was displayed in Table S5, and these 
parameters were converted from continuous variables to 
categorical variables accordingly.

Prediction model development

Univariate analysis was performed for each variable in the 
training cohort. Diameter, shape, calcification, A/P, IC 
in the arterial phase, IC in the venous phase, NIC in the 
arterial phase, and NIC in the venous phase were statistically 
associated with CLNM in PTC patients (Table 2).

Furthermore, a multivariate binary logistic regression 
analysis identified that diameter (OR, 2.113; 95% CI: 
1.431–3.121; P<0.001), shape (OR, 3.802; 95% CI: 
2.248–6.430; P<0.001), calcification (OR, 2.898; 95% CI: 
2.366–3.549; P<0.001), A/P (OR, 2.622; 95% CI: 1.290–
5.330; P=0.008), IC in the arterial phase (OR 2.354; 95% 
CI: 1.440–3.846; P=0.001), and IC in the venous phase (OR 
2.352; 95% CI: 1.428–3.874; P=0.001) were independent 
risk predictors of CLNM (Table 2). The Hosmer-Lemeshow 
test showed that the P value was 0.954, indicating that 

the model had an increased goodness of fit. The results of 
multiple linear regression showed that the tolerance of all 
variables was greater than 0.2 and the variance inflation 
factor was less than 10, so it is considered that there was no 
multicollinearity among these predictors (Figure S4 and 
Table S6) (29).

The above six independent predictors were incorporated 
to produce the nomogram (Figure 2). It showed good 
discrimination with an AUC of 0.922 (95% CI: 0.895–0.943) 
(Table 3 and Figure 3A). The good agreement between 
the nomogram-estimated probability of CLNM and the 
actual CLNM rate in the training cohort was showed by 
the calibration curve, with a mean absolute error of 0.015 
(Figure 3B and Table S7).

In addition, in the training cohort, the cutoff value of 
0.82 was selected to distinguish the presence of CLNM, 
with a sensitivity of 84.75%, specificity of 87.09%, positive 
predictive value (PPV) of 82.9%, negative predictive value 
(NPV) of 88.6%, positive likelihood ratio (PLR) of 6.56, 
and negative likelihood ratio (NLR) of 0.18 (Table 3).

The Sankey plot showed that the patients in the training 
cohort had gone through the six risk factors and finally 
divided into CLNM (−) and CLNM (+) (Figure S5).

Risk stratification system according to the prediction model

A risk stratification system based on the inflection point 
of the LOESS curve was developed in the training cohort. 
All patients were divided into low-risk (total points: 0–50), 
intermediate-risk (total points: 51–100), and high-risk (total 
points: >100) groups (Figure S6). In the temporal validation 
cohort, the confusion matrix revealed that the potential 
utility of CLNM was 9.3%, 34.7%, and 87.9% in the low-
risk, intermediate-risk, and high-risk groups, respectively. 
In the geographic validation cohort, the confusion matrix 
revealed that the potential utility of CLNM was 17.6%, 
28.8%, and 94.7% in the low-risk, intermediate-risk, and 
high-risk groups, respectively (Figure S7).

Prediction model validation

Good discrimination with an AUC of 0.912 (95% CI: 
0.864–0.947) and good calibration with a mean absolute 
error of 0.033 were both achieved in external validation 
cohort I (Table 3, Table S7, Figure 3C,3D). A Hosmer-
Lemeshow test demonstrated no departure from a good fit, 
with a P value of 0.829.

In external validation cohort II, the AUC, sensitivity, 
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specificity, PPV, NPV, PLR, and NLR were 0.861 (95% 
CI: 0.781–0.920), 88.89% (95% CI: 77.4–95.8%), 81.13% 
(95% CI: 68.0–90.6%), 82.8% (95% CI: 73.2–89.4%), 
87.7% (95% CI: 76.9–93.9%), 4.71% (95% CI: 2.7–8.3%), 
and 0.14% (95% CI: 0.06–0.3%), respectively (Table 3 and 
Figure 3E). Good calibration was also confirmed, with a 
mean absolute error of 0.051 (Figure 3F and Table S7).

The predictive performance of the new nomogram 
was superior to that of the model based on ultrasound 

only in the external validation cohorts I and II, with 
AUCs of 0.912 (95% CI: 0.864–0.947) vs. 0.892 (95% CI: 
0.841–0.931) and 0.861 (95% CI: 0.781–0.920) vs. 0.741 
(95% CI: 0.648–0.821), respectively (Figure 4). In cohort 
II, the AUC increased by 12%, further demonstrating that 
DECT complemented ultrasound. Meanwhile, utilization 
of the DECT parameters improved the predictive value 
for CLNM in terms of NRI and IDII compared to the 
prediction model incorporating only the independent 

Table 1 The main baseline information of ultrasound and DECT in the training cohort

Variables
Training cohort

Total (n=525) CLNM (−) (n=302) CLNM (+) (n=223) P

Ultrasound

Diameter† <0.001¶

T1a 322 (61.3) 220 (72.8) 102 (45.7)

T1b 152 (29.0) 62 (20.5) 90 (40.4)

T2 44 (8.4) 19 (6.3) 25 (11.2)

≥ T3 7 (1.3) 1 (0.3) 6 (2.7)

Shape‡ <0.001⊥

Wider-than-tall 317 (60.4) 202 (66.9) 115 (51.6)

Taller-than-wide 208 (39.6) 100 (33.1) 108 (48.4)

Calcification‡ <0.001⊥

None or large comet-tail 207 (39.4) 192 (63.6) 15 (6.7)

Macrocalcification 43 (8.2) 36 (11.9) 7 (3.1)

Rim calcification 16 (3.0) 16 (5.3) 0

Microcalcification 259 (49.3) 58 (19.2) 201 (90.1)

A/P§ <0.001¶

<25% 449 (85.5) 279 (92.4) 170 (76.2)

25–50% 73 (13.9) 23 (7.6) 50 (22.4)

>50% 3 (0.6) 0 3 (1.3)

DECT (mg/mL)

IC IAP 2.79±0.98 2.48±0.93 3.21±0.89 <0.001#

IC IVP 3.15±0.96 2.87±0.86 3.53±0.95 <0.001#

†, according to the 8th AJCC staging systems, the diameter was classified into four categories according to the definition of diameter as 
follows: T1a: ≤1 cm, T1b: 1–2 cm, T2: 2–4 cm, ≥ T3: >4 cm. ‡, refer to American College of Radiology Thyroid Imaging, Reporting, and 
Data for grouping criteria. §, A/P was graded by values of <25%, 25–50%, or >50%, proven by a previous study. ¶, continuous variables 
that did not fit to the normal distribution were represented by number (frequency), using the Kolmogorov-Smirnov test. ⊥, categorical 
variables were represented by number (frequency) using Mann-Whitney U test. #, continuous variables that fitted to the normal distribution 
were represented by mean ± standard deviation, using the Kolmogorov-Smirnov test. AJCC, American Joint Committee on Cancer; 
A/P, the ratio of capsular abutment over the lesion perimeter; CLNM, central lymph node metastasis; DECT, dual-energy computed 
tomography; IAP, in the arterial phase; IC, iodine concentration; IVP, in the venous phase. 
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Table 2 Multivariate logistic regression analysis of risk factors associated with CLNM in PTC patients in the training cohort

Variables
Univariate analysis Multivariate analysis

OR 95% CI P OR 95% CI P

Sex 0.672 0.447–1.010 0.056

Age 0.879 0.573–1.349 0.555

Location 1.247 0.949–1.640 0.114

Diameter 2.156 1.652–2.814 <0.001 2.113 1.431–3.121 <0.001 3

Composition 1.255 0.728–2.164 0.413

Margin 1.035 1.134–2.324 0.823

Echogenicity 0.691 0.411–1.161 0.163

Shape 1.897 1.329–2.707 <0.001 3.802 2.248–6.430 <0.001 3

Calcification 2.636 2.235–3.109 <0.001 2.898 2.366–3.549 <0.001 3

A/P 3.727 2.228–6.234 <0.001 2.622 1.290–5.330 0.008 3

IC IAP >2.4 mg/mL 3.738 2.595–5.383 <0.001 2.354 1.440–3.846 0.001 3

IC IVP >3.2 mg/mL 3.761 2.590–5.461 <0.001 2.352 1.428–3.874 0.001 3

NIC IAP >0.21 4.797 3.068–7.502 <0.001

NIC IVP >0.55 3.301 2.297–4.743 <0.001

A/P, the ratio of capsular abutment over the lesion perimeter; CI, confidence interval; CLNM, central lymph node metastasis; IAP, in the 
arterial phase; IC, iodine concentration; IVP, in the venous phase; NIC, normalized iodine concentration; OR, odds ratio; PTC, papillary 
thyroid carcinoma.

Points

Total points

Probability of CLNM

Diameter

Shape

Calcification

A/P

lC IAP

lC IVP

0 10

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

1 3

1 3

0 2
1

1

1

1

0.1     0.2 0.3 0.4 0.5 0.6 0.7  0.8    0.9                       0.99

0

0
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0 2

0 2

20 30 40 50 60 70 80 90 100

Figure 2 The nomogram for predicting CLNM in patients with PTC. According to the 8th AJCC staging systems, the diameter was classified into four 
categories according to the definition of diameter as follows: T1a: ≤1 cm, T1b: 1–2 cm, T2: 2–4 cm, ≥ T3: >4 cm, which corresponded to 0, 1, 2, and 3 
in “Diameter” in the nomogram. Refer to American College of Radiology Thyroid Imaging, Reporting, and Data for grouping criteria, the shape of the 
thyroid nodule included wider-than-tall and taller-than-wide, which corresponded to 0 and 1 in “Shape” in the nomogram. Refer to American College 
of Radiology Thyroid Imaging, Reporting, and Data for grouping criteria, the calcification of the thyroid nodule included none or large comet-tail, 
macrocalcification, rim calcification, and microcalcification, which corresponded to 0, 1, 2, and 3 in “Calcification” in the nomogram. A/P was graded 
by values of <25%, 25–50%, or >50%, proven by a previous study, which corresponded to 0, 1, and 2 in “A/P” in the nomogram. The cutoff value of 
each DECT quantitative parameter was displayed in Table S5, and these parameters were converted from continuous variables to categorical variables 
accordingly, which corresponded to 0 and 1 in “IC IAP and IC IVP” in the nomogram. The cutoff value of IC IAP and IC IVP were 2.4 mg/mL and  
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Table 3 The model performance in estimating the probability of CLNM in patients with PTC

Parameters Training cohort External validation cohort I External validation cohort II

Cutoff value >0.82 N/A N/A

AUC 0.922 (0.895–0.943) 0.912 (0.864–0.947) 0.861 (0.781–0.920)

Youden index 0.7184 0.75314 0.7002

Sensitivity (%) 84.75 (79.4–89.2) 86.32 (77.7–92.5) 88.89 (77.4–95.8)

Specificity (%) 87.09 (82.8–90.7) 88.99 (81.6–94.2) 81.13 (68.0–90.6)

PPV (%) 82.9 (78.2–86.7) 87.2 (79.9–92.1) 82.8 (73.2–89.4)

NPV (%) 88.6 (85.0–91.4) 88.2 (81.8–92.5) 87.7 (76.9–93.9)

PLR (%) 6.56 (4.9–8.8) 7.84 (4.6–13.5) 4.71 (2.7–8.3)

NLR (%) 0.18 (0.1–0.2) 0.15 (0.09–0.3) 0.14 (0.06–0.3)

P <0.001 <0.001 <0.001

Data in parentheses are 95% CI. N/A, not applicable; AUC, area under the curve; CI, confidence interval; CLNM, central lymph node 
metastasis; NLR, negative likelihood ratio; NPV, negative predictive value; PLR, positive likelihood ratio; PPV, positive predictive value; 
PTC, papillary thyroid carcinoma.
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Figure 3 The ROC curves and calibration curves of the three cohorts. The ROC curves and calibration curves of the nomogram for the 
probability of CLNM in the training (A,B), external validation cohort I (C,D), and external validation cohort II (E,F). AUC, area under the 
curve; CLNM, central lymph node metastasis; ROC, receiver operating characteristic.

3.2 mg/mL, respectively. AJCC, American Joint Committee on Cancer; A/P, the ratio of capsular abutment over the lesion perimeter; CLNM, central 
lymph node metastasis; DECT, dual-energy computed tomography; IAP, in the arterial phase; IC, iodine concentration; IVP, in the venous phase; PTC, 
papillary thyroid carcinoma.
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Figure 4 Compare the AUCs of the two models constructed using US alone and combined US and DECT in the external validation cohorts 
Ⅰ and Ⅱ. AUC, area under the curve; CI, confidence interval; DECT, dual-energy computed tomography; US, ultrasound.

Figure 5 Decision curve analysis of the nomogram in the two external validation cohorts. The X-axis is the threshold probability, which 
represents the expected benefit of intervention equal to that of avoiding intervention. If the probability of a patient developing CLNM 
exceeds the threshold probability, it is considered that the PTC patient should undergo preventive CLND, and vice versa. The Y-axis is 
the net benefit, which is equal to the proportion of patients with true positives minus the proportion of patients with false positives, that 
is, weighted by the relative harm of abandoning the intervention versus the adverse effects of unnecessary interventions. The blue line 
represents the nomogram. The red line and black line represent the assumption of all patients with and without CLNM, respectively. 
CLND, central lymph node dissection; CLNM, central lymph node metastasis; PTC, papillary thyroid carcinoma.

ultrasound risk factors (Table S8).

The power calculation

The AUC0 and AUC1 were set at 0.93 and 0.91 according 
to the AUCs of the training cohort (0.922) and external 

validation cohorts (0.912 and 0.861). Meanwhile, α was set 
as 0.05 and false positive rate limited 0.01–0.20. The result 
showed that the sample size of the validation cohorts needed 
to be greater than 106 when the target power was 0.90. 
Therefore, both the sample sizes of the external validation 
cohorts I and II were sufficient in the current study.
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Clinical utility of the prediction model

The decision curve revealed that using nomogram to 
predict the probability of CLNM in PTC patients would 
be advantageous if the threshold probability was more 
significant than 6% (Figure 5).

In the external validation cohort II, the patients were 
scored and risk stratified without knowing the pathological 
results. Three patients were underestimated in the low-risk 
group, and two patients were overestimated in the high-risk 
group (Figure 6, and Figures S8,S9). The possible reasons 
for the wrong prediction were analyzed in the Discussion 
section.

Discussion

There were three significant findings in the current study. 
First, diameter, shape, calcification, A/P, and IC in the 
arterial and venous phases were independent risk predictors 
of CLNM. Second, the new nomogram facilitated the 
prediction risk of CLNM using a cutoff value of 0.82 
(approximately 96 points), with an AUC of 0.922. Based 
on the LOESS curve, the risk stratification system divided 
PTC patients into low-risk (0–50 points), intermediate-risk 
(51–100 points), and high-risk (>100 points) groups. Third, 
the prediction result of the retrospective cohort study was 
highly consistent with the three risk groups. These findings 
might assist in clinical realization of the transition from 
prophylactic CLND to therapeutic CLND to a greater 
extent.

A/P was used instead of the extrathyroidal extension 
to achieve quantitative measurement, consistent with a 
previous study (30). Diameter was recognized as another 
independent risk predictor for CLNM, and we considered 
that the more extensive the PTC lesion, the more 
aggressive it was (9). Taller-than-wide was an independent 
risk factor because benign nodules grew parallel to regular 
tissue planes, whereas malignant nodules grew across 
normal tissue planes (31,32). Microcalcification appeared as 
hyperechoic spots ≤1 mm in diameter on ultrasound image 
and can be named as psammoma bodies (PBs) histologically. 
Some studies (33-37) have shown that bone morphogenetic 
protein (BMP)-1 was overexpressed in PBs. BMP-1 may 
function through the osteopontin-CD44v6 axis, regulating 
cell matrix interactions and signal transduction, to promote 
tumor cell adhesion and migration and promote lymph 
node metastasis (34). Therefore, we speculated that 
microcalcification was significant for predicting CLNM. 

When PTC entered the vascular phase of rapid 
neovascularization from the slow-growing pre-vascular 
phase, it indicated that the growth rate of the tumor was 
accelerated, and the neovascularization of the tumor 
was significantly increased, but the basement membrane 
development of the neovascularization was not perfect, 
making the vascular endothelial gap larger (38). High 
permeability, which also increased the possibility of tumor 
cell metastasis and spread (39,40). The IC obtained by 
DECT could directly reflect the tumor blood flow and was 
affected by the number of blood vessels (41). It was a highly 
sensitive parameter for identifying benign and malignant 
thyroid nodules (42,43). Therefore, we hypothesized that 
differences in iodine intake might result in different ability 
of lymph node metastasis. In short, thyroid primary lesion 
with the above independent risk factors were more likely to 
cause CLNM in PTC patients; and whether it would cause 
further transmission needed to be further studied.

One study (44) suggested considering fine needle 
aspiration as a first step in the evaluation of thyroid nodules. 
Whether DECT parameters in the results of this study can 
be correlated with fine needle aspiration to a certain extent 
remains to be further studied. The correlation between 
digital pathology (45) and DECT will be a research hotspot 
in the future. Of course, the pathophysiological mechanism 
of lymph node metastasis in thyroid cancer is very complex. 
Previous study (46) has found that image analysis and 
artificial intelligence have considerable potential in thyroid 
pathology. Perhaps we can further combine IC and artificial 
intelligence in the future. On the other hand, whether 
newly discovered thyroid nodules in deceased donors 
may cause cancer transmission is an interesting topic (44); 
whether DECT can be used to distinguish deceased donors’ 
benign and malignant thyroid nodules remains to be further 
studied.

In the current study, to improve the reliability and 
accuracy of the prediction model, we performed temporal 
and geographic validations. We observed that the AUC of 
external validation cohort II was lower than that of cohort 
I and that the risk stratification probabilities of cohorts I 
and II were different. We analyzed the specific reasons for 
this. First, we chose patients from another hospital as the 
test subjects, and individual differences among patients 
in different cities, such as whether the patient’s residence 
place was a coastal city, eating habits, living habits, etc., 
was one aspect we need to consider. Second, we performed 
a retrospective cohort study. In this part, the radiologists 
completed the data extraction and total score evaluation 
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Figure 6 An example of using the nomogram to illustrate the correct evaluation of individual risk of CLNM in patients with PTC. A 
29-year-old female was incidentally found a thyroid lesion in the left lobe during a cervical spine CT examination outside the hospital. 
Ultrasound manifestation: hypo-echo in the middle of the inferior pole of the thyroid, the diameter was 3.0 cm (A, red line), irregular shape, 
A/P =0.18 (B), with microcalcification (C, yellow arrow), taller-than-wide (D). On the iodine map of dual-energy CT, the IC in the arterial 
(E-G) and venous (H) phases of the measured lesion were 3.7 and 3.4 mg/mL, respectively. A vertical line of each variable was drawn. The 
values on the “Points” scale intersected by the lines were added to obtain total points (18+20+55+0+14+13=120). The total points >100 
points, considered as a high-risk patient. The graph revealed that the risk of CLNM was over 82% by drawing a vertical line on the “Total 
points” scale. Postoperative pathological results showed that (left lobe) PTC, the diameter was 3.0 cm, metastatic carcinoma was found in the 
central cervical region (3/7). This image is published with the patient’s consent. (B) The blue line represented the capsular abutment, which 
was defined as a lack of intervening tissue between PTC lesions and normal thyroid capsules; the red line represented the capsular protrusion, 
which was defined as the disruption of the perithyroidal echogenic line between the primary site of PTC and the normal thyroid capsule on 
sonography. (D) Taller-than-wide was defined as the anteroposterior diameter of the nodule (blue line) that was larger than its transverse 
diameter (red line) on a transverse plane. The yellow arrows in (E-H) pointed to the thyroid primary lesions in the iodine maps of the 
arterial (E-G) and the venous (H) phases. Combining the axial (E), sagittal (F), and coronal (G) images, the primary lesion with the largest 
cross-sectional area was selected to measure. The region of interest was placed on the substantial part as large as possible, pay attention 
to avoid cystic degeneration, necrosis, or calcification, and not involve adjacent blood vessels. According to the 8th AJCC staging systems, 
the diameter was classified into four categories according to the definition of diameter as follows: T1a: ≤1 cm, T1b: 1–2 cm, T2: 2–4 cm,  
≥ T3: >4 cm, which corresponded to 0, 1, 2, and 3 in “Diameter” in the nomogram. Refer to American College of Radiology Thyroid 
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without knowing the pathological results, resulting in a 
higher probability of actual occurrence of CLNM in cohort 
II than cohort I. Therefore, there was no selection bias or 
subjective tendency. Even so, the AUC of cohort II reached 
up to 0.861. The prediction model was adequate for basic 
clinical decisions.

Of note, there were five cases of overestimation or 
underestimation of CLNM in the retrospective cohort 
study. For cases with underestimation of CLNM risk, we 
found that IC in the arterial and venous phases was high in 
most of them; however, these patients did not have typical 
ultrasound features, such as microcalcification. Therefore, 
we believed that DECT was a powerful supplement but 
not a substitute for ultrasound, so the two image methods 
should be closely combined in the diagnosis process. For 
cases with overestimation of CLNM risk, we found that 
most were due to an excessive emphasis on ultrasound 
features. When DECT characteristics were not apparent, 
the total scores might have exceeded 100 points and be 
included in the high-risk group. For such patients, we 
should pay much more attention to DECT images, weigh 
the image evaluation of ultrasound and DECT, and then 
make the final diagnosis.

There are some limitations to the current study. First, 
due to its retrospective nature, potential selection bias may 
exist. However, we conducted a retrospective cohort study 
and obtained a higher AUC, which also demonstrated 
the reliability of our model to a certain extent. Of course, 
we still need to conduct a large sample prospective study 
to verify the accuracy and reliability of the nomogram in 
the future. Second, this study was cross-sectional, and we 
should pay more attention to patients who have undergone 
CLND and postoperative pathology confirmed cN0 stage. 
The recurrence rate in these patients will be the focus of 
the next research. Third, only the patients with a single 
lesion were included, whether the constructed nomogram 

was suitable for patients with multiple lesions still needed 
to be verified by prospective study. Although there were 
some limitations listed above, the nomogram and risk 
stratification system constructed in this study were expected 
to assist clinicians to predict the occurrence probability 
of CLNM before surgery accurately, so as to update the 
surgical plan. To maximize the benefit for patients, we look 
forward to providing additional accurate analysis for future 
individualized treatment.

Conclusions

Six important parameters from ultrasound and DECT 
images, including diameter, shape, calcification, A/P, and 
IC in the arterial and venous phases, were independent risk 
predictors of CLNM in PTC patients. In the preoperative 
diagnosis of CLNM, DECT was a useful supplement to 
ultrasound. This new nomogram facilitated the CLNM 
prediction and included risk stratification, assisting the 
formulation of individualized treatment plans.
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