
Nature Genetics | Volume 56 | July 2024 | 1482–1493 1482

nature genetics

Article https://doi.org/10.1038/s41588-024-01758-y

High-resolution genome-wide mapping of 
chromosome-arm-scale truncations induced 
by CRISPR–Cas9 editing
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Clustered regularly interspaced short palindromic repeats (CRISPR)–
CRISPR-associated protein 9 (Cas9) is a powerful tool for introducing 
targeted mutations in DNA, but recent studies have shown that it can have 
unintended effects such as structural changes. However, these studies 
have not yet looked genome wide or across data types. Here we performed 
a phenotypic CRISPR–Cas9 scan targeting 17,065 genes in primary 
human cells, revealing a ‘proximity bias’ in which CRISPR knockouts show 
unexpected similarities to unrelated genes on the same chromosome arm. 
This bias was found to be consistent across cell types, laboratories, Cas9 
delivery methods and assay modalities, and the data suggest that it is  
caused by telomeric truncations of chromosome arms, with cell cycle 
and apoptotic pathways playing a mediating role. Additionally, a simple 
correction is demonstrated to mitigate this pervasive bias while preserving 
biological relationships. This previously uncharacterized effect has 
implications for functional genomic studies using CRISPR–Cas9, with 
applications in discovery biology, drug-target identification, cell therapies 
and genetic therapeutics.

Clustered regularly interspaced short palindromic repeats (CRISPR)–
CRISPR-associated protein 9 (Cas9)-based methods are powerful 
genome editing tools with applications in in vitro discovery biology, 
ex vivo editing for cell therapies and in vivo editing for genetic thera-
peutics1. Cas9 is programmably scalable and relatively specific com-
pared with earlier technologies such as zinc finger nucleases, TALENs, 
and small interfering RNAs2,3. However, CRISPR–Cas9-based editing 
is known to have off-target activity and undesired on-target changes, 
such as kilobase-scale deletions4–6, chromosome truncation7–10 and 
complex rearrangements5,6. Profiling these effects systematically is 
crucial for discovery and therapeutic development but is costly and 
labor intensive with existing molecular or sequencing-based methods.

Pooled CRISPR–Cas9 knockout screens have been widely used to 
identify essential genes in tumor-derived cell lines11–13. These studies 

have reported associations between copy number variants (CNVs) and 
chromosomal instability at the target site after CRISPR–Cas9 editing 
and introduced methods to help correct for those effects14–18. However, 
they have not explored the effects of CRISPR–Cas9-induced chromo-
somal changes that are unrelated to CNVs nor have they explored these 
effects in primary cell types or with endpoints other than essentiality.

Cellular morphological profiling, or ‘phenomics’, is an emerging 
technology for high-dimensional phenotyping that offers a powerful 
alternative to transcriptomic or proteomic assays19. Measuring cellular 
morphology, a holistic functional endpoint of the cellular state, gener-
ates high-dimensional single-cell data at a lower cost than molecular 
methods such as single-cell RNA sequencing (scRNA-seq).

We applied phenomics to systematically profile CRISPR–Cas9 
knockouts in primary human cells, targeting over 17,000 genes with 
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examination of genes in well-studied pathways showed that gene–gene 
similarities recapitulate both biology that is highly conserved across 
cell types (for example, microtubule, proteasome and autophagy 
genes), as well as therapeutically relevant pathways including Janus 
kinase ( JAK)/signal transducer of activation (STAT), transforming 
growth factor (TGF)-beta and insulin receptor (Fig. 1b and Extended 
Data Fig. 1). Despite the methodological differences between datasets, 
large-scale benchmarking20 of both datasets shows substantial recall of 
known annotations drawn from public datasets, including Reactome25, 
HuMap26 and CORUM27 (Fig. 1c).

Knockouts show increased similarity within chromosome 
arms
Upon the generation of the rxrx3 full-genome knockout data, we 
noticed a curious bias: the distribution of cosine similarities for gene 
pairs on the same chromosome was shifted relative to gene pairs on 
different chromosomes (Extended Data Fig. 2a). Visualizing the full 
genome-wide dataset ordered by genomic coordinate showed a strik-
ing structure in which knockouts of genomically proximal genes on the 
same chromosome arm were systematically more phenotypically simi-
lar to one another than distal pairs (Fig. 1d,e). To test whether proximity 
bias was an artifact of our experimental set up (laboratory protocol, 
Cas9 and guide delivery system, HUVEC cell type, computational image 
analysis and featurization scheme and so on), we performed the same 
visualization in cpg0016 and found a very similar effect both visually 
in the genome-wide heat map (Fig. 1d,e) and in intra- versus interchro-
mosomal similarity distributions (Extended Data Fig. 2a).

As proximity blocks appeared to correlate with chromosomal 
structure, we wondered whether proximity blocks would also reflect 
nonreference structure in genomically abnormal cells. The U2OS line 
used in cpg0016 is known to be karyotypically abnormal and heteroge-
neous, with different clones exhibiting distinct genotypes28. DepMap11 
cataloged a fusion between RAD50 on chromosome 5q and ZNF536 on 
chromosome 19q in this cell line, and examination of the cpg0016 map 
shows a clear block of interchromosomal proximity bias between 5q 
and 19q that closely recapitulates the boundaries of the annotated 
fusion (Fig. 1f).

Finally, we quantified the proximity bias effect by estimating, for 
each chromosome arm, the probability of a within-arm relationship 
displaying a higher cosine similarity than a between-arm relationship 
using a nonparametric Brunner–Munzel test29. This metric is both 
comparable across maps that may have different numbers of tested 
genes and flexible enough to be used to quantify the bias encoded in 
an entire map, within each chromosome arm or at the gene level (by 
restricting to relationships involving that arm or gene). At the full-map 
level, the probability of a within-arm relationship being ranked above 
a between-arm relationship was 0.71 for the rxrx3 dataset and 0.72 
for the cpg0016 data (P < 1 × 10−10). At the chromosome-arm level, 
both datasets show a significant effect for all chromosome arms  
(Fig. 1g,h).

more than 100,000 CRISPR guides. A proprietary deep-learning model 
encoded six-stain fluorescent images of plated cells19, producing a sin-
gle ‘gene vector’ representing the phenotype of each perturbed gene. 
Cosine similarity between gene vectors acted as a pairwise measure of 
phenotypic similarity between knockouts, recapitulating known and 
novel biological relationships, including protein complexes and anno-
tated pathways, and can be extended to assess similarity among a broad 
range of cellular perturbations, including genetic, large-molecule and 
small-molecule treatments20. In this Article, we report the observation 
of ‘proximity bias’, where CRISPR knockout phenotypes are systemati-
cally more similar to unrelated genomically proximal genes located on 
the same chromosome arm. This effect is found to be general across 
laboratories, cell types and Cas9 delivery mechanisms and is depend-
ent on nuclease activity. Also, patterns of proximity bias reflect differ-
ences between reference genomes and true chromosomal structure, 
including large-scale structural variants. Molecular investigation 
with bulk and single-cell transcriptomic analysis supports large-scale 
chromosomal truncation as the driving mechanism. Additionally, 
we reanalyzed the Cancer Dependency Map (DepMap) genome-wide 
CRISPR–Cas9 screens21 in cancer cell lines to confirm the impact of 
proximity bias on target discovery, propose potential mediators and 
show that this effect persists even when controlling for cell-line specific 
CNVs. Finally, we show that an arm-based normalization of gene-level 
features largely corrects for this bias without affecting the recovery of 
known biological relationships.

Results
Genome-wide profiling recapitulates known biology
To produce a genome-wide ‘map’ of pairwise phenotypic similarity 
between gene knockouts, we performed a phenomics screen using 
CRISPR–Cas9 to knock out 17,065 genes in primary human umbilical 
vein endothelial cells (HUVEC) with 101,029 guides (typically six guides 
per gene and 24 replicates per guide) leveraging a highly automated 
robotic workflow (rxrx3 dataset)22.

To validate phenomics, we computed a complementary simi-
larity map using the cpg0016 dataset from the Joint Undertaking 
in Morphological Profiling–Cell Painting consortium23. The key dif-
ferences between rxrx3 and cpg0016 include gene sets, cell types 
and Cas9/guide delivery protocols. Cpg0016 profiles fewer genes 
(n = 7,975) with fewer samples (n = 4 guides and five replicates per 
guide), screens the U2OS osteosarcoma cell line and uses lentiviral 
Cas9 delivery with lipofection of guide RNA pools. For rxrx3, we 
applied a proprietary deep-learning model to extract features; for 
cpg0016, we used the CellProfiler-derived features24 provided in the 
Joint Undertaking in Morphological Profiling–Cell Painting source 
data. For both datasets, the gene vectors were aggregated to build a 
genome-wide ‘map’ to compare phenotypic similarities using cosine 
similarity (Fig. 1a).

We evaluated the ability of rxrx3 and cpg0016-based maps to reca-
pitulate known biology in both a targeted and a broad sense. Targeted 

Fig. 1 | Heat maps of phenotypic similarity between gene knockouts 
recapitulate known biology as well as genomic proximity effects.   
a, Phenomics overview. Screening of the genetic perturbations produces 
images of cells from which features are extracted either using CellProfiler24 or 
neural networks. The feature vectors for each pair of perturbations are related 
using cosine similarity (ranging from −1 opposite (‘opp.’) to 1 similar (‘sim.’)) and 
visualized in heat maps. b, A heat map of genes with diverse functions. The rows 
and columns are clustered on the rxrx3 data. EGFR, epidermal growth factor 
receptor; TGFB, transforming growth factor-beta. c, Recall of annotated known 
relationships from three databases in the most extreme 10% of similarities 
(two sided). A random ranking of gene–gene pairs would give a baseline value 
of 0.1. d, Full-genome heat map where each row and column represent a gene 
assessed in both rxrx3 (above diagonal) and cpg0016 (below diagonal) studies. 
Ordering genes by chromosomal position reveals the proximity bias signal 

along the diagonal present in both datasets with the chromosome boundaries 
and centromeres clearly visible. e, A zoom-in on chromosome 8. f, Juxtaposition 
of chromosomes 5 and 19, where the pattern of proximity bias signal reflects a 
chromosomal rearrangement known to be present in U2OS cells (cpg0016 data) 
but not HUVEC (rxrx3 data). g, A bar plot of proximity bias metrics (Brunner–
Munzel probabilities) for each chromosome arm for the rxrx3 dataset. The values 
above 0.5 indicate elevated intra-arm similarity, and all chromosome arms are 
significant with Bonferroni correction (one-sided P < 0.001). h, A bar plot of 
proximity bias metrics for each chromosome arm as in g for the cpg0016 dataset. 
All chromosome arms are significant with Bonferroni correction (one-sided 
P < 0.001). In all heat maps, each row and column represent a single gene with 
rxrx3 data shown above the diagonal, cpg0016 data below the diagonal. Only the 
7,477 genes that are present in both datasets are shown. The solid lines represent 
chromosome boundaries and the dashed lines indicate centromeres.
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Proximity bias arises from chromosome-arm truncation
Several unintended consequences of Cas9 editing have been discussed 
in the literature4–10,30–34, and while the rxrx3 and cpg0016 genome-wide 
maps show widespread proximity bias, they do not directly nominate a 
mechanism. However, observing the maps in Fig. 1, we found knockouts 
of genes closer to a centromere often display a stronger proximity 
bias signal. To quantify this, we plotted the gene-level Brunner–Mun-
zel probability versus relative chromosome-arm position and found 
negative correlations that were significant for most chromosome arms 
(Fig. 2a,b and Extended Data Fig. 2b,c). This suggests a model in which 
Cas9 editing can cause chromosomal truncations resulting in mixed 
phenotypes due to multiple gene deletions (Fig. 2c).

We sought to test this hypothesis by searching for and quantify-
ing chromosome-arm truncations in sequencing data, paralleling 
similar searches for truncations and deletions in literature9,10. We 
reanalyzed two scRNA-seq datasets uniformly reprocessed as part of 
the scPerturb resource34,35, which profiled the effects of CRISPR–Cas9 
gene knockout in the THP-1 leukemia line and in melanoma-derived 
melanocytes, respectively36,37. Following previous work9,10, we assessed 
deletions in this data by identifying the genes, which, when targeted 
by CRISPR–Cas9, result in substantial, significant copy number loss in 
more than 70% of the 150 genes near the cut site in the 3′ or 5′ direction 
(Methods). Across these datasets, editing at 4–25% of targeted genes 
resulted in copy number loss. Moreover, those losses were signifi-
cantly more likely to occur in the telomeric direction (Fisher’s exact 
test P = 1.4 × 10−5), further supporting the model of chromosome-arm 
truncations and supporting the cell-type independence of proxim-
ity bias (Table 1). As reported in previous work9, for targets with a 
called loss, only a fraction of cells exhibited a deletion (mean 4.3% 
and maximum 15.1%) (Supplementary Table 2). Figure 2d,e highlights 
the enrichment for loss in the telomeric direction for each of the two 

datasets examined, by showing whole-genome copy number calls for 
the cells that exhibited a deletion.

To further validate the finding of chromosomal arm truncations, 
we searched an internal Recursion database of HUVEC bulk RNA 
sequencing data and focused on a high-replicate set of 45 targeted 
genes, each treated with a single intron-targeting guide in 63 replicate 
samples compared with a no-guide reference pool of 3,320 samples 
(average 1.3 million unique reads per well). Comparing copy number 
calls from Cas9-edited wells to Cas9-free controls, we observed mul-
tiple loci enriched for deletions between the target cut site and the 
telomere, including the genes ZNF394 (located on chromosome 7q) and 
RCAN3 (on chromosome 1p) (Fig. 2f, Extended Data Fig. 2d and Supple-
mentary Table 1). Although the number of loci found in this search was 
limited, these events are expected to be rare and, therefore, difficult to 
detect in bulk assays, particularly by RNA rather than DNA sequencing.

Proximity bias confounds therapeutic target identification
A key application of genome-wide knockout screening is in mapping 
of biological pathways, particularly for therapeutic target discovery. 
Consequently, we investigated the potential impact of proximity bias 
on target discovery in a widely used, publicly available resource.

Project Achilles has performed genome-wide CRISPR screens 
of cell survival in hundreds of cancer cell lines in an effort to iden-
tify potentially druggable essential genes for a range of tumor types, 
contributing to the DepMap11. We surmised that if DepMap CRISPR 
screens were also affected by proximity bias, then it would manifest 
as patterns of essentiality across cell types that cluster unexpectedly 
by genomic proximity. To that end, we built genome-wide maps from 
DepMap CRISPR 19Q3 data; in these maps, each gene was characterized 
by a vector representing its essentiality in each of the 625 tested cell 
lines rather than as a vector of morphological features (Fig. 3a). Visual 

Fig. 2 | Genome-wide phenomic measurements and transcriptomic data 
support a model of chromosomal truncation underlying proximity bias.  
a, A scatter plot of gene-level proximity bias showing the one-sided Brunner–
Munzel probability of intra-arm cosine values exceeding inter-arm cosine 
values versus position within the chromosome arm for two arms in rxrx3 data. 
A negative Spearman correlation supports the visual pattern seen in Fig. 1c of 
weakening proximity bias signal toward the telomeres. b, Spearman correlations 
in plots similar to Fig. 2a across all chromosome arms for the rxrx3 data.  
The height of the bar for each arm agrees well with the degree of fading in 
diagonal blocks in Fig. 1d. The colors correspond to Bonferroni-corrected  
P values. c, A schematic representation of how the pattern of weakening signal 
toward telomeres observed in chromosome-arm heat maps may arise by 
deletions sharing LOF of multiple key genes. D1, …, D4 represent varying-length 
truncations and D5 an intra-arm deletion. D1 and D2 both lose three key genes 

and hence are highly similar, while D1 and D4 share only one and so may look less 
similar. The intra-arm deletion D5 shares only one key gene loss with D1 and zero 
losses with D2–D4 and, therefore, is expected to show less proximity bias. d, A 
heat map of copy number change estimates in Papalexi et al.36 for genes resulting 
in proximal deletions when targeted by CRISPR–Cas9. Each row in the heat map 
represents a cell exhibiting deletion near the target gene as in the row label. 
The rows are ordered alphabetically based on target gene name. Each column 
represents a gene, ordered by the chromosome position. The lime bars represent 
the target gene positions. e, A heat map of copy number change estimates in 
Frangieh et al.37. f, A heat map of copy number change estimates in bulk RNA 
sequencing samples showing loss of chromosome regions telomeric to the cut 
site of guides targeting introns in the RCAN3 and ZNF394 loci. Each row in the heat 
map represents a treatment well. Each column represents a gene, ordered by 
chromosome position.

Table 1 | Single-cell sequencing reveals widespread on-target proximal deletions from CRISPR–Cas9

Perturbation 
type

Dataset Cell type Total number 
of tested 
targets

Tested loss 
direction

Number of 
targets with 
specific loss

Number of targets 
with loss toward 
telomere

Number of targets 
with loss toward 
centromere

CRISPR–Cas9

Papalexi THP-1 (monocytic leukemia) 24
3′ 6 (25.0%) 5 (20.8%) 1 (4.2%)

5′ 1 (4.2%) 1 (4.2%) 0 (0.0%)

Frangieh Melanocytes (melanoma) 237
3′ 31 (13.1%) 23 (9.7%) 8 (3.4%)

5′ 34 (14.3%) 20 (8.4%) 14 (5.9%)

CRISPRi

Replogle RPE1 2,066
3′ 45 (2.2%) 31 (1.5%) 14 (0.7%)

5′ 45 (2.2%) 11 (0.5%) 34 (1.6%)

Tian Induced pluripotent stem 
cell-derived neurons 177

3′ 3 (1.7%) 3 (1.7%) 0 (0.0%)

5′ 4 (2.3%) 2 (1.1%) 2 (1.1%)

Adamson K562 (leukemia) 78
3′ 1 (1.3%) 1 (1.3%) 0 (0.0%)

5′ 2 (2.6%) 1 (1.3%) 1 (1.3%)

The number and percent of target genes showing deletions specific to the target region in two CRISPR–Cas9 and three CRISPRi datasets uniformly reprocessed in scPerturb.
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examination and quantification of the DepMap CRISPR map confirms 
the presence of arm-scale proximity bias (Fig. 3b,c), and the proximity 
bias effect is maintained in a newer version of these data (22Q4), which 
controls for CNVs17.

While correlations between gene dependency and genomic loca-
tion have been reported before and several correction methods have 
been implemented14–17,38, the effect was thought to be primarily driven 
by copy number variation in these cancer cell lines. Since we observe 
similar effects in copy number-normal cell lines, we sought to disentan-
gle CNV-based effects from the proximity bias effect using the following 
procedure (Methods). Beginning with the full set of 1,078 cell lines in 
the CRISPR–Cas9 DepMap 22Q4 data, we first looked for subsets of 
cell lines that were free from CNVs on each autosomal chromosome 
arm. Then, for each pair of those arms, we intersected the cell line sets 
and assessed proximity bias by computing the Brunner–Munzel prob-
ability of within-arm cosine similarities exceeding between-arm cosine 
similarities (741 arm pairs; intersection cell line counts minimum, 
maximum and mean of 73, 314 and 174, respectively) (Supplementary 
Tables 5 and 6). These values were compared with probabilities from 
the same process but using all cell lines in both the CRISPR–Cas9 and 
short hairpin RNA (shRNA) data (190 cell lines) (Extended Data Fig. 3b). 
Controlling for copy number in this way significantly reduces proxim-
ity bias (Mann–Whitney U, P value <1 × 10−10) but fails to eliminate it, 
with all arm pairs showing arm-level Brunner–Munzel probabilities 
above 0.5. Since restricting to fewer cell lines reduces the power to 
detect gene–gene interactions in general, we also see a reduction 
in Brunner–Munzel probabilities toward 0.5 when subsampling cell 
lines randomly. While a further reduction is observed in the cell lines 
with very few CNVs, there is still significantly more proximity bias in 
CNV-controlled CRISPR–Cas9 arm pairs than in pairs formed from 
shRNA data in which CNVs are still present, but there is no DNA cutting, 
suggesting that CNVs alone cannot explain the effects observed (Mann–
Whitney U, P value <1 × 10−10) (Extended Data Fig. 3b). Finally, we note 
that the DepMap Chronos pipeline for CRISPR data excludes guides 
which map to multiple regions, so these results cannot be explained 
by multitargeting guides17.

In addition, we examined the results from shinyDepMap39, which 
sought to cluster genes with similar dependencies to identify drug-
gable targets and pathways using the 19Q3 data. Examination of 16,941 
inferred gene–gene relationships from shinyDepMap CRISPR data 
revealed that a large number of putative relationships inferred are 
within chromosomal arms. Comparing the odds of identifying intra- 
versus inter-arm connectivity in the shinyDepMap clusters with other 
databases of known biological relationships derived from pathway or 
protein complex data revealed that shinyDepMap contains far more 
intra-arm annotated relationships than other sources (Fisher exact test 
odds ratio of 0.068, P < 0.0001). This suggests that results of down-
stream DepMap CRISPR analyses may be significantly confounded by 
proximity bias (Extended Data Fig. 3c,d).

Finally, we sought to identify cancer-specific false-positive 
dependency calls due to proximity bias and not CNVs. If the hypothesis 
that proximity bias is caused by telomeric truncations were correct, 
some unexpressed genes centromeric of driver genes would spuri-
ously appear as essential, since occasional truncations telomeric of 
the targeted unexpressed gene would also delete the true driver. To 
explore this, we used the DepMap 22Q4 dependency data and first 
stratified cell lines by their annotated cancer subtype; then, for each 
gene, we restricted the cell lines to those without CNVs (copy number 
within (1.75, 2.25)) and tested for differences in dependency for that 
subtype versus all other cell lines. Examining three cancer subtypes, we 
found a number of genes centromeric of known subtype-specific driver 
genes that have low expression (transcripts per million reads <0.3) but 
nevertheless exhibit significantly higher dependency (that is, appear 
more essential) than in other subtypes (Benjamini–Hochberg adjusted 
t-test, P < 0.01). For example, on chr2p for renal cell carcinoma, four 

genes centromeric of the driver EPAS1 (ref. 40) (C2orf73, ARHGAP25, 
VAX2 and LRRTM4) satisfy these criteria, as do two genes on chr18q for 
B-lymphoblastic leukemia and lymphoma centromeric to the driver 
BCL2 (ref. 41) (ELOA2 and GRP) and three genes on chr2p for neuroblas-
toma genes centromeric to the driver SOX11 (ref. 42) (KCNF1, NTSR2 and 
FAM166C) (Supplementary Table 7). This suggests that these essential-
ity annotations may be spurious and actually are caused by proximity 
bias-related truncations of nearby true driver genes.

Proximity bias is dependent on Cas9 nuclease activity
Given the proposed model of large truncations, we sought to confirm 
whether proximity bias is dependent on nuclease activity of Cas9 
by analyzing CRISPR interference (CRISPRi)43 and shRNA screens44. 
We extended our analysis of scRNA-seq CRISPR–Cas9 datasets from 
scPerturb35 to three CRISPRi datasets45–47 and found that in contrast 
to CRISPR–Cas9-perturbed cells, in which 4.2–25% of genes resulted 
in large chromosomal losses when targeted (Table 1), only up to 2.6% 
of target genes were observed to have such losses across three CRIS-
PRi datasets (Table 1 and Supplementary Table 2). We also examined 
whether there is evidence of telomeric loss enrichment in the signifi-
cantly smaller proportion of genes showing loss in the CRISPRi datasets, 
and our findings were negative (Fisher’s exact test, P = 0.68). Addition-
ally, a map built from DepMap shRNA screening data did not show 
substantial proximity bias, suggesting that the effect arises as a specific 
consequence of CRISPR–Cas9 editing (Extended Data Fig. 4a,b).

DepMap data connects proximity bias and cell cycle
As the DepMap data profiled a wide range of cell lines with diverse 
genetic backgrounds, we hypothesized that by stratifying cell lines 
according to genetic features and constructing maps out of slices of 
these data, we may be able to elucidate the potential biological mecha-
nisms behind, and the mediators of, proximity bias.

TP53 expression has been suggested as a marker for reduced ane-
uploidy in CRISPR–Cas9 editing9,31,48, and previous work has established 
that p53 activity reduces CRISPR–Cas9 editing efficiency through 
activation of DNA repair and apoptosis49–53. Thus, loss of TP53 would 
be expected to increase proximity bias by increasing the rate of chro-
mosomal arm truncations. We stratified DepMap cell lines by TP53 
loss-of-function (LOF) status and found significantly increased prox-
imity bias (t-test, P <1 × 10−10) in a CRISPR map built from putatively 
TP53-null cell lines (LOF) compared with one built using only cell lines 
with putatively functional wild-type (WT) TP53 (Fig. 4a).

Next, we searched for additional gene mediators while controlling 
for TP53 status across eight splits: for genes in which putative LOF or 
amplification (AMP) either increased or decreased proximity bias, in 
either a TP53 null or functional background (Supplementary Table 3). 
Several genes showed interesting behaviors that support their known 
functions in cell cycle and TP53 regulation (Fig. 4b,c and Supplementary 
Table 3). In both the TP53 WT and TP53 LOF settings, we found that loss 
of CDKN2A or CDKN2B significantly increases proximity bias while 
CDKN2C AMP decreases proximity bias in a TP53 LOF background (cell 
line bootstrap t-test Bonferroni-corrected P < 0.05; DepMap did not 
have sufficient cell lines for us to test CDKN2C in the TP53 WT setting). 
This suggests that these cell cycle regulators54–56 act independently 
of p53. Conversely, AMPs of the TP53 regulators MDM2 and MDM4  
(ref. 57) show differential effects on proximity bias depending on the 
TP53 background. Both AMPs increase proximity bias when a functional 
TP53 is present, but MDM2 AMP has no effect in the TP53 LOF setting, 
while MDM4 AMP decreases proximity bias in that environment. This 
suggests that the effect of MDM2 on proximity bias is entirely mediated 
through TP53.

Additionally, we found that because of large-scale CNVs, identify-
ing drivers of proximity bias is itself affected by chromosome-position 
effects, making it difficult to confidently fine-map individual driver 
genes within a genomic region. For example, BTG2 surfaced as a 
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Fig. 3 | CRISPR–Cas9 screens of cancer gene essentiality are significantly 
confounded by proximity bias. a, A schematic of the table of feature data 
used in the DepMap analysis. Each row corresponds to a target gene and each 
column to a cell line. The values in the table are dependency measures of the 
survival sensitivity for the cell line when the target gene is knocked out with 
CRISPR–Cas9. We assessed similarity between targets by calculating the cosine 
similarity between rows. b, A bar plot of proximity bias metrics (one-sided 
Brunner–Munzel probabilities) for each chromosome arm for the DepMap 19Q3 

and 22Q4 datasets. The values above 0.5 indicate elevated intra-arm similarity, 
and all chromosome arms are significant with Bonferroni correction (P < 0.001). 
c, Pairwise cosine similarity between DepMap targets (19Q3 above the diagonal 
and 22Q4 below the diagonal) ordered by chromosome position across the 
human genome and quantile normalized to a normal distribution with mean 0 
and standard deviation 0.2. The solid lines represent chromosome boundaries 
and the dashed lines indicate centromeres.

http://www.nature.com/naturegenetics


Nature Genetics | Volume 56 | July 2024 | 1482–1493 1489

Article https://doi.org/10.1038/s41588-024-01758-y

potential driver but is located only 1.2 Mb in the centromeric direc-
tion from MDM4 on chromosome 1 and appears to mimic its impact on 
proximity bias in both the TP53 WT and LOF conditions. Upon closer 
inspection, we find that all 15 of the genes between these two, with suf-
ficient data to assess, show the same pattern despite no known cancer 
or TP53 associations (Extended Data Fig. 5a,b).

We also looked for enriched biological processes among the genes 
with largest impacts on proximity bias in each of the above contexts 
using ShinyGO (v0.77)58. Selecting genes with mean differences in Brun-
ner–Munzel probabilities between WT and LOF and AMP conditions 
of less than −0.1 or greater than 0.2, we found the strongest associa-
tions in the TP53 WT setting were with ‘regulation of cell population 
proliferation’ and ‘positive regulation of cell population proliferation’, 
where AMP of 34 and 25 genes, respectively, show increased proximity 
bias (P <1 × 10−10). In the TP53 LOF setting, the strongest associations 
were with ‘regulation of apoptotic processes’ and, again, ‘regulation 
of cell population proliferation’ (P < 1 × 10−10) where, in both cases, 
AMP for 28 genes shows increased proximity bias (Supplementary 
Table 4). This supports the hypothesis that proximity bias is driven 
by chromosome-arm truncations and suggests a mechanism in which 

inhibition of apoptosis may lead to unrepaired double-strand breaks 
and loss of acentric chromosome-arm fragments during mitosis9,10.

Geometric correction reduces proximity bias
Given that the proximity bias effect appears to be largely localized within 
chromosome arms, we hypothesized that applying a chromosome-arm 
correction to rxrx3 and cpg0016 maps might mitigate the unwanted 
signal. To that end, we adjusted the vector representation for each 
gene by subtracting an estimated representation of the chromosome 
arm in which the gene is located built using unexpressed genes (Meth-
ods). This significantly reduces the proximity bias effect, both globally 
and per chromosome arm (Fig. 5a–d) while maintaining or improving 
genome-wide benchmarking metrics in both datasets (Fig. 5e). Inter-
estingly, the recall of annotated within-arm relationships decreases 
with the chromosome-arm correction (Fig. 5e), but this is outweighed 
by improved recall on the larger number of between-arm annotated 
relationships, suggesting that the proximity bias effect can confound 
such benchmarking efforts if it is not taken into account.

Following the preprint publication of this work, DepMap released 
the 23Q2 revision of its Project Achilles CRISPR screens, incorporating 
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Fig. 4 | Role of TP53, cell-cycle and replication-associated genes in proximity 
bias. Box and scatter plots of whole-genome-level proximity bias quantification 
by one-sided Brunner–Munzel intra-arm versus inter-arm probability from 
DepMap 22Q4 data with the cell lines stratified by gene status. Each point 
represents a bootstrap sample of cell lines; 128 bootstraps were run for each 
condition. The box plots show the median and lower and upper quartile with 
whiskers extending to the furthest points within 1.5 times the interquartile 
range. The P values for two-sided t-tests with Bonferroni correction applied 
are given, and the detailed test statistics are given in Supplementary Table 3. 
Horizontal dashed lines at 0.5 indicate the expected baseline if no proximity 
bias effect was present. a, Comparison between cell lines with WT TP53 and 

those with TP53 LOF (n = 266 and 277 cell lines, respectively, 212 sampled in each 
bootstrap; P < 1 × 10−10). b, Selected genes and conditions LOF or AMP in TP53 WT 
background (CDKN2A: WT n = 112, LOF n = 136, P < 1×10−10; CDKN2B: WT n = 124, 
LOF n = 132, P < 1 × 10−10; BTG2: WT n = 173, AMP n = 87, P = 1 × 10−6; MDM2: WT 
n = 210, AMP n = 52, P < 1 × 10−10; MDM4: WT n = 174, AMP n = 87, P = 2 × 10−10; n = 20 
cell lines were sampled in each bootstrap for all genes). c, Selected genes and 
conditions in TP53 LOF background (CDKN2A: WT n = 82, LOF n = 156, P < 1 × 10−10; 
CDKN2B: WT n = 103, LOF n = 154, P < 1 × 10−10; BTG2: WT n = 188, AMP n = 81, 
P = 5 × 10−10; MDM2: WT n = 218, AMP n = 43, P = 1; MDM4: WT n = 187, AMP n = 79, 
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genes with fewer than 25 cell lines in a given condition are not shown.
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a correction similar to that suggested in this section (https://forum.
depmap.org/t/announcing-the-23q2-release/2518). A genome-wide 
map built from this data similarly reduces proximity bias, demon-
strating the generality of this geometric correction across modalities 
(Extended Data Fig. 3a). Additionally, the potential false positive driver 
genes for specific cancer subtypes discussed in the previous section 
are reduced with six of the nine highlighted genes no longer showing a 
subtype-specific dependence (Supplementary Tables 7 and 8).

Discussion
Since its discovery, the CRISPR–Cas9 editing system has become a 
valuable research tool; however, deep characterization has revealed 
potential issues arising from undesired on-target effects. In this work, 

we use cellular phenomics to systematically profile CRISPR-induced 
gene knockouts for virtually all human protein-coding genes in a pri-
mary human cell type and have replicated our findings across cell types, 
assay contexts and molecular follow-up. We discover an undesired 
on-target effect driven by a small fraction of cells that results in knock-
out phenotypes displaying a ‘proximity bias’ that probably arises from 
chromosomal truncations and is ubiquitous across cell types, genetic 
loci and measurement modalities but can be computationally corrected 
given proper controls.

This refines prior work that asserted aneuploidy and chromo-
some truncation as a potential consequence of CRISPR–Cas9 editing 
in T cells9,10, primarily by focusing on the TRAC locus (14q11.2, near the 
centromere of the acrocentric chromosome 14). Reanalyzing Perturb 
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Fig. 5 | Geometric correction reduces proximity bias effect. Split heat maps of 
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map for cpg0016. c, A bar plot of genome-wide proximity bias quantification by 
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quantification by one-sided Brunner–Munzel probability before and after 
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correction reduces the probability of within-arm relationships having a stronger 
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Cellular Indexing of Transcriptomes and Epitopes (Perturb-CITE) 
sequencing data from melanoma cells37, we found evidence for similar 
occasional loss of the entire chromosome 21 arising from editing of 
SLC19A1, located on the q arm (21q22.3) (Fig. 2e and Supplementary 
Table 2). In our transcriptomic analysis, chromosomal truncations were 
primarily seen to proceed in the direction away from the centromere, 
but since it is well established in medical genetics that the short arms 
of acrocentric chromosomes 13, 14, 15, 21 and 22 are nonessential59, this 
suggests that the observation of whole-chromosome loss in T cells is 
probably a specific artifact of editing pericentromeric loci on acro-
centric chromosomes.

The apparent generality of undesired on-target effects from 
CRISPR–Cas9 editing raises potential concerns for both functional 
genetic screening and therapeutic gene editing. Prior literature has 
primarily examined cell lines31–33 or zygotes, embryos or embryonic 
stem cells4,6–8,30, which have varying DNA damage responses, so con-
tinuing to establish the importance of these effects in somatic primary 
cells will be important49,50,52. More recent work9,10 has shown recurrent 
aneuploidy in ex vivo edited human T cells and suggested that proto-
cols inducing TP53 expression before editing may be protective for 
chromosome truncation. However, TP53 induction may not be feasible 
in many settings. In particular, somatic loss of TP53 has been observed 
to increase in frequency with age in a variety of nonmalignant tissues, 
including colonic epithelium and blood60–62, suggesting that potential 
risks related to in vivo CRISPR–Cas9 editing may be age dependent. 
Although no negative consequences due to unintended effects of 
CRISPR cutting have yet been documented in patients, further research 
is necessary to detect and quantify the presence of chromosomal losses 
in in vivo editing to maximize patient safety.

Our chromosome-arm truncation hypothesis is consistent with 
recent findings from other groups7,32, based on transcriptomic evidence 
and DepMap11 analysis, and suggests a mechanism involving CRISPR–
Cas9-induced losses in a subpopulation of cells, with increased mitosis 
potentially amplifying the effect. We find higher rates of deletions in 
CRISPR–Cas9 RNA sequencing data relative to shRNA on both sides of 
the cut but are more common in the telomeric direction. While previous 
work analyzing dependency studies in cancer cell lines found similar 
effects due to copy number variations14–16, we demonstrate that this 
effect is largely independent of copy number by quantifying its pres-
ence in primary cell types and in regions of cancer cell lines that lack 
CNVs. The mechanism proposed here generates testable hypotheses 
for future research, exploring the impact of mitogens, cell cycle inhibi-
tors or repeated passaging on deletion rates and suggests that highly 
mitotic cell types may experience more proximity bias in CRISPR–Cas9 
functional genomics screens than slowly or nondividing cells.

Additionally, inspection of whole-genome similarity maps similar 
to Fig. 1d–f suggests that proximity bias patterns are more complex 
than just increased similarity within chromosome arms and that these 
patterns probably differ between cell types. This may be due to a wide 
variety of factors including differences in susceptibility to truncation, 
epigenetic state influencing Cas9 efficiency, gene haploinsufficiency, 
gene essentiality and the strength of phenotypic effects caused by 
genes telomeric from the target loci. To deconvolve these effects, a 
further investigation across many cell types with consistent data col-
lection and processing is needed.

Finally, we suggest a correction strategy that estimates and 
removes the confounding signal on each chromosome arm using unex-
pressed genes. This highlights the advantages of taking a genome-wide 
view and suggests control strategies both for large gene surveys and 
for more targeted screening. Beyond this geometric correction, a 
wide range of other mitigation strategies may be developed to combat 
proximity bias. From a biological or biochemical perspective, it is prob-
able that the use of noncutting perturbations—for example, CRISPRi43, 
CRISPRoff63, base editors or RNA-targeting perturbations such as 
Cas13d64—would circumvent proximity bias; however, some recent 

studies suggest that base and prime editors can induce double-strand 
breaks and associated deletions or translocations65. With cutting-based 
CRISPR assays, activation of p53 or DNA repair pathways (for example, 
through nutlin pretreatment)66 may mitigate this effect, as may the 
addition of free nucleotides or optimizing the timing of experimental 
steps67, modifying Cas9 constructs68 or extending the 5′ end of sin-
gle guide RNAs with cytosine bases69. Additionally, given that these 
effects are probably driven by a relatively small subpopulation of cells, 
improved data cleaning strategies may also prove fruitful. Ideas here 
include the filtering of subsets of cells in transcriptomics or patches of 
images in phenomics or utilizing loss functions during neural network 
training to ignore populations of affected cells. While each method has 
particular limitations (for example, durability, specificity and compu-
tational intensity), the quantification methods presented in this study 
can be used to judge effectiveness and to drive innovation in this area.
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Methods
This research complies with all relevant ethical regulations as approved 
by Recursion Pharmaceuticals.

Cell culture
HUVEC umbilical vein endothelial cells (Lonza, C2519A) at early pas-
sage are expanded within an acceptable window of in vitro culture in 
single-use bioreactor systems that provide 250,000 cm2 of growth 
surface. This results in a yield of 10 × 109 cells to screen up to 4,000 
1,536-well plates. HUVEC are produced and banked in vapor-phase 
liquid nitrogen and successfully seeded into high-throughput screens 
directly from stasis post editing. HUVEC are seeded into 1,536-well 
microplates (Greiner, 789866) via Multidrop (Thermo Fisher) and 
incubated at 37 °C in 5% CO2 for the duration of the experiment.

CRISPR–Cas9 editing
Custom-designed Alt-R CRISPR–Cas9 reagents were purchased from 
Integrated DNA Technologies and prepared following the manufac-
turer’s guidelines and protocols (Alt-R CRISPR–Cas9 crRNA, Alt-R 
CRISPR–Cas9 trans-activating RNA (tracrRNA) cat. no. 1072534, Alt-R 
S.p. Cas9 Nuclease V3, cat. no. 1081059). Alt-R CRISPR–Cas9 crRNA was 
duplexed to Alt-R CRISPR–Cas9 tracrRNA and then combined with Alt-R 
S.p. Cas9 Nuclease V3, following Integrated DNA Technologies guide-
lines, to form a functional CRISPR–RNP (ribonucleoprotein) complex. 
This CRISPR–RNP complex was transfected into cells with a proprietary 
lipofection-based process for high-throughput application.

To control for and filter nonproximal off-target effects of indi-
vidual guides, each gene was targeted with 4–12 nonoverlapping guides 
(89% of genes targeted by six guides), for a total of 101,029 guides. 
Each guide was assessed independently in an arrayed format, typically 
with 24 total replicate wells per guide across two executional batches.

Phenomic imaging
The plates were stained using a modified cell painting protocol19. The 
cells were treated with MitoTracker deep red (Thermo, M22426) for 
35 m; fixed in 3–5% paraformaldehyde; permeabilized with 0.25% Triton 
X100; stained with Hoechst 33342 (Thermo), Alexa Fluor 568 Phalloi-
din (Thermo), Alexa Fluor 555 wheat germ agglutinin (Thermo), Alexa 
Fluor 488 concanavalin A (Thermo) and SYTO 14 (Thermo) for 35 min 
at room temperature; then washed and stored in Hanks’ balanced 
salt solution + 0.02% sodium azide. The images were acquired with 
ImageXpress micro confocal microscopes (Molecular Devices) in wide 
field mode using a PlanApo 10× 0.45 numerical aperture objective and 
Spectra-3 light-emitting diode light engine (Lumencor). For the sake 
of acquisition speed, six-channel imaging was accomplished using 
three combinations of two dichroic mirrors and three emission filters.

Phenomic analysis
All images were uploaded to cloud storage and featurized by embed-
ding them with a proprietary convolutional neural network trained on 
the public RxRx1 dataset using Google Cloud Platform as described in 
a previous work70. The images are captured at 2,048 × 2,048 pixels and 
divided into 16 tiled patches, which are each embedded separately. 
Those embeddings are averaged to create a single representation for 
each imaged well.

Generation of gene-level representations for rxrx3 HUVEC 
data
For this screen, Recursion ran 176 12-plate experiments in 1,536-well 
plates, generating 24 images per guide for a total of 101,029 guides 
and 17,065 genes. The embedding vectors for each image were cen-
tered on a set of perturbation controls, aligned using typical variance 
normalization and aggregated to the gene level as described in Celik 
et al.20. The externally released version of this data described in Fay 
et al.22 contains all the same gene guides but was processed with an 

older pipeline and contains fewer replicates per guide (18), so there 
may be small discrepancies with the data shown here.

Generation of gene-level representations for cpg0016  
U2OS data
The well-level aggregated CellProfiler profiles were downloaded from 
the Cell Painting Gallery23. The ‘Image’ CellProfiler and ‘ObjectNumber’ 
features were discarded, and the remaining features were normalized 
by plate. A principal component analysis was performed using a 98% 
variance cutoff to reduce the dimensionality of the data, followed by 
an additional plate normalization step. The experimental replicates 
were aggregated by taking the mean to yield a feature representation 
per gene.

Normalization of cosine distributions across maps
To make different heatmaps (for example, rxrx3 HUVEC data and 
cpg0016 U2OS data) visually comparable, cosine similarity values for 
each map were quantile normalized to a normal distribution with mean 
zero and standard deviation 0.2 for display purposes only.

Benchmarking of known relationships
To assess how well a map embedding recapitulates known biology, 
we calculated recall measures on known pairwise relationships from 
annotated sources (Reactome25, HuMap26 and CORUM27) as follows. 
Given pairwise cosine similarities between the aggregated perturba-
tion embeddings of all perturbed genes, we selected the top 5% and 
bottom 5% of gene pairs (excluding self-relationships) from the cosine 
similarity distribution as ‘predicted relationships’. We then calculated 
the recall as the proportion of these predicted relationships over all 
relationships in the annotation source. If annotated relationships were 
spread randomly throughout the cosine distribution, this would pro-
duce a recall of 0.1, so that value is used as a baseline. For Fig. 1c, we have 
314, 460 and 530 annotated relationships within chromosome arms 
and 6,713, 11,502 and 11,376 between chromosome arms for Reactome, 
HuMap and CORUM, respectively.

Statistics and reproducibility
No statistical method was used to predetermine sample size. No data 
were excluded from the analyses. The experiments were not rand-
omized and investigators were not blinded to allocation during experi-
ments and outcome assessment.

Analysis was performed using Python (v3.9), numpy (v1.22.3), pan-
das (v1.4.2), scipy (v1.10.1) and statsmodels (v0.13.2). The visualizations 
were generated using matplotlib (v3.5.2), scikit-image (v0.18.3) and 
seaborn (v0.12.3). scRNA-seq data were processed with STAR (v2.7.7a) 
and scanpy (v1.9.3), and the CNV elements were determined with inferc-
nvpy (v0.4.1). The list of cancer genes was downloaded from OncoKB 
(v4.4), https://www.oncokb.org/cancer-genes.

To quantify the level of proximity bias for cell-line splits in the 
DepMap data, we computed the effect size of intra-arm relationships 
being larger than inter-arm relationships, according to a Monte Carlo 
variant of the Brunner–Munzel test29. In particular, we compute:

P (intra arm > inter arm) =
∑N

i=1rank(intra armi)
NM − N + 1

2M

where N is the number of intra-arm samples, M is the number of 
inter-arm samples and rank(x) is the index of sample x when all sam-
ples are sorted, with ties being assigned their average rank. To perform 
bootstrapping, we set N = M and repeatedly sampled N random pairs of 
genes from both the intra-arm and inter-arm populations for T trials. 
The dependency scores for each gene pair across cell lines are used to 
compute a cosine similarity, which is then used as the ranking metric. 
Except where otherwise noted, we utilized N = 500 and T = 100. For the 
final score, we took the empirical mean over these trials. The numbers 
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of cell lines used in each split and other statistical details are included 
in Supplementary Table 3.

To quantify proximity bias at the genome level, the Brunner–
Munzel test statistic was computed between the full inter-arm and 
intra-arm cosine similarity distributions across all chromosome arms 
(without sampling). The statistic estimates the probability that the 
intra-arm cosine similarity is greater than the inter-arm cosine simi-
larity, and the P values shown in Fig. 1g,h and Extended Data Fig. 4b 
are one tailed and Bonferroni corrected. For arm-level metrics, we 
restricted the distributions to gene pairs within a given arm versus 
pairs with one gene on that arm. The sample sizes can be determined 
by the number of genes on each chromosome arm, which are given in 
Supplementary Table 5 for the rxrx3, cpg0016 and DepMap 22Q4 data, 
and tests were performed only for chromosome arms with at least 20 
within-chromosome-arm pairs.

Gene-level proximity bias quantification was computed by the 
Brunner–Munzel test between all cosine similarities of the gene to all 
other genes on the same arm and the cosine similarities to genes on 
other arms (no sampling). The correlation between proximity bias 
and rank gene location between the telomere and the centromere was 
computed using the Spearman rank correlation of the Brunner–Munzel 
statistics and the ordered position of the genes on the chromosome 
arm. For Fig. 2b (rxrx3 data) and Extended Data Fig. 2c (cpg0016 data), 
the sample sizes are given in Supplementary Table 6.

Analysis of public scRNA-seq data
Files containing scRNA-seq AnnData objects for two CRISPR–Cas9 
and three CRISPRi screens were downloaded from PapalexiSatija2021_
eccite_arrayed_RNA.h5ad36, FrangiehIzar2021_RNA.h5ad37, Replogle-
Weissman2022_rpe1.h5ad44, TianKampmann2021_CRISPRi.h5ad45 and 
AdamsonWeissman2016_GSM2406681_10×010.h5ad46 as harmonized 
by the scPerturb study35. Each dataset was loaded using the ‘scanpy’ 
package71 (v1.9.3). and we determined the CNV events using the ‘inferc-
nvpy’ package (v0.4.1), which is a scalable implementation of ‘inferCNV’ 
of the Trinity CTAT project (https://github.com/NCIP/Trinity_CTAT). 
For each of the datasets, we identified genes that, when perturbed, 
led to chromosomal loss proximal to the target gene (Table 1 and Sup-
plementary Table 2). A perturbed gene is identified as resulting in 
proximal chromosomal loss in a cell if 70% or more of the neighboring 
150 genes in the same chromosome are lost (that is, inferred CNV value 
of ≤−0.05) in that cell.

It is crucial to ensure that the chromosomal loss at a targeted 
locus is specifically due to the perturbation at that locus and is not 
a nonspecific loss commonly observed when other genes on distal 
chromosomes are targeted. Observed proximal loss when a gene G 
is perturbed is considered specific if the fraction of cells exhibiting 
loss near G is a minimum of three standard deviations away from the 
average fraction of cells demonstrating chromosomal loss near G 
when any gene within the dataset is perturbed. For each of the genes 
called using this process, the fraction of impacted cells (that is, cells 
that lose more than 70% of the 150 genes near the perturbed gene) 
is reported (Supplementary Table 2). Finally, we generate the heat 
maps in Fig. 2d,e using the ‘infercnvpy’ package (https://github.com/
icbi-lab/infercnvpy).

Analysis of bulk RNA sequencing data
Illumina reads were aligned to the hg38 reference and gene-level 
counts generated for each sample using the gencode_v33 gene anno-
tation set and stored in AnnData objects together with sample per-
turbation metadata using STAR v2.7.7a (ref. 72) and scanpy (v1.9.3)71. 
The CNV events and determination of chromosomal loss near the 
on-target cut site were determined using the method described above 
for the scRNA-seq analysis. A total of 45 intron-cutting CRISPR guide 
perturbations were tested in HUVEC cells using this method (Sup-
plementary Table 1).

Analysis of DepMap data
Four datasets from DepMap (https://depmap.org/portal) were ana-
lyzed: CRISPR–Cas9 23Q2 (Chronos pipeline with arm normalization 
correction), CRISPR–Cas9 22Q4 (Chronos pipeline), CRISPR–Cas9 
19Q3 (CERES pipeline) and shRNA (DEMETER2 pipeline)17,18. For each 
gene, we treated the dependency scores across different cell lines as a 
feature vector and computed the cosine similarity to other genes in the 
dataset (Fig. 3a). To reduce the bias toward essential genes from cosine 
similarity computation, we recentered the dependency scores for each 
gene by subtracting the mean from all cell lines. The cosine similarity 
values were then quantile normalized to a normal distribution with 
mean zero and standard deviation 0.2 for display purposes only.

To disentangle proximity-bias driven effects from CNVs depend-
encies, we reanalyzed the DepMap 22Q4 data (which has been cor-
rected for copy number using the Chronos pipeline17) by estimating 
the Brunner–Munzel probabilities across pairs of chromosome arms 
with almost no CNVs. For each pair of autosomal chromosome arms, 
we restricted to cell lines where less than 1% of genes had copy-number 
calls outside of (1.75, 2.25) (Supplementary Tables 5 and 6) and cal-
culated the arm-level Brunner–Munzel probabilities (without sam-
pling) for each pair (1,482 total values). These were then compared 
with Brunner–Munzel probabilities using all cell lines in both the full 
CRISPR–Cas9 data and shRNA data, as well as to randomly sampled 
cell lines matching the number of cell lines without CNVs (ten random 
sampling runs) (Extended Data Fig. 3b).

Additionally, we performed an analysis of the difference in prox-
imity bias effect observed in WT cell lines as compared with AMP or 
LOF cell lines using the 22Q4 DepMap data. This was further strati-
fied by looking at both a TP53 WT background and a TP53 partial LOF 
background. This was performed by restricting to the cell lines that 
are TP53 WT or partial LOF (copy number ≤1.5) before computing the 
proximity bias score. To select the cell lines matching LOF or AMP, we 
first subset to cell lines that have copy number ≤1.5 or ≥2.5 for LOF and 
AMP, respectively. Then, for AMP, we additionally subset to cell lines 
that do not have a nonsense or frame shift mutation, as these cell lines 
may have LOF despite the AMP. To control for different numbers of 
cell lines in different conditions, we computed a bootstrap version of 
the Brunner–Munzel proximity bias metric described above with an 
additional level of sampling. This consists of taking a random sample 
of 20 of cell lines in each condition, constructing maps and calculat-
ing the Brunner–Munzel probabilities for S = 4 trials. Additionally, 
we increase the number of trials T (of genes used to compute cosine 
similarity) to 200 and exclude any conditions with fewer than 25 cell 
lines. Once this metric was computed for all 602 genes with a suffi-
cient number of cell lines to meet the above conditions, we computed 
the difference between the WT and each mutant condition in each 
background condition, subset to the top 200 genes and repeat the 
computation with S = 32 trials (Supplementary Table 3). The initial list 
of cancer genes was downloaded from OncoKB73 (v4.4, https://www.
oncokb.org/cancer-genes).

Gene-set enrichment was conducted for Gene Oncology biological 
process with ShinyGO (v0.77) 58 using all genes with mean differences in 
whole-genome level Brunner–Munzel statistics above 0.2 for increases 
in proximity bias and below −0.1 for decreases in proximity bias in each 
condition. All default settings were used (false discovery rate cutoff of 
0.05; number of processes to show; process size: minimum 2, maximum 
2,000; selected by false discovery rate and sorted by fold enrichment) 
(Supplementary Table 4).

For the data in Supplementary Tables 7 and 8, the cell lines were 
grouped by disease annotations and then for each gene, we performed 
t-tests on the dependency values, first between all cell lines with that 
annotation and then after restricting to cell lines with copy number 
calls within (1.75, 2.25). False discovery rate correction was applied 
to all tests (Benjamini–Hochberg). We report all significant genes in 
B-lymphoblastic leukemia and lymphoma, neuroblastoma and renal 
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cell carcinoma for both the 22Q4 and 23Q2 datasets along with the 
gene expression values (in transcripts per million reads). The 23Q2 
data have a correction applied for the proximity bias effect, so differ-
ences between these two tables highlight the reduction in potential 
false-positive disease-specific driver genes.

Geometric method for proximity bias reduction
For each chromosome arm, we first calculate the feature-wise mean 
across all unexpressed genes on that arm and then subtract those 
means from the features for each gene located on that arm. The 
gene locations were identified by National Center for Biotechnology 
Information RefSeq transcript locations against the hg38 reference 
assembly. The unexpressed genes were defined as those with zFPKM 
(fragments per kilobase of transcript per million mapped reads) <−3.0 
in normalized bulk RNA sequencing of the given cell type before any 
CRISPR–Cas9 treatment.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Raw images, metadata and deep-learning-derived embeddings for 
rxrx3 are available at https://rxrx.ai; however, the majority of gene 
identities are currently masked due to commercial considerations. 
Due to contractual obligations with partners, Recursion is unable to 
share additional data underlying the rxrx3 analyses or the bulk RNA 
sequencing in Fig. 2f. cpg0016 is available as part of the JUMP Cell Paint-
ing datasets available from the Cell Painting Gallery on the Registry of 
Open Data on Amazon Web Services at https://registry.opendata.aws/
cellpainting-gallery/. The scRNA-seq datasets are available through 
scPerturb (https://scperturb.org/). The DepMap data are available 
at https://depmap.org/portal/download/all/. The JUMP CP data were 
downloaded from S3 using python (1.22.3) and pandas (1.4.2) at https://
registry.opendata.aws/cellpainting-gallery/. The hg38 gene locations 
and annotations were downloaded from the University of California, 
Santa Cruz Genome Browser at https://genome.ucsc.edu/cgi-bin/
hgTables. The shinyDepMap data were downloaded and processed 
using R (v4.1) at https://depmap.org/portal/download/all/. The files 
containing scRNA-seq AnnData objects for two CRISPR–Cas9 and three 
CRISPRi screens were downloaded from Zenodo at https://zenodo.org/
record/7416068 (ref. 74). Source data are provided with this paper.

Code availability
The Python-based data analysis source code to reproduce plots from 
public datasets is available at https://github.com/recursionpharma/
proxbias and Zenodo at https://doi.org/10.5281/zenodo.10795539 
(ref. 75). Due to contractual obligations with partners, Recursion is 
unable to share code to reproduce plots from the rxrx3 data or Fig. 2f.
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Extended Data Fig. 1 | See next page for caption.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-024-01758-y

Extended Data Fig. 1 | Rxrx3 and cpg0016 example pathways. a, Table of 
genes shown in Fig. 1b. b, c, d, Heatmaps of rxrx3 (above diagonal) and cpg0016 
(below diagonal) data for selected biological pathways with corresponding 
pathway diagrams for JAK/STAT, TGF-beta, and insulin biology. Data not present 
in cpg0016 shown in gray. b, Example interleukin (IL) 6 pathway: IL6, IL6R, IL6ST, 
JAK1, and STAT3 activate the IL-6 signaling pathway76. CRISPR-Cas9 targeting 
of these genes leads to similar cellular phenotypes and produces positive 
cosine similarities (red squares between IL6, IL6R, IL6ST, JAK1, and STAT3 in the 
heatmap). As inhibitors of the IL-6 pathway, SOCS3 and PTPN2 demonstrate a 
negative cosine similarity to the pathway components IL6/IL6R/IL6ST/JAK1/
STAT3, especially in the rxrx3 HUVEC data (blue squares)76,77. c, Example TGF-
beta pathway: FURIN, TGFB1, TGFBR1, TGFBR2, SMAD2, and SMAD3 activate the 

TGF-beta pathway. CRISPR-Cas9 targeting of these genes gives a similar cellular 
phenotype and high cosine similarity (red squares in the heatmap)78. SMURF2 and 
SKI inhibit the TGF-beta pathway, and CRISPR-Cas9 targeting of SMURF2 and SKI, 
show high cosine similarity to each other but negative cosine values to FURIN, 
TGFB1, TGFBR1, TGFBR2, SMAD2, and SMAD3 (blue squares)78,79. Grey squares 
indicate genes not present in the cpg0016 data. d, Example insulin pathway: INSR, 
IRS2, AKT1, PIK3CA transmit insulin signaling80. CRISPR-Cas9 targeting these 
factors gives similar phenotypes and therefore they are highly cosine-similar 
(red squares between INSR/IRS2/AKT1/PIK3CA in the heatmap). GRB10 and FOXO1 
inhibit insulin signaling, reflected in negative cosine similarities between CRISPR-
Cas9 targeting of GRB10 and INSR, IRS2, AKT1 and PIK3CA (blue squares)80. Grey 
squares indicate genes not present in the cpg0016 data.
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Extended Data Fig. 2 | Additional figures showing proximity bias effects in 
rxrx3 and cpg0016. a, Distribution plots of within-chromosome and between-
chromosome cosine similarity for rxrx3 (left) and cpg0016 data (right). The 
within-chromosome distribution is shifted toward the positive, which was the 
initial indication that some bias was present. b, Scatterplot of gene-level one-
sided Brunner-Munzel probabilities versus relative chromosome-arm position 
for three chromosome arms in the cpg0016 dataset. The value on the y-axis 
estimates the probability of an intra-chromosome-arm relationship involving 

a given gene having a higher cosine similarity than an inter-chromosome-arm 
relationship involving the same gene. c, Spearman correlations in plots similar 
to b across all chromosome arms for the cpg0016 data. The height of the bar 
for each arm agrees well with the degree of fading in diagonal blocks in Fig. 1c 
below the diagonal. Colors show Bonferroni-corrected p-values. d, Bulk RNA 
sequencing gene count depletion for cells treated with a ZNF394-targeting guide 
relative to untreated cells in 10-gene blocks across chromosome 7. Decreased 
expression is evident on the telomeric side of the cut site.
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Extended Data Fig. 3 | Proximity bias quantification in DepMap data. a, Split 
genome-wide heatmap of the DepMap 22Q4 (above diagonal) and 23Q2 (below 
diagonal) CRISPR data. Both are processed with the Chronos pipeline17 but 23Q2 
has an additional correction applied to reduce proximity bias. 22Q4 has 1,078 
cell lines, 23Q2 has 1,095 cell lines. b, Distributions of arm-level Brunner-Munzel 
probabilities for maps built using pairs of autosomal chromosome arms  
(741 pairs represented twice in blue, green and red distributions). Blue 
distribution is built using all DepMap 22Q4 CRISPR-Cas9 cell lines, orange 
samples random cell lines matching the numbers from the green distribution 
(10 random sampling runs), green uses only cell lines with less than 1% of genes 
having copy number calls outside of [1.75, 2.25] (counts in Supplementary Table 4),  
and red uses all cell lines in the DepMap shRNA data. Two-sided Mann-Whitney 
U tests between all distributions are highly significant (p-value < 1E-10) for 

all pairwise comparisons. c, Boxen plots showing distributions of the ratio of 
within-chromosome-arm relationships to between-arm relationships for each 
chromosome arm across different gene annotation sets (n = 39 chromosome 
arms for all sources. Boxes are drawn at each octile with outliers outside of 
those boxes. The 19Q3 DepMap data show a much higher ratio of within-arm 
to between-arm annotations, suggesting a systematic bias to the predicted 
associations. d, Counts of gene-gene relationships within and between 
chromosome arms for shinyDepMap 19Q3 data (blue and tan, n = 4747 and 9271 
respectively) and public annotation sets (Reactome, HuMap, and CORUM) 
(green and red, n = 98 and 2825 respectively)25–27. DepMap predicts a much higher 
proportion of within-chromosome-arm relationships than are found in public 
annotation sets (odds ratio 0.068, Fisher exact p-value < 1e-10).
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Extended Data Fig. 4 | Proximity bias correction in DepMap Data. a, Split 
genome-wide heatmap built from 625 CRISPR cell lines, 190 shRNA cell lines, 
and 11,169 genes shared between CRISPR and shRNA datasets in the DepMap 
19Q3 and DEMETER2 v6 data. CRISPR-Cas9 data are shown above the diagonal 
and shRNA data below. No proximity bias signal is visible in the shRNA data. 

b, Quantification of proximity bias in the DepMap shRNA dataset with colors 
showing Bonferroni-corrected p-values from the one-sided arm-level Brunner-
Munzel test. Only a few chromosome arms display significant deviation of intra- 
versus inter-chromosome-arm similarities contrasting with the CRISPR data 
shown in Fig. 3b.
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Extended Data Fig. 5 | Proximity bias quantification for additional genes 
between BTG2 and MDM4. Box and scatter plots of whole-genome level proximity 
bias quantification by Brunner-Munzel intra-arm vs inter-arm probability from 
DepMap 22Q4 data with cell lines stratified by gene status. Each point represents 
a bootstrap sample of cell lines, 128 bootstraps were run for each condition. Box 
plots show the median, lower and upper quartile with whiskers extending to the 
furthest points within 1.5 times the inner quartile range. Detailed test statistics in 
Supplementary Table 3. a, All genes with sufficient data in order of chromosome 
position between BTG2 and MDM4 on chromosome 1q; wild-type (WT) vs 
amplification (AMP) in TP53 WT background (FMOD: WT n = 175, AMP n = 87, 
PRELP: WT n = 174, AMP n = 87, OPTC: WT n = 172, AMP n = 87, ATP2B4: WT n = 167, 
AMP n = 87, LAX1: WT n = 171, AMP n = 87, ZC3H11A: WT n = 172, AMP n = 87, SNRPE: 

WT n = 177, AMP n = 86, SOX13: WT n = 169, AMP n = 87, ETNK2: WT n = 170, AMP 
n = 87, REN: WT n = 173, AMP n = 87, KISS1: WT n = 176, AMP n = 87, GOLT1A: WT 
n = 173, AMP n = 87, PLEKHA6: WT n = 158, AMP n = 86, PPP1R15B: WT n = 171, AMP 
n = 87, PIK3C2B: WT n = 158, AMP n = 87). b, Same as a, in TP53 LOF background 
(FMOD: WT n = 182, AMP n = 81, PRELP: WT n = 183, AMP n = 81, OPTC: WT n = 182, 
AMP n = 81, ATP2B4: WT n = 180, AMP n = 80, LAX1: WT n = 184, AMP n = 80, 
ZC3H11A: WT n = 182, AMP n = 80, SNRPE: WT n = 189, AMP n = 80, SOX13: WT 
n = 180, AMP n = 80, ETNK2: WT n = 186, AMP n = 80, REN: WT n = 186, AMP n = 79, 
KISS1: WT n = 189, AMP n = 79, GOLT1A: WT n = 185, AMP n = 79, PLEKHA6: WT 
n = 174, AMP n = 78, PPP1R15B: WT n = 178, AMP n = 79, PIK3C2B: WT n = 172, AMP 
n = 79). Genes with less than 25 cell lines in a given condition are not shown.
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Reporting Summary
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in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Data were downloaded and processed with python (v3.9), numpy (v1.22.3) and pandas (1.4.2) and R (v4.1)

Data analysis Analysis was performed using Python (v3.9) and open-source packages numpy(v1.22.3), pandas(v1.4.2), scipy (v1.10.1) and statsmodels 
(v0.13.2). Visualizations generated with matplotlib (v3.5.2), scikit-image (v0.18.3), seaborn (v0.12.3). single-cell RNA sequencing data was 
processed with STAR (v2.7.7a) and scanpy (v1.9.3) and determined the CNV events using infercnvpy (v0.4.1). The list of cancer genes was 
downloaded from OncoKB (v4.4). 
Custom code available at https://github.com/recursionpharma/proxbias/

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Raw images, metadata, and deep-learning-derived embeddings for rxrx3 are available at https://rxrx.ai.  cpg0016 is available as part of the JUMP Cell Painting 
datasets available from the Cell Painting Gallery at https://registry.opendata.aws/cellpainting-gallery/.  DepMap data are available at https://depmap.org/portal/
download/all/ JUMP CP data was downloaded from their S3 bucket using python (1.22.3) and pandas (1.4.2): https://registry.opendata.aws/cellpainting-gallery/. 
hg38 gene locations and annotations were downloaded from UCSC: https://genome.ucsc.edu/cgi-bin/hgTables shinyDepMap data was downloaded and processed 
using R (4.1): https://depmap.org/portal/download/all/ Files containing scRNAseq AnnData objects for two CRISPR-Cas9 and three CRISPRi screens were 
downloaded from zenodo.org/record/7416068. The list of cancer genes was downloaded from OncoKB (v4.4), https://www.oncokb.org/cancer-genes.

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender The HUVEC source cells used in the rxrx3 dataset were sourced from two donor pools.   
1) Lonza Catalog # C2519A Lot 0000662339 Manufacture Date 26-Sept-2017 (3 pooled umbilical cord donors) Age = 
Newborn, Sex = Male, Male, Male, Race = Caucasian, Caucasian, Caucasian  
2) Lonza Catalog # C2519A Lot 0000661173 Manufacture Date 22-Sept-2017 (6 pooled umbilical cord donors)  Age = 
Newborn, Sex = Male, Female Mixed, Race = Black, Other, Caucasian, Caucasian, Black, Caucasian The cells were isolated 
from donated human tissue after obtaining permission for use in research applications by informed consent or legal 
authorization.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

No reference to race, ethnicity or other social groups is made in the manuscript.

Population characteristics See above

Recruitment No recruitment was performed.

Ethics oversight No ethics oversight body was consulted.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical method was used to predetermine sample size. 

Data exclusions No data were excluded.

Replication Major findings were replicated across the rxrx3 and cpg0016 datasets as well as within three data sources from DepMap (19Q3, 22Q4, and 
23Q2).

Randomization No interventional analyses were performed as a part of this study, so no randomization of samples into experimental groups was used.

Blinding Blinding is not relevant to this study because there were no interventions applied that could be influenced by experimenters.

Reporting for specific materials, systems and methods
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) The HUVEC source cells used in the rxrx3 dataset were sourced from two donor pools.  
1) Lonza Catalog # C2519A Lot 0000662339 Manufacture Date 26-Sept-2017 (3 pooled umbilical cord donors) 
Age = Newborn, Sex = Male, Male, Male, Race = Caucasian, Caucasian, Caucasian 
2) Lonza Catalog # C2519A Lot 0000661173 Manufacture Date 22-Sept-2017 (6 pooled umbilical cord donors)  
Age = Newborn, Sex = Male, Female Mixed, Race = Black, Other, Caucasian, Caucasian, Black, Caucasian 
The cells were isolated from donated human tissue after obtaining permission for use in research applications by informed 
consent or legal authorization.

Authentication Cell lines were only utilized from public data sets (cpg0016 and DepMap).

Mycoplasma contamination Cell lines were only utilized from public data sets (cpg0016 and DepMap).

Commonly misidentified lines
(See ICLAC register)

Cell lines were only utilized from public data sets (cpg0016 and DepMap).
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