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We often want to compare two estimates of the same
quantity derived from separate analyses. Thus we might
want to compare the treatment effect in subgroups in a
randomised trial, such as two age groups. The term for
such a comparison is a test of interaction. In earlier Sta-
tistics Notes we discussed interaction in terms of hetero-
geneity of treatment effect.1–3 Here we revisit interaction
and consider the concept more generally.

The comparison of two estimated quantities, such as
means or proportions, each with its standard error, is a
general method that can be applied widely. The two esti-
mates should be independent, not obtained from the
same individuals—examples are the results from
subgroups in a randomised trial or from two independ-
ent studies. The samples should be large. If the estimates
are E1 and E2 with standard errors SE(E1) and SE(E2),
then the difference d=E1 − E2 has standard error
SE(d)=√[SE(E1)

2 + SE(E2)
2] (that is, the square root of the

sum of the squares of the separate standard errors). This
formula is an example of a well known relation that the
variance of the difference between two estimates is the
sum of the separate variances (here the variance is the
square of the standard error). Then the ratio z=d/SE(d)
gives a test of the null hypothesis that in the population
the difference d is zero, by comparing the value of z to
the standard normal distribution. The 95% confidence
interval for the difference is d−1.96SE(d) to d+1.96SE(d).

We illustrated this for means and proportions,3

although we did not show how to get the standard
error of the difference. Here we consider comparing
relative risks or odds ratios. These measures are always
analysed on the log scale because the distributions of
the log ratios tend to be those closer to normal than of
the ratios themselves.

In a meta-analysis of non-vertebral fractures in ran-
domised trials of hormone replacement therapy the
estimated relative risk from 22 trials was 0.73 (P=0.02) in
favour of hormone replacement therapy.4 From 14 trials
of women aged on average < 60 years the relative risk
was 0.67 (95% confidence interval 0.46 to 0.98; P=0.03).
From eight trials of women aged >60 the relative risk
was 0.88 (0.71 to 1.08; P=0.22). In other words, in
younger women the estimated treatment benefit was a
33% reduction in risk of fracture, which was statistically
significant, compared with a 12% reduction in older
women, which was not significant. But are the relative
risks from the subgroups significantly different from
each other? We show how to answer this question using
just the summary data quoted.

Because the calculations were made on the log scale,
comparing the two estimates is complex (see table). We
need to obtain the logs of the relative risks and their
confidence intervals (rows 2 and 4).5 As 95% confidence
intervals are obtained as 1.96 standard errors either side
of the estimate, the SE of each log relative risk is
obtained by dividing the width of its confidence interval
by 2×1.96 (row 6). The estimated difference in log
relative risks is d=E1− E2= − 0.2726 and its standard error

0.2206 (row 8). From these two values we can test the
interaction and estimate the ratio of the relative risks
(with confidence interval). The test of interaction is the
ratio of d to its standard error: z= − 0.2726/
0.2206= − 1.24, which gives P=0.2 when we refer it to a
table of the normal distribution. The estimated
interaction effect is exp( − 0.2726)=0.76. (This value can
also be obtained directly as 0.67/0.88=0.76.) The
confidence interval for this effect is − 0.7050 to 0.1598
on the log scale (row 9). Transforming back to the rela-
tive risk scale, we get 0.49 to 1.17 (row 12). There is thus
no good evidence to support a different treatment effect
in younger and older women.

The same approach is used for comparing odds
ratios. Comparing means or regression coefficients is
simpler as there is no log transformation. The two esti-
mates must be independent: the method should not be
used to compare a subset with the whole group, or two
estimates from the same patients.

There is limited power to detect interactions, even in
a meta-analysis combining the results from several stud-
ies. As this example illustrates, even when the two
estimates and P values seem very different the test of
interaction may not be significant. It is not sufficient for
the relative risk to be significant in one subgroup and
not in another. Conversely, it is not correct to assume
that when two confidence intervals overlap the two esti-
mates are not significantly different.6 Statistical analysis
should be targeted on the question in hand, and not
based on comparing P values from separate analyses.2
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Calculations for comparing two estimated relative risks

Group 1 Group 2

1 RR 0.67 0.88

2 *log RR −0.4005 (E1) −0.1278 (E2)

3 95% CI for RR 0.46 to 0.98 0.71 to 1.08

4 *95% CI for log RR −0.7765 to −0.0202 −0.3425 to 0.0770

5 Width of CI 0.7563 0.4195

6 SE[=width/(2×1.96)] 0.1929 0.1070

Difference between log relative risks

7 d[=E1−E2] −0.4005–(−0.1278)=−0.2726

8 SE(d) √(0.19292+ 0.10702)=0.2206

9 CI(d) −0.2726 ±1.96×0.2206
or −0.7050 to 0.1598

10 Test of interaction z=−0.2726/0.2206=−1.24 (P=0.2)

Ratio of relative risks (RRR)

11 RRR=exp(d) exp(−0.2726)=0.76

12 CI(RRR) exp(−0.7050) to exp(0.1598), or 0.49 to 1.17

*Values obtained by taking natural logarithms of values on preceding row.
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